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MAJORIZATION, EXPONENTIAL INEQUALITIES AND
ALMOST SURE BEHAVIOR OF VECTOR-VALUED
RANDOM VARIABLES!

By EricH BERGER

Universitdt Gottingen

In this paper we describe a general device that allows us to deduce
various kinds of theorems (moment estimates, exponential inequalities,
strong law of large numbers, stability results, bounded law of the iterated
logarithm) for partial sums of independent vector-valued random variables
from related results for partial sums of independent real-valued random
variables. The concept of majorization will play a key role in our considera-
tions.

1. Introduction and main results. The random variables (r.v.’s) occur-
ring in this paper will always be assumed to be defined on a common
(sufficiently rich) probability space (Q, &7, P). I(A) stands for the indicator
function of a set A. The distribution of an r.v. X (taking values in an arbitrary
measurable space) will be denoted by P o X~ !. Almost sure (a.s.) convergence
and convergence in probability of a sequence of r.v.’s will be indicated by —,
and —j , respectively.

 As usual, R := set of all real numbers, R*:= {x € R: x > 0} and N := set of
all positive integers. R will always be assumed to be equipped with its Borel
o-field.

A real-valued r.v. R is called Bernoulli if (R =1} = P{R = -1} =1/2.

It is the aim of this article to describe a general device that allows us to
deduce various kinds of theorems (such as exponential inequalities and strong
laws of large numbers) for partial sums of independent vector-valued r.v.’s
from related results for partial sums of independent real-valued r.v.’s. The
natural framework for the methods of this paper is seminormed measurable
vector spaces. :

DEeFINITION 1.1 [ef. Kuelbs and Zinn (1979), page 75]. Let F be a real vector
space, let & be a o-field of subsets of F and let || - || be a seminorm on F. The
triple (F, &, || - | is called a seminormed measurable vector space if the follow-
ing conditions are satisfied:

(1.1) addition in F and scalar multiplication are measurable
) operations (F X F — F and R X F - F, respectively);

(1.2) the function x — [|x[l, x € F, is measurable.
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A wide class of seminormed measurable vector spaces can be constructed by
using the following observation. Let F be a real vector space, let & be the
o-field generated by a nonvoid set A of linear functionals on F and let B C A
with B # @ be such that ||x|| .= sup{|lg(x)|: g € B} <  for all x € F. If the
function x — ||x|l, x € F, is Fmeasurable, then (F, &, || - |]) is a seminormed
measurable vector space.

The following examples of seminormed measurable vector spaces (F, &, || - [))
can be obtained as special cases of the just mentioned construction:

(a) (F, 1 - ) is a real separable normed linear space, and % is the Borel o-field
of F (recall the It6—Nisio theorem);

(b) F is the Skorohod space D[0, 1], ¥ is the o-field generated by Skorohod’s
J,-topology and || - || is the supremum norm on D[0, 1] [see, e.g., Billingsley
(1968), page 109 ff.l.

To state our first theorem, it is useful to introduce the following notion of
majorization.

DEFINITION 1.2. Let X and Y be real-valued r.v.’s such that E|X| <  and
E|Y| < ». Then X is said to be majorized by Y (or X < Y) if and only if for all
convex functions f: R - R:

(1.3) Ef(X) < Ef(Y).

By the convexity of f and the integrability of X and Y, the expectations in
(1.3) are well defined but may be equal to .

REMARK 1.1. An important characterization of majorization goes back to
Hardy, Littlewood and Pélya (1929) and Karamata (1932) [cf. Marshall and
Olkin (1979), page 449]: Let X and Y be as in Definition 1.2; then X <Y if
and only if EX=EY and E(X —t)*"< E(Y —¢t)* for all t € R.

Now let (F, &%, | - |)) be a seminormed measurable vector space, let n € N, let
X,,..., X, be independent F-valued r.v.’s such that EIIXjII <o for all j e
{1,...,n}, and write

Sn = Z Xj.
j=1
For j (1,...,n}, let
V= I1X,I + EIX,l,

let V':=(V],...,V!) be an independent copy of V:=(V,...,V,) and let
R,,..., R, be independent Bernoulli r.v.’s such that (R,,..., R,) and (V,V’)
are independent. Also define

T,= Y R,(V,+V}) and Ty= Y R;IXl.
j=1 =1

The key result of this paper is the following theorem.
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THEOREM 1.1 (Majorization of vector-valued r.v.’s). Under the above hy-
potheses, one has

(1.4) IS, Il - EIIS, |l < T, < 4T

The proof of Theorem 1.1 will be carried out in Sections 2 and 3.

