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LOCAL TIME AND STOCHASTIC AREA INTEGRALS

By L. C. G. RoGERs AND J. B. WALSH
University of Cambridge and University of British Columbia

If (B,); o is Brownian motion on R, if A(#,x) = [jlp .. ds and if
7(+,x) is the right-continuous inverse to A(-, x), then the process B(¢, x) =
B(7(t,x)) is a reflecting Brownian motion in (—o, x]. If &, denotes the
o-field generated by B(-, x), then (£,), < forms a filtration. It has been
proved recently that all (£},)-martingales are continuous, in common with
the martingales on the Brownian filtration. Here we shall prove that, as
with the Brownian filtration, all (£},)-martingales can be written as stochas-
tic area integrals with respect to local time. This requires a theory of such
integrals to be developed; the first version of this was given by Walsh some
years ago, but we consider the account presented here to be definitive. We
apply this theory to an investigation of stochastic line integrals of local time
along curves which need not be adapted processes and illustrate these
constructs by identifying the compensator of the supermartingale
(L(7(¢, x), x)), » , previously studied by McGill.

1. Introduction. Let B, denote a standard motion, B, = 0, defined on a
complete probability space (2, %, P) and let L(z, x) denote its local time and
(&) its filtration, completed as usual, so that %, contains all null sets of #.
We assume that = V,%,. Let

t
A(t,x) = fOI(Bssx) ds

(1.1)
X
=/ L@y dy.
For each x, let 7(-, x) be the inverse of A(-, x):
(1.2) (¢, x) = inf{u: A(u,x) > t}.

Let B(t,x) = B, ) be the time change of B by 7 and let L be the time
change of local time given by

(1.3) L(t,x) = L(7(t,x),x).

L is called the intrinsic local time and is jointly continuous; see Corollary 1.9
of McGill (1986). Finally, define a o-field &, by

(1.4) &2 = o{B(t,x),t = 0}

and let &, be the usual augmentation of &.° obtained by adjoining all null sets
of & to &%.
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Changing time by 7(-, x) wipes out the time B spends in (x, ) so that to
get B from B we delete all excursions of B above x and close up the gaps in
the time axis. The resulting process is a reflecting Brownian motion on
(=, x]. The family (&) is a filtration, called the filtration of excursion fields.
It was introduced in Walsh (1978) to study Ray—Knight theorems. The param-
eter of the excursion fields is x, not ¢. Nevertheless the two filtrations enjoy
many of the same characteristics. Some examples of this were given in Walsh
(1983) and it was conjectured that they shared two of the most important
properties of (%,):

1. All &, martingales are continuous.
2. All square-integrable &, martingales can be written as stochastic integrals.

These conjectures have been nearly settled. Williams (1979) produced a
dense set of continuous (&))-martingales to show that (1) was true. Walsh
(1983) then gave a theory of stochastic area integrals with respect to local time
and showed how to write Williams’ martingales as stochastic integrals. This
implied the conjectured representation theorem, which in turn implied (1). In
a later paper, McGill (1986) approached stochastic integration from a different
viewpoint, using L instead of L and gave another representation of Williams’
martingales, arriving at yet another proof of (1) and (2).

As it happens, none of these proofs was totally satisfactory. Williams’ proof
relied on what he called CMO formulas. He gave an elegant proof of the first
order ones, but the higher order formulas were too complicated to prove
carefully. Walsh’s proof ran into a similar problem in a different spot. It used
Green’s formulas and the derivations of the higher order equations were more
heuristic than rigorous. McGill’s proof relied on an explicit decomposition of
the supermartingale {L(¢, x) + 2x~, £, x > a} into its martingale and bounded
“variation parts; we could not see how this followed from the arguments in the

“paper. (We hasten to add that the decomposition is correct and can doubtless
be proved by his methods. However, the attempt to understand it motivated
much of the research of this paper, so we will come back to this point and give
a different proof of the decomposition.)

More recently, Rogers (1987) gave a complete and elementary proof of the
martingale continuity, laying to rest any remaining doubts about (1). We
intend to do the same for (2) in Section 2 of this paper. In order to make the
paper self-contained, we will begin with an account of the stochastic integral
with respect to local time and then proceed to a direct and relatively simple
proof of Theorem 7.1 in Walsh (1983). This is based on Rogers’ continuity
proof, which constructed a dense family of continuous martingales. We simply

show here that they can all be written as stochastic integrals.

' We will turn to questions of stochastic line integrals and their relation with

Brownian local time on certain curves in Section 3. We show that it is possible

to define a local time on a class of curves in space-time; the class of curves is
quite different from the classes usually treated and the results connect closely

with both the line integrals and the stochastic area integrals of Section 2.
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We apply this to the supermartingale {L(x,¢) + 25, &,, x > a} in the final
section, giving a new proof of the Meyer decomposition and showing several
probabilistic interpretations of the martingale part and particularly of the
increasing process.

2. Stochastic area integrals. The main object of this section is to
explain and prove Theorem 2.1.

THEOREM 2.1. Each X € L*(Q, &, P) can be represented as
(2.1) X =E(X} + [ [¢(¢, ) L(dt, dx),

where ¢ is an identifiable process satisfying

(22) I61° = 4 ["6(2, B dt} <.
0
Moreover, ¢ is unique up to equivalence.

Identifiable processes and the double integral in (2.1) were introduced in
Walsh (1983), but rather than refer to that, we will carry out the construction
of the stochastic area integral with respect to L, taking the opportunity to
simplify the approach a little. The simplification comes about largely because
we use the characterization of identifiability given in the appendix of Walsh
(1983), which is easier to work with than the original definition.

Let us first note some facts about the function A and its inverse . The
following are evident from (1.1). For a.e. w:

1. A(¢, x) is jointly continuous in (¢, x).
2. For fixed x, A is an increasing Lipschitz continuous function of ¢.
3. For fixed ¢, A is an increasing C function of x with

A L(t
3'; = ( ’ x)
Moreover, as a function of x,
¢ if x > M,,
(2.3) A(t,x) = { strictly increasing if m, <x < M,,
0 ifx <m,,

where
m,=inf{(B,,s <t}, M,=sup(B,,s <t}.

The properties of 7, the inverse of A, are easily derived from this. We will
leave the proof of the following as an exercise.
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ProrosiTION 2.2.
(1) 7 isfiniteon R, X R and 7(¢t,x) =t ifx > M,;
(ii) ¢ » (¢, x) is right-continuous and increasing;
(iii) x — (¢, x) is left-continuous and decreasing;
Gv) A(7(t,x),x) =tand t < 7(A(t, x), x) = inf{s > t: A(s, x) > A(¢, x)}.

Let Q' = Q X (0,) and let (&}), < g be the filtration & = &, X #((0,»)) on
V. A process {X(w,t,x): @ € Q, t > 0,x € R} is (&)-adapted if for each x,
(w,t) =» X(w,t, x) is (&/)-measurable and it is left-continuous if for almost
every o, x = X(w, t, x) is left-continuous for all ¢. By analogy with the usual
one-parameter theory we coin the following terms.