We shall now apply Theorem 1.1 to the problem of deriving moment
inequalities, exponential estimates and stability results for partial sums of
independent vector-valued r.v.’s.

A first consequence of Theorem 1.1 is that moment inequalities for T, (or
T¥) such as the upper half of the Marcinkiewicz—Zygmund (1937) inequality
or the Rosenthal inequality [Rosenthal (1972), Theorem 1.1] can immediately
be translated into moment inequalities for ||S, || — E||S,,||. As a typical example
in this direction, we mention de Acosta’s (1981) vector analog of the
Marcinkiewicz—Zygmund inequality.

THEOREM 1.2 (de Acosta). The notation is as in Theorem 1.1. Let p € [1, ),
and suppose that EIIXJ-II"’ <o forall j €(1,...,n). Then there is a constant
A € R* (depending only on p) such that

n p/2
(1.5) ElIS, | - EIS,IP < AE{( uX,.nz) }
Jj=1

In order to establish (1.5), de Acosta required the hard-to-prove martingale
analog of the Marcinkiewicz-Zygmund inequality [cf. Burkholder (1973)].
Using Theorem 1.1, the proof of Theorem 1.2 becomes more elementary in
that it works with the original result for partial sums of independent real-val-
ued r.v.’s.

Our second application of Theorem 1.1 concerns exponential inequalities for
vector-valued r.v.’s.

THEOREM 1.3. The notation is as in Theorem 1.1. If
(1.6) a:= sup{t € R: E(exp(tIIlel)) <o forallje {1,...,n}} >0,
then, for 8 € {—1,1} and any x € R*,
(1.7)  P{o(IS,Il - ElIS,l) = x} < infle **E(exp(¢T,)): t € [0, a)}
and
(1.8) P{o(lIS,Il - ElIS,l) = x} < infle **E(exp(4tT;)): 4t € [0, a)}.

Proor. Fix x € R*. For ¢ € [0, @), we have
(1.9) P{6(IS, Il - EIS,ll) > x} < exp(—tx) E(exp(t6(IIS, || - EIIS, ).
According to Theorem 1.1,
(1.10) E(exp(s(lIS,ll - EllS,l))) < E(exp(sT,)) forall s € (~a,a)
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and
(1.11) E(exp(sT,)) < E(exp(4sTy)) forall s € Rwith 4|s| < a.

Combining (1.9)—(1.11) (and taking into account that the r.v.’s T, and T* are
symmetric), we obtain (1.7) and (1.8). O

Regarded as functions of x, the expressions on the right-hand side of (1.7)
and (1.8) are Chernoff functions of partial sums of independent real-valued
r.v.’s. This means that any exponential inequality for such partial sums based
on estimating the Chernoff function (and this is the usual method for deriving
exponential inequalities) can be carried over to an exponential inequality for
vector-valued r.v.’s. For a detailed survey of exponential inequalities for
real-valued r.v.’s, the reader is referred to Nagaev’s (1979) article.

A reduction argument similar to that expressed in Theorem 1.3 was earlier
utilized by Yurinskii (1974) who traced the problem of finding exponential
inequalities for partial sums of independent vector-valued r.v.’s to a corre-
sponding problem for real-valued martingales. His point of departure is the
representation (3.12) of ||8,|| — E|lS, || as a partial sum of martingale differ-
ences. [(8.12) will also play a crucial role in our proof of Theorem 1.1.]
Following his line of reasoning, several well-known exponential inequalities for
real-valued r.v.’s such as Bernstein’s inequality [Yurinskii (1974)], the
Kolmogorov upper exponential bound [Kuelbs (1977)] and Bennett’s inequality
[de Acosta (1980)] have been carried over to vector-valued r.v.’s. However,
there exist important and interesting exponential inequalities for partial sums
of independent real-valued r.v.’s that cannot be extended to the vector space
setting by adapting Yurinskii’s arguments in a straightforward manner. An
example of this type is the exponential estimate underlying Nagaev’s (1972)
theorem about necessary and sufficient conditions for the strong law of large
numbers (SLLN) for independent real-valued r.v.’s. As we shall see, it is the
vector analog of this last-mentioned exponential inequality that will turn out
to be of decisive importance for proving Theorems 1.4 and 1.5 dealing with
stability results for vector-valued r.v.’s.