DEeFINITION. The (excursion) predictable sigma field £ on ' X R is the
sigma field generated by all left-continuous &’-adapted processes. A process
{(X(w,t,x): 0w € Q, t >0, x € R} is predictable if it is & measurable.

Note that a predictable process is only defined for ¢ > 0 and that the
predictable sets are subsets of the open half plane R, , X R, where R, = (0, «).
In our theory as in the one parameter theory, the point ¢ = 0 often has to be
discussed separately as a special case. We will minimize these discussions by
simply eliminating the origin from the definition. We shall usually suppress
the w from our notation and write X(¢, x) instead of X(w, ¢, x). The following
result may be useful.

PROPOSITION 2.8. & is generated by sets of either of the two forms
@@ (0,T) X (a, b], where a < b and where T > 0 is &,-measurable;
(i) (0, T] X (a, b], where a < b and where T > 0 is &,-measurable.

Of course (0, T'] X (a, b] is short for the set {(w,#,%): 0 < ¢ < T(w),a <x <
b}. The proof of Proposition 2.3 is elementary and we will leave it to the

reader.
Let R be the set

R={(o,t,x):t>7(0,0,x),0 € Q,x € R}
={(w,t,x): A(w,t,x) > 0,w € Q,x € R}.
Define the map I': # » O X R, X R by
No,t,x) = (0, A(t,x,w),x). _

We can now say what identifiability means in terms of the map I

DEFINITION. A process ¢: R — R is identifiable if there exists an (excur-
sion) predictable process ¢ such that

¢ =¢or.
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The o-field .7 of subsets of R defined by
SF=T"Y(&P)
is called the o-field of identifiable sets.

It is easy to see that an identifiable process ¢: i — R is measurable with
respect to .# and that .# is generated by the identifiable processes.

Notice that an identifiable process ¢(¢, x) is only defined for ¢ > 7(0, x). If
x > 0, then 7(0, x) = 0, but if x < 0, then 7(0, x) is almost surely the first time
the Brownian path reaches x, so that ¢(-, x) is not defined during the first
excursion from the origin to x. Just as the theory of predictable processes is
complicated by the inclusion of # = 0 in the parameter set, the theory of
identifiable processes can be complicated by the inclusion of the first excursion
from 0 to a point x < 0. The definitions we have made avoid this.

By definition then, a process ¢ is identifiable iff ¢(¢, x) = H(A(t, x), x) for
some predictable ¢, in which case ¢ is given by &(¢, x) = ¢(r(¢, x), x). In
practice, to test whether a given process ¢ is identifiable, we form the process
&, x) = p(7(¢, x), x) and try to decide whether or not it is predictable. If so,
we check that ¢ = & o I' and the job is done. In view of Proposition 2.2(iv), this
last equation holds if ¢+ ¢(¢ x) is constant on each (closed) interval of
constancy of A. We can express the latter condition more neatly by introduc-
ing an equivalence relation. We say two points (s, x) and (¢, y) are equivalent
and we write (s,x) ~ (¢,x), if x =y and A(s,x) = A(z,y). Then the above
remarks show the following.

PROPOSITION 2.4. ¢ is identifiable iff both

(@) ¢(t, x) =g4p d(7(t, x), x) is predictable;
(b) z ~ 2" = ¢(2) = ¢p(2").

The next result contains some elementary but fundamental facts.

ProposiTION 2.5. (i) Fix x > a and let T be a nonnegative &,-measurable
random variable. For any t > 0, the three events

(2.4) {A(7(T,a),x) <t}, {7(t,x)>(T,a)}, {A(7(¢x),a)>T}
are a.s. equal and are &,-measurable.

(ii) Fix a <b and let T > 0 and Z be &,-measurable random variables.
Then the process

(253) ¢(t7 x) = ZI[T(T,a),w)(t)I(a,b](x)‘
is identifiable.

Proor. (i) If x = a, the three events are clearly equal, so we suppose that
x > a. It is evident that the second two sets are equal, since 7(¢, x) > 7(T, a) if
and only if A(r(¢, x),a) > T. It follows from the continuity of A(-,x) that
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A(u,x) <t implies that 7(¢,x) > u. Moreover, if 7(¢,x) > 7(T,a), then
A(7(T, a), x) < t; but in this case, A(-, x) must be strictly increasing at 7(T, a)
since B(7(T,a)) < a < x, hence there is strict inequality and the first two sets
must be equal.

To prove that the events are &-measurable, notice that

A(7(t,%),a) =[

0

(¢, x)
Ip, <q ds

(¢, x)
=f0 Ip, <, <z ds

14
= j;I(ﬁ(u,x)sa) du

which is clearly an &-measurable random variable.
(ii) By insisting that T' > 0 we ensure that ¢ vanishes off R. To see that it
is identifiable, notice that

é(t,x) = ¢(7(¢, %), x)
= ZI{T(T,a)S_T(t,x))I(a,b](x)
= ZI{A(T(T,G),x)st)I(a,b](x)-

Now A(7(T, a), x) is &,-measurable by (2.4) if x > a and it is continuous in x,
so ¢ is predictable. To complete the proof that ¢ is identifiable, we check
condition (b) of Proposition 2.4.

Suppose that s < ¢, (s, x) ~ (¢, x) and, without loss of generality, suppose
that @ < x < b. Since A(s,x) = A(¢, x), it must be that B, > x for all u €
[s, t], and hence it is impossible that 7(T,a) € [s, ¢]. Thus ¢(s, x) = ¢(¢, x)
and the proof is complete. O

It is useful to give a name to times of the form (7', a).

DEeFiNITION. Let a € R. A random variable S with values in [0, ] is
&, -identifiable if there is an &,-measurable random variable T with values in
[0, «] such that S = #(T, a).

REMARK 1. 7(x, x) = » by definition.

ReMARK 2. This definition agrees with that of Walsh (1983) except that an
. &,-identifiable time was allowed to take on the value zero there, while here it
must be greater than or equal to 7(0, a). This is innocent if a > 0, but when
a < 0, 7(0, a) is strictly positive.

ReMARk 3. If T is & -identifiable and a <y, then T is also & -identifiable.
Indeed, if T = 7(T",a) for some &,-measurable random variable 7", then
T = 7(a, ), where o = A(7(T", @), y), which is & -measurable by (2.4).
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REMARK 4. Let Z and T be &,-measurable random variables with T > 0.
By considering T + 1/n, it follows from (2.5a) and the right continuity of
7(-, a) that processes of the form

(25b) ¢(t’ x) = ZI('r(T,a),w)(t)I(a,b](x)
and even of the form
(2.5¢) d(t,x) = Zl .0, 0y, (1, a3(?) La, 55( %)

are identifiable. More is true, however. .# is generated by either of the
following two collections of sets:

(@ [7(T, a),») X (a, b], with T strictly positive and &,-measurable;
(b) (7(T, a), ) X (a, b] with T nonnegative and &,-measurable.