To formulate Theorems 1.4 and 1.5, we begin by introducing some notation.
As above, let (F, &, || - ) be a seminormed measurable vector space. Moreover,
let {X;; j € N} be a sequence of independent F-valued r.v.’s, let {R;; j € N}
be a sequence of independent Bernoulli r.v.’s which is also independent of
{X;; j €N} and let {a;; j €N} be a nondecreasing sequence in R* with
sup{a;: j €N} = . For n € N, we write S, :== £7_, X,.

THEOREM 1.4. The notation is as above. Suppose

(1.12) a,' ¥ RilXll-,, 0.
j=1
Then

(1.13) a; IS, -,, 0 ifandonlyif a;'lS,|l—p 0.
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THEOREM 1.5. The notation is as above. Suppose

n

(1.14) limsupa,' Y RIX;l <~ a.s.
n—o j=1
Then
(1.15) limsupa,!lIS,ll <> a.s.
n—o
if and only if

(1.16)  the sequence {a,*||S,|; n € N} is bounded in probability.

The proofs of Theorems 1.4 and 1.5 are deferred to Section 4.

Beginning with Kuelbs’ (1977) paper, there have been published various
special cases of Theorems 1.4 and 1.5 stating that the conclusion of Theorem
1.4 (Theorem 1.5, resp.) holds if (1.12) [(1.14), resp.] are replaced by certain
classical criteria for the SLLN. In this way there have been established vector
analogs of the upper half of the Hartman-Wintner (1941) law of the iterated
logarithm [Kuelbs (1977)], of Prohorov’s (1959) SLLN [Kuelbs and Zinn
(1979)], of a Marcinkiewicz—Zygmund (1937) SLLN [de Acosta (1981)] and of
iterated logarithm type results by Klass (1976, 1977) [Kuelbs and Zinn (1983),
Theorem 3 and Corollaries 1-5]. Compared to these results, Theorems 1.4 and
1.5 assert, roughly speaking, that under ‘“classical”’ conditions the SLLN in
the vector space setting is always equivalent to the weak law.

Before concluding this section, let us add some general remarks on the
scope and the limitations of the methods of this paper. An interesting aspect is
that our results have a sort of universal character; any theorem of a certain
type for partial sums of independent real-valued r.v.’s has in a sense a natural
analog for vector-valued r.v.’s. Moreover, disregarding the constants implicitly
or explicitly involved, the results also have optimality properties as far as the
assumptions cannot in general be weakened by conditions that depend on the
r.v.’s X; only via [ X;ll. On the other hand, it is well known that exact
characterizations for the strong law of large numbers and sharp exponential
bounds must depend on the r.v.’s X; in a more complicated way, for example,
via weak moments. (In particular, conditions (1.12) [and (1.14)] are not neces-
sary in order that the conclusion of Theorem 1.4 (Theorem 1.5, resp.) be true.)
Such results are not accessible by the methods of this paper. For further
information in this direction, the reader is referred to Alexander (1984) and
Ledoux and Talagrand (1988, 1990).

Though primarily designed to prove Theorems 1.1, 1.4 and 1.5, Sections 2—4
also contain several results of independent interest, namely Theorem 3.1 (a
majorization result for real-valued martingales), Theorem 4.2 [a somewhat
extended version of Nagaev’s (1972) theorem about necessary and sufficient
conditions for the SLLN] and Theorem 4.3 (a general stability result for
vector-valued r.v.’s).
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2. Generation and preservation of majorization. This section con-
tains some lemmas that are required for proving Theorem 3.1 which in turn
leads to Theorem 1.1. There is an extensive literature about majorization and
related concepts [see, e.g., Marshall and Olkin (1979)], but we shall only need
the few facts that are collected below.

Throughout, € denotes the class of all convex functions R — R, and €* c ¢
the subclass of all convex functions f with the property that there exist
positive real constants a, b such that |f(x)| < a + blx| for all x € R.

In order to avoid trivial complications caused by the fact that the expecta-
tions in (1.3) need not be finite, it is often convenient to use the following
equivalent condition for X to be majorized by Y.

LEmMA 2.1. Let X and Y be real-valued r.v.’s with E|X| < © and E|Y| < .
Then X < Y if and only if

(2.1) Eg(X) <Eg(Y) forallg € €*.

Proor. Let f € €. We have to show that (2.1) implies that Ef(X) < Ef(Y).
It is not difficult to see that there is a nondecreasing sequence {g,; » € N} in
€* such that f=lim, . g, [cf. Roberts and Varberg (1973), Section 11]. By
(2.1), Eg,(X) < Eg,(Y) for all n € N. Since g, < f for all n € N, this entails
that sup, . Eg,(X) < Ef(Y), which together with the monotone convergence
theorem [note that E|g,(X)| < ] leads to the desired result. O

LEMMA 2.2. Let &/, be a sub-o-field of &7, and let X and Y be real-valued
r.v.’s such that E|X| < », E|Y| < © and

(2.2) E(Yo/,) =0 a.s.

Suppose

(2.3) X and Y are conditionally independent given 7.
Then

E(g(X)le/) <E(g(X+Y)l%,) a.s. foranyge €*.

ProoF. Let &/; C &/ be the smallest o-field containing 27, and the o-field
generated by X. Then E(Y|.%7;) = 0 a.s. [by (2.2) and (2.3)]. It follows that for
any function g € €%,

E(g(X)\,) = E(8(E(X + Ylo1))lo,)
<E(E(g(X +Y)loA)le/,) (byJensen’s inequality)
=E(g(X+Y),) as. O

LemMa 2.3. Let X and X' be real-valued r.v.’s having the same distribu-
tion. Suppose E|X| < ©. Then X + X' < 2X.
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Proor. For any function f € ¢, we have
Ef(X+X') < 3Ef(2X) + ;Ef(2X") = Ef(2X). O

LEMMA 2.4. Let X be a real-valued r.v. with E|X| < «. Then
(2.4) X + EX < 2X.

Proor. Let X' be an independent copy of X. Then, for any g € €%,
Eg(X + EX) = Eg(E(X + X'|X))
<Eg(X + X') (byJensen’s inequality)
< Eg(2X) (by Lemma 2.3),
which together with Lemma 2.1 gives (2.4). O
LeMma 2.5 (Majorization by randomized bounds). Let &7, be a sub-o-field
of o/, and let X, X',Y,Y’ be real-valued r.v.’s. Suppose:

(X,Y) and (X', Y’) are conditionally independent given
(25) o4, and P((X,Y) € Al,) = P(X',Y') € Al/,) a.s.
for any Borel set A C R?;

(2.6) (Y,Y’) and &/, are independent;

(2.7 |X| < Ya.s. and EY < .

Then

(28) E(g(X-X)o4) <3Eg(Y+Y')+3iEg(—(Y+Y')) a.s.
for any g € €*.

PrROOF. Let the r.v. T: Q — R be defined by

if(Y+Y')(w) =0,
INw) =

1
2
1 1(X-X")(w) .
3 otherwise.

T2 Tt V) (w)
Then

0<TI'<1 as.
and

X-X=T(Y+Y)-(1-T)(Y+Y') as.
This entails that for any function g € €%,
(2.9) g(X-X)<Tg(Y+Y)+(1-T)g(—(Y+Y')) as.

Now let &7, be the smallest o-field containing 27, and the o-field generated
by Y + Y’. Combining (2.9) and the fact that E(T'|7;) = 1/2 a.s. [by (2.5)], we
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find that
E(g(X-X)) <38(Y+Y') +38(—(Y+Y")) as,
which together with (2.6) leads to (2.8). O

LEMMA 2.6 (Majorization by independent sequences). Letn € N \ {1}, and
letYy,...,Y,,Z,,...,Z, be real-valued r.v.’s. Suppose:
(2.10) ElY,| <wand E|Z,| <~ forall k €{1,...,n};
(2.11) ther.w.’s Z,,...,Z, are independent;

Eg(Y)) < Eg(Z)) and E(g(Y)IYy,...,Y,_) < Eg(Z)

(2.12) a.s.foranyge €* andalll €{2,...,n}.
Then
(2.13) LY< X Z.

k=1 k=1

ProoF. In view of Lemma 2.1, it is enough to show that

(2.14) Eg(z Yk) sEg(Z Zk) for all g € €*.
k=1 k=1

To prove (2.14), let @, =P-Y;! and let @,(:ly,,...,y,_,) be a regular
conditional distribution for Y, given Y, = y,,...,Y,_; =y, Oy, ..., ¥1_1 ER;
le(2,...,n)). Also define @F =P-Z;', k=1,...,n, and let h € €* and
m € {2,...,n} be arbitrarily fixed. By (2.10) and (2.12), there is a
Po(Y,...,Y,_) '-null set NcR™ ! such that for all (y,,...,y,_,) €
R™~! \ N and for all rational numbers ¢,

(2'15) flymIQm(dymeli e 7ym—1) <®
and
(2.16) SR+ 9)@u(@ymlyss - Y1) < ER(t + Z,,).