To see this, notice that from Proposition 2.3(ii), sets of the form
I((T,») X (a,b]) ={(¢,x): 7(T,x) <t,a <x <b}

generate the identifiable o-field .#, where T > 0 is &,-measurable. This set is
the union of A,, where

2n~1
A, = U {(t,x):7(T,a +js,) <t,a+jé,<x<a+ (j+1)s,}

n
Jj=0

and 5, = (b — a)27". But each A, is a union of sets of the form (b) above and
thus the collection of such set generates .#. Finally, each set of the form (a) is
identifiable by (2.5a) and each set of the form (b) is a limit of sets of the form
(a), which proves the assertion.

Let € be the class of processes

(2.6) &= {ZLys,0) 1.0y @ <, ZE€DE,0<8 < Teb&)

and let 7 be the linear span of <. If we use Remark 3, it is not hard to see
that ¢ is closed under multiplication, so that 7 is an algebra. For ¢ = ¢(¢, x),
let

Il = 45{ [ (¢, B ar).
0
Define
(2.7 L%(&) = {¢: ¢ is identifiable and ||¢]l < =}.

We will show that 7 is dense in L?*(&’). We can now say what we mean by
[/¢ dL, defined firstly for ¢ € €.

DEFINITION. For ¢ € ¢ of the form ¢(¢, x) = ZI g 1x(a, (¢, %), We define

[[¢dL = [ [#(¢, %) L(dt, dx)
= Z[L(T,b) - L(T,a) = L(8,b) + L(S,0)].

(2.8)
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The following theorem establishes the extension and basic properties of

//¢ dL.

THEOREM 2.6. We extend the stochastic area integral [[¢ dL to ¢ € ¥ by
linearity. The vector space ¥ is contained in L*(&’) and the map ¢ — || d) dLis
an isometry between ¥ and a subspace of L2(F):

([ foac]} -1or, o<

This extends to an isometry between L*(&’) and a closed subspace of L*(F).
For ¢ € LA &), the process

(2.9) ¢+ L, =aut| [$(£,9) ]y <L (dt, dy)
is a continuous L%-bounded (&,)-martingale whose increasing process is
(210) <¢ .L>x = 4/(-) d’(srBs)zI(Bssx) ds

Nores. (i) By polarization, if ¢ and ¢ are in L%(&),

(2.11) (L, L) =4[ ¢(s, B)Y(s, B)) g, .y ds

(i) The process ¢(t,x) is only defined if (¢,x) € R, where ¢ > 7(0, x).
Nevertheless, the right-hand sides of (2.10) and (2.11) are well-defined, for
(s, B,) € R for a.e. (Lebesgue) s. Indeed, [Iy(s, B,)ds = [© (L(7(0, x), x) —
L(0, x)) dx and this vanishes since L(7(0, x),x) =0

Let us recall two further results before proving Theorem 2.6. The first is a
.variation on the Ray-Knight theorem proved in Walsh (1978) which is the
basis for this integral. We will state it here for ease of reference.

THEOREM 2.7. (i) Suppose S < T < U < V are &,-identifiable times and let
M, = L(T,x) — L(S, x) and N, = L(V,x) — L(U, x). Then {M,,&,,x > a} is
a positive continuous local martmgale with increasing process

(2.12) (M), = 4[OxMy dy.

Moreover, M and N are orthogonal: (M, N) = 0.

(ii) For each p > 1, if M, € L?, then for each x > a, SUPg <y < M, eL?,
and if exp(eM,) € LP then for each x > a, there is an & > 0 such that
Sup, <, <, exp(e'M,) € L?. In particular, {M,, x > a} is a continuous LP*-
martingale if M, € L>.

Proor. (i) was proved in Walsh.(1978). To see (ii), note that by (2.12) there
is a Brownian motion W, independent of M, such that

dw,.

1/2

X
M, =M, +2[ (M)
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Pathwise uniqueness holds for this stochastic differential equation, so by the
strong comparison theorem [see, for example, Ikeda & Watanabe (1981)], M is
dominated by the solution M of

1/2

M, =M, +2[ (M) dW, + 2(x - a).

But this process has the same distribution as {|Z,|?, x > a}, where Z is a
complex Brownian motion with |Z,|> = M,. It is immediate that
sup,,SyS,CIZyI2 < 2|Zy|2 +2sup, ., ..|Z, — Z,|. The result now follows since
the square of the maximum of a Brownian motion on a finite time interval has
exponential moments of order ¢ for small enough ¢. O

Now we can prove Theorem 2.6.

ProoF oF THEOREM 2.6. Let ¢(¢,x) = ZI g (), »(x) € €. Then Z is
bounded, say |Z| < K, and 7(0,a) < S < T < 7(¢,, a) are &,-identifiable times.
To see that ¢ € L3(&), note that

E{ [0 “#(t, B,)? dt} < E{K2 fs Ta.5(B2) dt}
=E{K2jb(L(T,x) — L(S, x)) dx}
< K*[*E{L(r(ty,0), %) - L(7(0,a),x)} dax

<K2(b- a)E{ sup Nx},
a<x<b

“ where N, = L(7(¢,, a), x) — L(7(0, @), x). Now N, is a continuous local mar-
tingale by Theorem 2.7. Its initial value N, has the same distribution as
max, _, B, by Lévy’s representation of reflecting Brownian motion, which in
turn has the same distribution as | B, |. Thus M, € L” for all p and hence the
above is finite by Theorem 2.7(ii). Since the elements of ¢ are identifiable, this
shows that < and 7 are contained in L2%(&£).

Now let M, = L(T,x) — L(S,x), x > a. Then M is a square-integrable
&,-martingale and for x > a, by the definition (2.8)-(2.9) of ¢ - L, we have

¢ L, = ff¢(t’y)l(y5x}L(dt, dy)
- .[.[ZI(S’T](t)I(a,b/\x]L(dty dy)

= Z[L(T,b Ax) — L(S,b Ax) — L(T,a) + L(S, a)]
=Z[M,,.—M,]

- ja ZI, ,(y) dM,.
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Thus {¢ - L,, x > a} is a martingale whose quadratic variation process is

($ - L= [ 2204 4(y) dM),
=4[ 2, (") L(T,y) - L(S,7)] dy
T
= 4'/.-3 ZZI(a,b]( Bs)I(—oo,x]( Bs) dS

=4[ ¢(s, B,)’I . .(B,) ds,
[o &( )L, x)( B)
which proves (2.10) for ¢. It follows that

E{(f[¢dL)2} = E{{¢ - L)}

= llpll?,
and all the statements of the theorem are established for ¢ € ¢.
Consider a second function ¢ € € of the form (¢, x) = WIy; v((#) 1 q(x)
and let N, = L(V, x) — L(U, x). Suppose without loss of generality that a < c.
Then