Recalling the definition of €* and taking into account that A (being a convex
function R — R) is continuous, it follows from (2.10), (2.15), (2.16) and
Lebesgue’s dominated convergence theorem that (2.16) must actually hold for
all ¢ € R [provided (y,,...,¥,,_1) € R™! \ N]. Therefore

[ R+ +5m) Qu(@nlyis s Yot - Qu(dyy)

(2.17) < f fh(yl + o +y,)Q%(dy,,)

XQm—l(dym—llyh cee 7ym—2) o @y(dyy).
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Leaving y4,...,¥,—o fixed, the function

Imo1 = [RI1+ Yy + 9) QDY)

obviously belongs to €*, so that the proof of (2.14) can now be accomplished
by a straightforward induction based on (2.11), (2.12) and (2.17). O

3. Majorization of martingales and partial sums of independent
vector-valued r.v.’s. Given a real-valued r.v. X, we use the symbol X to
denote an r.v. which has the same distribution as R(X + X'), where X’ is an
independent copy of X and R is a Bernoulli r.v. such that R and (X, X’) are
independent.

As we shall see, Theorem 1.1 is an almost immediate consequence of the
following theorem.

THEOREM 3.1 (Majorization of martingales). Let n € N, and let
u,...,U,,Vy,...,V, be real-valued r.v.’s. Put &, ={J,Q}, and let o7,
k €{1,...,n}, be the o-field generated by U,,...,U,,V,,...,V,. Suppose:

(3.1) E|U,| < wand E|V,| < = forall k €{1,...,n};
(3.2) EU,o,_) =0a.s. forallk €{1,...,n};
(3.3) for each k € {1,...,n}, V, and &,_, are independent;

(3.4) Ul <V, a.s. forallk €{1,...,n}.

Then

(3.5) LU <LV,
j=1 Jj=1

where V,,...,V, are independent.

Proor. Let U := (U,,...,U,) and V:=(V,,...,V,). We may (and do) as-
sume that the underlying probability space (), &, P) is so rich that we can
find R"valued r.v.’s U’ = (Uj,...,U,), V' =(V},...,V,) and independent
Bernoulli r.v.’s Ry,..., R, such that (R,,..., R,) and (U,V,U’,V’) are inde-
pendent and such that the joint distribution of (U, V, U’, V') has the following
property (from which it is uniquely determined): For each %k € {1,...,n},

(U,, V,,) and (U}, V) are conditionally independent given
(36) 4., and P((U,,V,) € Al%,_,) = P(UL, V) € Al£,_,)
= P((U,,V,) € Al,_,) a.s. for any Borel set A C R?,

where 4, ={J,Q} and &, j €{1,...,n}, denotes the o-field generated by
v,...,U,V,,...,V,Uj,..., U, Vi,...,V/. It is readily checked that (for each

MR £

ke{l,...,n)):
(3.7 (V,,V}) and &,_, are independent,
(3.8) E(Uj|#,_) =0 as.



MAJORIZATION AND RANDOM VECTORS 1215
Now let 2 €{1,...,n} and g € €* be arbitrarily fixed. In view of (3.1), (3.6)
and (3.8), Lemma 2.2 yields
(3.9) E(g(Up)l% 1) < E(g(U, - Up)I%_,) as.
Moreover, using (3.1), (3.4), (3.6) and (3.7), it follows from Lemma 2.5 that
E(2(Uy - UDI#h_,) < 3Eg(V, + V}) + 3Eg(~ (Vi + V)

Taking into account that g € €* and k ({1,...,n} in (8.9) and (3.10) are
arbitrary, (3.5) can now be derived from Lemma 2.6. O

(3.10)

REMARK 3.1. At first glance, the conditions about the joint distribution of
the random vectors (U,,...,U,) and (V,,...,V,) in Theorem 3.1 look some-
what artificial. A more natural (but essentially equivalent) formulation of
Theorem 3.1 can be given by using the concept of stochastic ordering
[cf. Marshall and Olkin (1979), page 485, Proposition C.1]. :

ProoF oF THEOREM 1.1. Let %, = {J,Q}, and let %, k €(1,...,n}, be
the o-field generated by X, ..., X,. Following Yurinskii (1974), we introduce
the r.v.’s

(3.11) U, = E(IISnlll«@k) — E(IISnlll.@k_l), ke{l,...,n}.
Then

(3.12) IS, — ElS, =) U as,
j=1

(3.13) E(U,|%,_,) =0 as.

and [cf. Yurinskii (1974)]

(314) |Uk| < ”Xk“ + E”Xk” a.s.