(Lo L= [ ZWly () I, a(¥) A<M, N),,

so that if either (a,blN(c,d]=@ or (U, VIN(S,T] =, then (¢ - L,
¢ - L) = 0, using Theorem 2.7(i) in the second case. That is, if ¢4 = 0, then

(2.13) E{(ff¢>dL)(ff¢dL)} =0 and (¢ L,y L) =0.
Note that ¢ can be split at any y € (a, b] into
o(t,x) = ZI(S,T](t) (@ y](x) + ZI(S T](t) o, b](x)
= ¢, + &,
Since S and T are & -identifiable by Remark 2 and since Z € b¢), both ¢,

and ¢, are in € and [[¢pdL = [[p,dL + [P, dL. We can also split ¢ at
points of the time axis: If U is &,-identifiable and if S < U < T,

&(t,x) = ZIs, () Lo, 65(x) + ZL iy, 71(t) Lo, 5)( )
= 81 + ¢4
splits ¢ into functions in < with disjoint support. It follows that any ¢,y € 7
can be written as

(2.14) é(¢,x) = 2 ZL, (tx)= LW,

where the A; = (S;, T,] X (a;, b;] are pairwise disjoint and I A; € €. Thus

i’ 12

(¢ L,y Ly =YX (Z:1y,) - L, (W;I,,) * L)
i,J
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All but the diagonal terms vanish by (2.13), leaving
= X A(Z:dy,) - L, (Wily,) - L)s

= T 4f ZWid 0 [ L(Ty) = L(S;,7)] dy

= 4'/;:0(1)(3’ Bs)lﬁ(S, Bs)I(_w,x](Bs) ds.

Note that it follows that for every ¢, ¢ € 7,

E{([[¢ dL)(ff:/de)} - 4E{[0°°¢(s, B,)¢(s, B,) ds}

= (¢, ¥) Lxs)

so that the map ¢ — [[/¢ dL is an isometry from ¥ into L*(%). Familiar
continuity arguments now extend Theorem 2.6 from ¢ € 7 to ¢ € 7, and all
that remains is to check that the closure of ¥ is L%(&).

In order to see this, define

U {(7(0, j27N),7(N, j2™V)] x (27N, (j + 1)27V]}
~N2N<j<N2¥

and let ¢y =1I,,. Then Ay TR and &y € 7 for each N. For each fixed N, if
welet H={fe L(QXR,_,XR): féy € 7}, then H is a vector space con-
taining 1 which is closed under bounded monotone and uniform limits. It also
contains the algebra 7, so by the monotone class theorem and Remark 4, it
_ contains all bounded identifiable processes. The result follows.

~ This verifies (2.8)-(2.10) for ¢ € 7 and shows us that the integral gives an
isometry of 7 into L2(.%). We can extend this by continuity to the closure 7
of 7 in L*(&). The usual arguments show that (2.8)—(2.10) remain true. But
according to Remark 3, 7 generates the identifiable processes, so that a
familiar functional completion argument shows that 7 is dense in L%(¢’). This
completes the proof. O

Ay

LEMMA 2.8. Fix a € R, let T' > 0 be an integrable &,-measurable random
variable and put T = 7(T', a). Then the set

H={(t,x):x>a, A(t,x) > 0,t < T}
is identifiable. Ifb > a, then Iy, .4 € LA(&) and

(2.15) [ [Taowsndl = L(T,b) = L(T,a) + 26— 2a".

Proor. Since H = {(t,x): x > a, 0 < A(¢, x) < A(T, x)} and since A(T,x)
is &,-measurable for x > a by Proposition 2.5, we have that Iy = Ij; o T, where
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={t,x): x>a, 0<t<A(T, x)} and it is easy to see that H is in &£2.
Thus H € 7. To check the integrability of Iy ., ., note that

E{fo Iy(t, B,) 15,4 dt} = E{fo Lo, 61(B) Ly <1, 0y dt}

=E{be(T(T',a),y) dy}.

But L(7(T',a),a) < 2sup,_; B, =Y, where B is the Brownian motion
B(t,a) + 1L(t,a) — (a A 0), and by the Burkholder-Davis-Gundy inequali-
ties, Y is square-integrable, since T"' is assumed integrable. Thus the previous
expectation is finite by part (ii) of Theorem 2.7.
To prove (2.15), note that H N {x < b} is the increasing union of the sets
H,, where
on

= U (v(0,a%_,),T] X(a%_,,a}]
k=1

and where a% =a + k27"(b — a). Each H, is the union of finitely many
disjoint identifiable rectangles, so by (2.8),

(2.16) 5
B kz=:1 [L(7(0,a}-1), a%) = L(7(0,a}_1), )]

The right-hand side of (2.16) can be simplified by noting that L(7(0, x),x) = 0
a.s. for any x. For those k£ such that a} <0, 7(0,a%) is a.s. equal to the
first time B, hits a’}, which is a stopping time, so that the strong Markov
property implies that the random variables L(7(0, ¢%_,), a’;) are
independent and identically distributed, each having the same distribution
as L(7(0,2 (b — a)),0), which is exponential with mean 2(b — a)2™" and
variance 4(b — a)?27%". For those %k for which a%_, > 0, the corresponding
terms in the sum vanish. Thus the sum of the right-hand side of (2.16)
converges a.s. to —2(b~— a”). But I; converges to Iy, <) S0 the left-hand
side of (2.16) also converges to the left-hand side of (2.15). O

We are now ready to prove Theorem 2.1.

Proor oF THEOREM 2.1. The basic idea of the proof is to show that the
class of martingales used in Rogers (1987) can all be represented as stochastic
area integrals.

First, if M is an L%bounded (&)-martingale whlch can be written in the
form )

' M,=¢-L,

(2.17) = [ [Ty <$(t,5) L(dt, dy)
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for some ¢ € L%(&) and if 6 is a bounded left-continuous (&,)-adapted process,
then ¢(¢, x) = 6,4(¢, x) is in L*(&) and

(2.18) gL, = f_woy dM,.

[One verifies this as usual: it is true by (2.8) if ¢ and 6 are indicator functions,
etc.] Thus if M has an integral representation, so does [0 dM. :

Next, if Mi=¢,-L, i =1,2, and if ¢;¢, =0, then (M!, M?) =0 by
Theorem 2.6, so integration by parts gives

(2.19) M'M? = (M'¢, + M%,) - L.

The essential step in the proof is contained in the following result. Let y be
the inverse local time:

(2.20) y(t,x) = inf{s: L(s,x) > ¢}.

PRrOPOSITION 2.9. Let a <b, 0 <s,<t, and put T = y(ty,a). Let S be
either identically zero or let S = y(sy, a). Define Z = L(T, b) — L(S, b). Then
for every k € N, Z* € LA(F) and there exists ¢, € L*(&) such that

(2.21) Z*k = E{Z*) + ff¢k dL.
Moreover, ¢, is supported in (S,T] X (a, b].