(for all £ €(1,...,n}). Hence Theorem 3.1 shows that ||S,|| — E|IS, |l < T,.
Finally, the relation T, < 4T,* can easily be obtained by combining Lemmas
2.3,24and 2.6. O

4. Almost sure behavior of partial sums of independent vector-
valued r.v.’s. Throughout this section, (F, &, || - |)) is a seminormed measur-
able vector space.

The principal purpose of this section is to prove Theorems 1.4 and 1.5. To
this end, we shall first demonstrate that (1.12) and (1.14) are equivalent to
certain analytic conditions. This is achieved by invoking a somewhat extended
version (see Section 4.1) of Nagaev’s (1972) theorem on necessary and suffi-
cient conditions for the SLLN. Section 4.2 contains three technical lemmas. In
Section 4.3 we shall combine Theorem 1.3 and the exponential inequality
(Proposition 4.1) underlying Nagaev’s just mentioned SLLN to establish a
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general stability result for F-valued r.v.’s (Theorem 4.3). Together with Theo-
rem 4.2, this result leads to Theorems 1.4 and 1.5 (see Section 4.4).

4.1. The Nagaev condition. We now proceed to describe the already an-
nounced extension of Nagaev’s (1972) theorem. This generalization (Theorem
4.2) is basically a combination of results by Nagaev (1972), Kruglov (1974) and
Volodin and Nagaev (1977). However, in order to obtain a version of Theorem
4.2(ii) that can be regarded as an exact analog of part (i), we have to add some
further arguments.

The following symbols are used throughout this section:

{¢;; j €N} is a sequence of independent symmetric

(4.1) real-valued r.v.’s;

(4.2) (= Y & forneN;
j=1

(4.3) {aj; j € N} is a nondecreasing sequence in R* with .
sup{a;: j € N} = o

(4.4) {v(j); j € N} is a strictly increasing sequence in N;

(4.5) A={eN\N{1)vl)-v(I-1) =2}

(4.6) JO) =@l -1,v(D]INN forl e N\ {1}

¢,d, 8, p are positive real numbers with 1 <c¢ < d and
p <1

(4'8) Ne, 5 = §kI({|§k| < Bak}) for k € N;
(4.9) C,, 5(t) = log E(exp(tn, ;) for k €Nand t€R.

(4.7)

DEFINITION 4.1. The sequence {v(j); j € N} is said to have the property
(e, d, p,{a;; j € N} if and only if

(4.10) Qypiry 2 pCa,y, foral k,reN
and
(4.11) a,<da,_;,.,; foralleA.

This definition is motivated by the validity of the following theorem in
conjunction with Lemma 4.1.

THEOREM 4.1. Suppose the sequence {v(j); j € N} has the property
(e, d, p,{aj; j € ND. Then
(4'12) a;lgn _>a.s. 0
if and only if

(4.13) Y P{lyay — boa-1) Z £, )} <© foranye € R*.
1=2
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Proor. The proof of Theorem 3.4.1 in Stout (1974) can be carried over
almost verbatim [see also Volodin and Nagaev (1977), page 812], and hence we
omit the details. O

LeMMA 4.1. Given ¢ and {a;; j € N}, it is always possible to find a strictly
increasing sequence {v(j); j € N} in N having the property II(c,c,c™ 1, {a 7
j € N).

Proor. Cf. Volodin and Nagaev (1977), page 811. O

To examine the convergence properties of the series in (4.13), it is natural to
introduce the truncated r.v.’s 7, ; [cf. (4.8)], to show that the effect of the
truncation is negligible and to estimate the probabilities

v(l+1)
(4'14) P Z nj,& = Eav(l+l) ) € E R+’ le N)
J=v()+1

by means of a suitable exponential inequality. Using the exponential estimate
(4.17), this approach actually leads to necessary and sufficient conditions for
the SLLN (see Theorem 4.2).

ProprosiTION 4.1 [Essentially due to Nagaev (1972)]. Let Z,,...,Z, be
independent real-valued r.v.’s such that

(4.15) a:= sup{t € R: E(exp(tIZjl)) <o forallje{l, ,n}} >0,

and write V,, .= L7_,Z,. Also define
(4.16) C.(t) = X log E(exp(tZ;)) forte€ (—a,a).
j=1

Then, for any pair (t,x) € (0, a) X R* with x > C.(¢),
(4.17) P{V, > x} < e "E(exp(tV,)) < exp(—t(x — Cy(t))).

The proof is very short, and so we include it for completeness.

Proor. The first inequality in (4.17) is obvious from Markov’s inequality;
to prove the second one, we begin by observing that E(exp(¢V,)) = exp(C,(2))
(since Z,,...,Z, are independent). The inequality C” > 0 [see, e.g., Feller

(1969), page 2] shows that C/ is nondecreasing. Hence and from the fact that
C,(0) = 0, it follows that

C.(t) = [Ci(s) ds < tC;(2),
0

that is, exp(C,(¢2)) < exp(¢C.(¢)), as desired. O
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DEFINITION 4.2. Let ¢ € R™. We say that the sequence {{;; j € N} satisfies
the Nagaev condition N(8,¢,{v(j); j € N},{a;; j €N} if and only if the
following relations are fulfilled:

(4.18) Y P&, > ba,) < o
k=1
there is a sequence {¢,; £ € N} in R™ such that
(4.19) Y Cst) < ea,y for all I € A and
' jed
Z exp(—eav(l)tl) < 0o,
leA

REMARK 4.1. As already mentioned in the proof of Proposition 4.1, the
function ¢ — X ; ¢ ;4)C} 5(¢) is nondecreasing (and continuous), and so (4.19) is
equivalent to the original slightly different formulation of this condition
occurring, for example, in the paper by Volodin and Nagaev (1977).

Now suppose

the sequence {v(j); j € N} has the property
H(C, d’ P {(IJ; J € N})

(recall Lemma 4.1), and consider the following statements (4.21)-(4.24):
(421)  a;%, .. 0;

for each ¢ € R", {¢;; j € N} satisfies the Nagaev condi-
tion N(e, &,{v(j); j € N}, {aj; j € N});

(4.20)

(4.22)

(4.23) lirnnf:pa;l{n <o as.;

4.94 there exist 8,6 € R* such that {¢;; j € N} satisfies the

(4.24) " Nagaev condition N(5,¢, ((j); j € N}, {a;; j € N).
THEOREM 4.2 [Essentially due to Nagaev (1972); see also Kruglov (1974) and

Volodin and Nagaev (1977)]. If (4.20) is fulfilled, then

() (4.21) = (4.22),
(i) (4.23) = (4.24).

Proor. (i) In the proof of Theorem 2 in Volodin and Nagaev (1977), it is
only required that the sequence {n,; r € N} of integers satisfies the conditions
imposed on the sequence {¢»(j); j € N} in (4.20), i.e., the specific construction
of the sequence {n,; r € N} is not really needed (see also Theorem 4.1). Taking
Remark 4.1 into account, (i) is equivalent to the thus obtained generalization
of Theorem 2 of Volodin and Nagaev.

(ii) We begin by demonstrating that (4.23) implies (4.24). Suppose (4.23) is
fulfilled. According to the Kolmogorov zero—one law, there is a § € R* such
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that
limsupa,!l¢,| <8/3 as.

n-—w

(Recall that the ¢,’s are symmetric.) This entails that

limsupa; ¢, <26/3 as.,

so that

(4.25) Y P{g,) > da,) <
k=1

(by the Borel-Cantelli lemma). Now let

(4.26) g =m,, forjeNIcf. (48)].

By (4.23), (4.25) and the Borel-Cantelli lemma,

(4.27) limsupa,® ) &F < .
n—oo J =1

Suppose (4.24) does not hold. Then there is no ¢ € R* such that {¢;; j € N}
satisfies the Nagaev condition N(§, ¢, {v(j); j € N},{a;; j € N}). Letting

(4.28) ti(e) = sup{s eR*: Y Cj,(s) < sa,,(,)}
Jjed)
for I € A and ¢ € R" [note that C; ;(0) = E¢f = 0 for all j € NJ, this means
that for any ¢ € R*,
(4.29) > exp(—£a,qtf () = .
le{keA: tf(e) <o}