Proor. First suppose that S = y(s,, @) and put

7 - {L(T,x) —L(S,x) ifx>a,

We claim that for £ > 1 and x > a there are a jointly continuous (¢))-
adapted process 6,(y, x), a <y < x, and a continuous deterministic function
¢, such that

(2.23a) Zh = () + f:fik(y, x) dZ,,

(2.23b) sup 10,(y,x)l € (N L? foreach b>a.
P

a<y<x<b

This is clear if £ = 1, for then ; = 1. Since Z, is deterministic, Z € L? for all
p by Theorem 2.7. Suppose (2.23) holds for £ — 1. Apply It6’s formula, noting
that d{(Z), = 4Z, dy:

(2.24)  ZE=(tg—s0)" + kfof‘l dz, + 2k(k - 1)fxz;-1 dy.
a a
Use (2.23) and change the order of integration to see that

[:z;—ldy - /:E{z_;-l} dy + j;xj;yok_l(v,y) dz, dy

= /:E{Zf—l} dy + j;x/;)xok_l(v,y) dydz,.
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Substitute this in (2.24) and compare. We see that (2.23) holds with
C h) =t - s0)t + 2k(k — 1) [E(Zf Y dy,
(2.25) 0(y,x) =1,
8,(y, x) = hZE1 + 2k (k — 1)jyxok_1(y,z) dz.

Note that 8, is jointly continuous, &}-adapted and L”-bounded (thanks to
the inductive hypothesis and Burkholder’s inequality), so that the above
manipulations were all justified. But now according to (2.18), we can write
(2.23a) in the form (2.21) with ¢,(¢,y) = Is ()1, .(¥)0,(y, %).

This proves the proposition if S = y(s,, a). Let us now consider the case
where S = 0. This presents nothing new if a > 0, since then L(0,5) =0 =
L(y(0,a), b) for all b >a > 0. We can therefore assume that a < 0. We can
write L(T, x) = L(y(0, @), x) + (L(T, x) — L(y¥(0, @), x)); as we have already
handled the second term, we may assume without loss of generality that
T = y(0, a) = 7(0, ). Then we must prove (2.21) for Z = L(T, b).

First assume that b < 0 and define {, = L(T, x) + 2(x"— a7). By Lemma
2.8, L, = [[¢ dL, where ¢(2,y) = Iy n(o <y <t )

We can now prove that for each £ > 1 and x € (a, 0], there exists a jointly
continuous &;-adapted process 0,(y,x), a <y <x < 0 and a continuous deter-
ministic function ¢, such that

k X
(2.26a) Z} = yu(x) + [ 0u(y,%) d¢,,
a
(2.26b) sup 10,(y,x)l€ L? forallb>a.
p

a<y<x<b

The case k = 1 is immediate; 8, = 1, (x) = 2(x — @) and the induction
step proceeds as before. ‘

Finally, if b > 0, write L(T,b) = L(T,0) + (L(T, b) — L(T, 0)). We have
just dealt with the first term, so only the second remains. If T were of the
form vy(¢,,0) for some deterministic ¢, (2.21) would follow immediately.
However, it need not be, so we approximate it by a step function of the form

n2"

T, = Z 'Y(jz_n’O)IAj,,’

j=0
where A;, is the event {j27" < L(T,0) < (j + 1)27"}. The representation
(2.21) for Z! = L(T,,b) — L(T,,a) is now immediate and since L(T,, x) in-
creases to L(T, x) for each x > 0, the Z; converge to Z' = L(T, b) — L(T, 0)
in every LP. The representation (2.21) for Z' now follows easily. This finishes
the proof of Proposition 2.9. O

w Let us return to the proof of Theorem 2.1. Let a; =j27", j=0,%1,
+2, ..., and let 9, be the class of random variables of the forms

L(y(¢,a;),a;,,) or L(y(t a;),a;.1) = L(v(5,0;),a;41),
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where 0 <s<tand j=0,%+ 1, +2,.... Define
H-= {YeLz(f):Y=E{Y} + [ ¢ dL, some ¢ eLz(@”)}.

Evidently H is a closed subspace of L%(% ). We will be done if we can show
that the two are equal. First, we claim that H contains the algebra generated
by 2,,. Note that any product of elements of 7, can be written as a finite sum
of elements of the form

P
Z= l_[Ziki’
i=1

where Z,€ 9,,i=1,...,p, and if Z; = E{Z;} + [[¢; dL, then the ¢, have
disjoint supports. By Proposition 2.8, the Z}: are in H and the supports of
their representations are again disjoint, so by (2.19) their product Z is also
in H.

Let &7, = 0(Z,) and let 9, be the closure in L of the algebra generated
by Z,. We cannot use the usual monotone class argument to show that
9, = L¥(/,), since the random variables in question are not bounded. How-
ever, they each have exponential moments of some order by Theorem 2.7, so
that a modification of the monotone class theorem [see Rogers (1987), Lemma
3] applies and we can conclude that L*(<7,) C H.

We claim that &7, c &, ,, and &= V,o, = %. Let x <y and put v =
L(y(¢, x), ). If z >y, then L(y(¢, x), 2) = L(y(v, y), 2).

Apply this to x =a;, y = a;,1, 2= a;,5. Then v =L(y(¢ a;),a;,,) is in
9, so it is ,-measurable; by the above,

L(’)’(t, aj), aj+2) = L(’)’(v’ aj+1): aj+2),

. so that it is also ©7,-measurable. But &7,_; is generated by these random

variables, so &/, ;, C &/,. Moreover, an induction shows that for % > 1,
L(y(t,a),a;,;) is &/,-measurable. Letting n — = we can see that if x <y,
then L(y(t,x),y) € /. Now let X, = L(y(¢,x),y). X is increasing and &4
measurable and inf{#: X, > s} = L(y(s,y), x). Thus L(y(¢,y),x) as well as
L(y(t, ), y) is &measurable. Consequently, L(y(¢, x), y) is 2#measurable for
all y, not just for y > x. Thus y(¢, x) = /2, L(y(¢,x),y) dy is also »/measur-
able. Now just invert this in ¢. We see that L(¢, x) € & for all x, which means
that B, € & for all ¢, hence & 7. This does it: H contains V,L*&7,) =
LA/) = LAF), hence H = L*(%). This completes the proof. O

This gives another proof of the continuity of (£,)-martingales, which we give
here for completeness.

COROLLARY 2.10. Let M ={M,, &, x > a} be a local martingale. Then M
has a continuous version.

ProoF. If M is uniformly integrable, it is closed on the right by an
L-random variable M, which is approximated in L' by the bounded random
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variables M = (M, A n) V (—n). By Doob’s submartingale inequality, some
subsequence of the martingales M)" = E(M.)|&,) converges uniformly a.s. to
M. Thus it is sufficient to take the case where M is a bounded martingale. In
this case by Theorem 2.1 there exists ¢ € L%(&’) such that

M, = ff¢dL+E{Mm}

=¢-L,+ E{M,)}.

Thus M, = E{(M_|&,} = ¢ - L, + E{M,} and ¢ - L is continuous by Theorem
2.6. O

3. Line integrals and local time on curves. We will look at the
relations between three things in this section: Brownian local time on curves,
stochastic area integrals over identifiable sets and stochastic line integrals.

There is a standard way of defining Brownian local time on a random curve
y = ¢(¢) when the process ¢, is adapted and of finite variation. In that case,
B, — ¢, is a semimartingale and the local time can be defined as the limit

1o
lt Eh_g(l) € OI(O,E](BS ¢s) dS,
which exists almost surely for each ¢ [see Yor (1978)]. We shall see in this
section that it is possible to define the local time of B on a curve {¢(¢): ¢t € A}
in many other cases, cases in which the semimartingale construction does not
work because ¢ is either not adapted or is of infinite variation. We shall show
that provided ¢ satisfies an easily verified condition, there is a local time of B
on ¢ in the sense that the limit

1
= i — |1 B —
M(#) = lim - fA 0.0 Bs — ¢,) ds

exists a.s. This defines a local time on the whole curve; it does not in general
give the local time as a function of .

We think of a curve as a measurable map ¢: Q X (0,0) —» R U {«}. If we are
given a curve {¢(w,t), t € A(w)} which is not defined for all # > 0 we can
extend ¢ to a map on all of Q X (0, ») by setting ¢(w, £) = » on (0, ») — A(w).
The graph E(¢) is the graph of the finite part of ¢, defined by

E(¢) = {(w,t,x) € QA X (0,®) X R: ¢(w,t) = x}.
We shall always assume that there is some integer N such that
(31) E(¢)C9tﬁ{(0,q-(N, _N)]X(_N,N)}

This is no great restriction and it ensures that the various integrals we meet
will be defined.

.Let us begin with stochastic line integrals. We will connect them with local
time on curves shortly. In the simplest special case, when the curve ¢ is
a horizontal line segment, we can define the integral of the local time over
¢ to be the difference of the local time at the two endpoints. Slightly more
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generally, suppose that
#(t) = Z ajI(SJ,Tj](t) + olye yys, T
j=1
where 0< 8, <T;<8;<...<T, and S; and T are &, -1dent1ﬁable for
each j. Then we define the 1ntegral of L along 1) by

fd)atL = EI(L(TJ.,aj) - L(S;,q;)).

By assumption there is an N such that |la;/ <N for all j and T, <
7(N, —N). Thus the process
L, N](t’ x) = I(¢(t)<x5N)
is in L% &) and

(3.2) faL JIowy<mL(dt, N) = [ [Iy ndL.

This trivial observation is the basis for the extension of the integral to more
. complicated curves since each of the terms on the right-hand side makes sense
for more general ¢.

DEFINITION. Let ¢: Q X (0,) —» R U {»} be a curve satisfying (3.1) rela-
tive to an integer N such that the set

(¢,9) = {(w,¢,%): d(w,t) <x}
is identifiable. Then the line integral of L on ¢ is defined by

- (3.3) LatLE f1(¢(t)<N)L(dt, N) - [[I((,,,N]dL.

REMARKS. The line integral of L on ¢ is well-defined by (3.3). Both
integrals on the right-hand side converge thanks to assumption (3.1) and the
only thing to check is that the right-hand side is independent of N for large
enough N. This comes down to showing that if N satisfies (8.1) and if
H = {(w,?): ¢(w,t) < N}, then for any M > N,

(3.4) fH(w){L(dt,M) - L(dt, N)} = [ [T, 9L,

where H(w) is the w-section of H.

We will prove this shortly, using Proposition 3.1. It is worth pointing out
that the situation is more delicate than one might expect. For example,
suppose that G € Q X (0,) is such that Iy 5 €L %(#). Then one would
expect that

fG(w){L(dt, b) - L(dt,a)} = [ [Igxqa,ndL-
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(The right-hand side is certainly well-defined.) However, this is not true in
general; identifiability of G X (a, b] is not sufficient.
Here is an example to show what can go wrong. Let

0 ifB,=0and0<t<17(1,0),
#(¢) = .
o otherwise,

and let G = {(w, 1): ¢(w, t) < ). If we take N = 0 and M = 1 one can see that
G x (0,1] is identifiable and the norm of I, ;; in L*(&) is

”IGx(o, 1]”2 = 4E{/;) IGX(O, 1](“” S, Bs(“’))2 ds}

=0,
since the integrand vanishes identically. Thus [/l ;;dL = 0 a.s., while the
left-hand side of (3.4) equals L(7(1,0),0) # 0.

We mention in passing that, even though G X (0, 1] is identifiable, G X [0, 1]
is not (we leave the proof of this as an exercise), so that [[I;,, ;;dL is not
defined.

The same example warns us not to jump to conclusions about the defini-
tion of [,d,L. According to (3.3) (choose N =1 for this), [,9,L = 0, while

JoL(dt,0) = L(+(1,0),0).

We can see from this that [, 9, L does not always coincide with our intuitive
notion of what a line integral over ¢ should be. In fact, what we will see is that
J4 9, L is really the local time, not on the curve itself, but on the topside of the
curve ¢ in the following sense:

(3.5) foL= yfg — [ Ty, <5,4,+0 9.

- The principal aim of the rest of this section is to prove this.

ProposITION 3.1. Fix a <b and let n > 0. Let F be an &-measurable
subset of Q X (0,n], let G = {(w, t): (v, Alw, t,a)) € F} and let G(w) be the
w-section of G. Then

(3.6a) Igy@, b € L*(&);
(3.6b) [ [Tex@ndL = fG(w)(L(dt,b) — L(dt,a)).

Proor. Let #={Fe &: FcQXx(0,n] and (3.6) holds for F}. From
Theorem 2.6, ¢ contains (S,T], where 0 <S < T <n are &,-measurable
random variables. ¢ contains finite unions and intersections of such sets and
& is a monotone class. Therefore « contains every &/-measurable F C Q X
O,n]. O

Let us now prove (3.4), using Proposition 3.1 with @ = N and b = M. Since
(¢, ») is identifiable, there is some V € £ such that I, ., = I, ° T, hence

Lyiy<ny = Ly w(t; N) = I,(A(t,N), N).
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Since V is ¢&/-adapted, the set F = {(0,?): (w,t, N) € V}is in &%. Truncate F
if necessary to F N (Q X (0, n]) and apply Proposition 3.1.

There is an interesting filtration lurking here. Let 7, be the o-field of
subsets of Q X (0,) of the form {(w, ?): (», A(w, ¢, x)) € F}, where F € &.
This is a filtration. We will content ourselves by just giving the following facts
about it here. :

ProrosiTION 3.2. () {7, x € R} is a filtration.
(i) The curve ¢ is an (7, ,)-stopping time (i.e., {(0,): x > ¢(w,t)} € o,
for all x) if and only if (¢, ) = {(w, t, x): ¢(w,t) < x} is identifiable.

Proor. (i) Fix a < b, let T > 0 be &,-measurable and let F = (T, ). Then
{(0,8): (0, A(w,t,a)) € F} = (7(T,a),).

It is enough to prove that this is in .27,. Let T = A(~(T,a), ), which is
&»-measurable by Proposition 2.5(i). Then

t>7(T,b) = A(¢,b) > T = t > (T, a),
where the last equivalence follows because (T,a) is a time of two-sided
increase of A(-, b). Therefore 7(T,a) = (T, b) so (+(T, a),») = (+(T, b),©) =

{(0,1): (0, Alw,t,b)) > T} € o, and F = (+(T, b),») € o7,.
(ii) = : Define approximating curves ¢, by

g2 if(j - 127" < ¢(w,t) <j277
¢n(w, t) - {oo if ¢(w,t) = .

Then ¢, | ¢ and it is enough to prove that (¢,, ) is identifiable. But
($ar0) = U ({t: (G - D27 < 8(8) <j27) X (j27, %)),
J

and each of the sets on the right-hand side is identifiable by the hypothesis
on ¢.

=: If (¢, x) =144 <, then ¢ is identifiable and ¢ = I;-T for some
G € £Z. Since a predictable process is &/-adapted,

{((0,8): p(@,8) <x} = {(0,8): (0, A0, 1, %)) € G,},
where G, = {(w,?): (w, ¢, x) € G}; thisis in &;. O

REMARKS. Let us mention without proof some facts which we will not need
. in our subsequent development, but which may help illuminate the hypotheses
on our curve ¢. )

(i) The o-field o7, can be characterized in terms of identifiable sets: A set
G cQ X (0,»)is in o7, if and only if the set G X {x} is identifiable. This is a
consequence of the continuity of the filtration (&£}); all &,-martingales are a.s.
continuous by Corollary 2.10, or more specifically, of its quasi-left continuity,
since what is involved here is really a kind of predictability.
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(ii) We could have placed stronger hypotheses on the curve ¢ by requiring
that [¢, ®), rather than (¢, ), be identifiable. This would imply that (¢, «) is
also identifiable and hence that the graph E(¢) of ¢ is identifiable.

(iii) We could distinguish curves by calling them optional if (¢, ») is identi-
fiable and predictable if [¢,x) is identifiable. The previous counterexample
was a curve which was optional but not predictable in this sense and the local
time of B on the topside of ¢ was not equal to the local time on ¢. In this
terminology, Proposition 3.1 [and by extension, equation (3.4)] concerns pre-
dictable curves (G X {a} is identifiable by the previous work), and it shows that
if ¢ is predictable and takes on only a finite number of values, the two local
times are indeed equal.

For £ > 0, let E_,(¢) be the upper e-neighborhood of E(¢):

Eo(d) = {(t,2): 6(2) <x < () +¢}.
Note that B (¢) = (¢, ») is the set of all points above the graph of ¢.

DEeFINITION. The local time of B on the (topside of the) curve ¢ is

A lime 1! ooI
(o) elflas j;) z.0)(¢ By) dt
(3.7)

0

lime ! j I dt
£10 0 {() < B, < ¢(t)+¢)} ’

if the limit exists.

This is a one-sided local time in the sense that it involves the occupation
time of one-sided neighborhoods of ¢. It evidently equals the local time of
B, — ¢(t) at 0. If ¢ is an adapted process of bounded variation, then
B, — ¢(t) is a semimartingale and its local time exists by the general theory.
But we are dealing with local time on a quite different class of ¢.

Our aim is to prove (3.5), i.e., to show that A(¢) exists and equals [, d,L
whenever (¢, ®) = E (¢) is identifiable and satisfies (3.1). We will approximate
¢ from above as follows. For ¢ € (0,1) and x € R, define the curve ¢¥ by

(3.8) S5 (t) = {Z+ ke iijs(t)(i ;.1)8 < d(t) <x + ke,

Then evidently #7(¢) satisfies (3.1) with N replaced by M =N + 1 and,
moreover, (¢*, ©) is identifiable. To see this, fix x and ¢ and let

H,={(o,t):x+(k—1)e < ¢(w,t) <x + ke}.

Since (¢, ®) is identifiable, H, € %7, ,. by Proposition 3.2. By Proposition 3.1
we see that H, X (x + ke, M] is identifiable and is in L*&). In particular,
H, X (x + ke, ) is identifiable and therefore (¢Z, ©), which is the union of

F-24
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these sets, is identifiable. Moreover, again by Proposition 3.1, we have

(3.9) J [Taxashe, s AL = /H [L(dt, M) — L(dt, x + ke)].

THEOREM 3.3. Let ¢ be a curve satisfying (3.1) such that (¢, ©) is identifi-
able. Then

(@) for any x,lim, o [49,L = [,9,L in L%
(ii) the local time on the topside of ¢ exists and

M) = }}ﬁ}fo Loy < B, < gty +e) G = [batL-

Proor. (i) From the definition,

f;ﬁxatl‘ = [Ty < L(dt, M) ~ [ [Tz rydL

(3.10) > [ [, 20,0 = [ [Ty enie dL]

k
= ¥ [ L(dt,x +ke),
E TH,
from (3.9). But the right-hand side of the first equation is

/(¢x<M;L(dt’ M) = [ [Ty, maydL,

which converges in L? as ¢ — 0 to

f(¢(t)<M;L(dt’ M) - ff1(¢,M] dL = fd)atL,

(ii) Notice that the L2-convergence of [,.d,L to [, ,L is uniform in x, since
bt bt

L:atL - jd’atL = [ [14,4ndL,.

which is bounded in L? by

1/2

(3.11) [4E{ [:I((,,,d,:](t,B,)dt}r/zs[4E{ '/:Ige(d,)(t,Bt)dt}} ,
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which tends to zero uniformly in x. Now

f (@< B = gt)+e) AL = fdxfo L(dt, %) Ity < 2 < gty +0) B2

- zk;[odxfo L(dt, x + k&) Ly om1ye < 0ty < 1o Ot
= ed L dt’ + k
L Jydef 2o w k)

= f:dqub:atL,

from (3.10). Thus
2
{faL f (d>(t)<B,sd>(t)+e)dt} =E{s'1L€dx[LatL— '/:bxatL]}
2
58-1[:15{[4’3@ - j(b:atL} dx

-1 E4E{ “I...(t, B dt}dx,
€ fo fOE;w)( t)

by (3.11), and this tends to zero as & — 0. This finishes the proof. O

2

One special case which is interesting to calculate is that in which the curve
¢ is the graph of the minimum m of the Brownian motion: m, = min, _, _, B,.
We have already calculated [, d,L in the proof of Lemma 2.8, when we
* computed [[Iy - »y @L. Indeed, the sum on the right-hand side of (2.16) is
the approximation J¢z 0, L, where ¢(t) = m, if a <m, <b; = + otherwise,
when we take x = 0 and € = 27™(b — a). We found that the local time on the
topside of m was deterministic. If @ < 0 and b = 0, the local time on the
topside of m is —2a. This is a fact we already know: it is Lévy’s famous result
that the local time of B, — m, is 2m,.

4. The decomposition of L. The intrinsic local time is L(¢,x) =
L(7(t, x), x). McGill (1986) noted that L(¢, x) + 2x~ is an & - -supermartingale
in x for fixed ¢ and gave a formula for its compensator. This compensator
turns out to be an interesting object, for it has several distinct interpretations.
McGill expressed it as the derivative of a certain integral involving the square
of the intrinsic local time. However, it can also be expressed as a stochastic line
integral and as a Brownian local time on certain curves. Moreover, the
martlngale part of the decomposition of I is given by a stochastic area
integral. We will derive the decomposition in this section.

There is in fact a further aspect of the decomposition, which relates it to the
local time of the process A(t, B,), but the proof of this, or at least the proof we
have now, involves different methods and we will leave this to a future article.
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FiG. 1. %, and its boundary.

Recall that R = {(s, x): A(s, x) > 0}. Let us define
B, ={(s,x): 0 <A(s,x) <t},
¥ (¢) = inf{x: A(s,x) > t}.

The function ¢, is just the inverse of A(s,-) in the space variable. Its
elementary properties follow from (2.3) and the remarks preceding it: it is
infinite if s < ¢ and finite if s > ¢. Indeed, for s > ¢, m, < y,(t) < M,, where
m and M are the minimum and maximum of the Brownian path. As a process
in s for fixed ¢, it is adapted, decreasing and continuous on (¢,%), with
¥,.(s) =M, and lim, ., ¢,(¢) = —. In particular, B, — ¢,(¢) is a semi-
martingale, so it has a local time at zero.

The set %, can be conveniently expressed as (¢, ¥,] = {(s, x): ¢,(0) <x <

¥,(¢)}. Figure 1 illustrates its appearance.
Let H,, be the horizontal strip H,, = (0,») X (a, b].

THEOREM 4.1. Fix t > 0 and a € R. Then for x > a,

(4.1) L(t,x) +2x~=L(t,a) + 2a™+ X,(x) — C,(x),

where {X(x), &, x > a} is a martingale and {C(x),x > a} is a continuous
increasing &,-adapted process. Moreover, for x > a, if we define the curve

#(s) = {a,bs(t) if 7(t,x) <s <7(t,a),

o otherwise,

then

(4.2) X(x) = [ f@thmdL’

(4.3) Cix) = [ 3,L

¢
(4.4) =AM¢) -
= the local time at zero of

(4.5)

{Bs - 'vl’s(t)’T(t’ x) <s < r(t,a)}.
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Proor. Fix t, x and a such that x > a, let T = 7(¢, a) and define the curve
¢ as above. Then

(6,2) = {(5,9): 7(¢, %) <s <7(t,a), A(s,y) > 1)
={(5,9): A(s,5) >} N {(5,9): A(s,5) > 0,5 < T,y > a)
N[R — (70, 2),7(t, 2)] X(x,%)]
=A;NA;NA;.

This is identifiable, being the intersection of identifiable sets. (Identifiability is
immediate for A; and A; and it follows for A, by Lemma 2.8.) Moreover,
(8,9) = Liy(sy<y < 18 in L&), again from Lemma 2.8. From the definition of
local time along ¢, then

j¢a3L = fI(¢(s)<x)L(ds,x) - jjl(d,,x]dL

= L(T,x) - L(¢,x) — ffl(d,,x]dL.

After rearranging terms, we see that (4.2)-(4.5) follow from Lemma 2.8 and
Theorem 3.3. O

Let us look at the continuity properties of X, C and . We already know
that X is continuous in the space variable x, for it is an &}-martingale and
hence continuous by Theorem 2.1. But the situation is better than that: X and
C are jointly continuous in (¢, x) and ,(¢) is even differentiable in ¢.

TuEOREM 4.2. C/(x) and X/(x) have versions which are almost surely
Jointly continuous in x and t. y(t) is jointly continuous in (s, t) and differen-
tiable in t on the set {(s, t): s > t > 0}. Moreover,

a 1
(4.6) £¢s(t) = m, s>t>0.

Proor. L is continuous, so by (4.1) it is enough to show that X is
continuous. This will follow from Kolmogorov’s criterion once we establish the
following inequality. Let s < ¢ and x > a. Then we claim that for p > 2,

2
4.7 E dL| } <c,lx — alP”?|t — s|P/*.
( ) {l/'/(“%t_'@s)nHax } P
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To prove this, use Burkholder’s inequality, (2.10) and Holder’s inequality in
turn to see that
p/2}

E{ f /(g,—ﬂs)nHade :
- CPE{'fx(L(T(t,y),y) — L(7(s,5),y)) dy

P
} < CpE{’ [ 1y, Xa,-,(%, B,) du
0

p/2}

< Clx — alP’?" lf E(L(7(t,5),y)

—L(7(s,5),y)P"*} dy.

Define stopping times by S = inf{u > 7(s,y): B, =y}, T = inf{lu > S:
A(u,y) — A(S,y) >t —s}). Then L(S,y) = L(7(s,y),y)and T = (¢, ), so

L((t,5),5) — L(7(s,¥),y) <L(T,y) — L(S,y).
Apply the strong Markov property at S. This last quantity has the same
distribution as L(7(¢ — s,0), 0). By Brownian scaling this has the same distri-
bution as vt — s L(7(1, 0),0), which is exponential and has moments of all
orders. If we let ¢, = E{L(z(1,0),0)*/%C,, we get (4.7).

The rest of the proof is standard. Set d(t x;8,9) =y —x)? + (t — s))V2
Suppose s, ¢, x, and y are bounded in absolute value by, say, N, and suppose
without loss of generality that s < ¢. Then

p} 1/p
LP

E dL — dL
{1 ff%n,,w
'[ '[( ~ZINH, .\,
Apply (4.7) to both terms on the rlght-hand side (take s = 0 in the second
term) and do a little algebra to see that this is
<Kd(x,t;5,5)"",

where K depends on p and N. Since p can be chosen as large as we please.
Kolmogorov’s criterion applies to tell us that the integral has a continuous
version.

Turning to ¢, remark that (4.6) follows from fact 3 preceding (2.3).

To prove the joint continuity, let 0 < ¢ < s and suppose s, = s and ¢, — ¢.
Let x, = ¢, (¢,). Note that ¢, = A(s,, x,). If some subsequence, say x,, itself,
converges to a limit x, then by the continuity of A, ¢, converges to A(s, x) = t.
Since A(s, x) < s, x < M,, so A(s, - ) is strictly increasing at x by (2.3) and we
can conclude that ¢,(¢) = x = lim ¢, (¢,). This proves continuity. O

< dL

‘%on/\y xVy

REMARK. The characterisation (4.5) of C,(x) can also be proved directly by
using Tanaka’s formula; this proof is given in the companion paper Rogers and
Walsh (1991).
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