Consequently, there also exists a nondecreasing sequence {¢;; j € N} in R™
satisfying

(4.30) sup{e;: j € N} =

and

(4.31) g,y <de,g_1y41 foralll €A

such that

(4.32) Z exp(_gv(l)av(l)t;k(gv(l))) = @,
le{keA: ti(e,u) <=}

By (4.20) and (4.31),

(4.33) the sequence {v(j); j € N} has the property

H(cy d23 P {5ja1, J S N})
Since |£¥| < da,, for all £ € N and

. _1 " *=
(4.34) ’}Er:o(snan) nggj 0 as.
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[recall (4.27)], it follows from (4.26), (4.33) and part (i) that the series in (4.32)
must be convergent. This fact is the desired contradiction.

We now turn to the converse implication (4.24) = (4.23). Let ¢,6 € R™ be
such that {¢;; j € N} satisfies the Nagaev condition N(§,¢,{v(j); j € N},
{a;; j €N}. For p € N and g € N \ {1}, define

p
{ps = 2177,;5 [cf. (4.8)]
j=
and

M ,=a3! max |{, s — Loty sl
q,8 v(q)keJ(q) k,d v(g—1),8

Then, for any pair ([, n) with [ € N \ {1} and n € J(0),

l
-1 -1
a, |{n,8 - {v(l),sl <a;' )Y a,yMy 5
k=2

I
(4.35) <d Y a,ua;hMi,s
k=2
1
<dp™! ) c7UPM, ,
k=2
[by (4.20)]. Now let {t,; £ € N} be chosen according to (4.19). Then, for & € A,
P{M, ; = 2¢}
(4.36) S 4P{{V(k),5 - {V(k—l),s 2 ZEav(k)} (by Lévy,s inequality)

< 4exp(—¢a,ut,) [using(4.19) and Proposition 4.1].

Combining (4.18), (4.19), (4.35), (4.36), the Borel-Cantelli lemma and the
Toeplitz lemma, we get

(4.37) limsupa; %, <dp l¢(c — 1) 'max(2¢,8) <» a.s.,

n—o

as desired. O

4.2. Some inequalities for vector-valued r.v.’s. Let n €N, and let
Y,,..., Y, be independent F-valued r.v.’s. Write Ty :== 0 and T}, := ¥ f= 1Y; (for
ke{1,...,n)). Moreover, let « € R* and B € [0, 1) be such that

(4.38) P(IT, - Tyl > a} <B forall k e{(1,...,n}.

Essentially the same argument as for real-valued r.v.’s [see, e.g., Chung
(1974), page 120] also yields:

LEMMA 4.2 (Ottaviani’s inequality). If (4.38) holds, then
(4.39) P{ max [Tyl > a + x} < (1-B) 'P(IT,I>x) forallx eR".
<R<n
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The next lemma is a variant of a result by Hoffmann-Jgrgensen (1974).

LEmMMA 4.3. Let N, = max{IIYjII: 1 <j <n)}. If (4.38) holds, then
(4.40) P{IT,ll > 2a + x + y} < P(N, >} + B(1 — B) 'P{IT,l > y}
forall x,y € R*.
Proor [Partly adapted from Hoffmann-Jgrgensen (1974), page 164]. For

w € Q,let 0(w) = min{k €(1,...,n}: ITy(0)ll > @ + y} or = n + 1 according
as max{||Tj(o)l: 1 <j < n} > a + y or not. Then

(441) P{IT,I>2a +x +y} = Zn‘, P{IT,|l > 2a + x +y, o = k}.
k=1
If o(w) =k (< n)and T ()l > 2a + x + y, then ||IT,_ ()|l < a + 7, and so
1T, (@) = Th(@)ll 2 1T, ()l = 1T, _ (@)l = I, (o)ll
>2a+x+y—(aty) —Ny(w)=a+x~— N, ().
It follows that (for & € {1,...,n}) '
PIT Il > 2a + x +y,0 = k}

<P(IT, - Tyl >a +x—N,, o= k)

<P{N,>=x,0=Fk} + P{IT, — T\l > a, 0 = k}

= P{N, > x,0 =k} + P{IT, — T}l > a}P{o = k}.
Hence and from (4.41) we conclude that

P{IT,ll > 2a + x + y}
<P{N,>x} + i P{o = E}P{IT, — T, > a}
k=1

<P{N, >z} + BP{ max [T, > a +y}

<RkR=<n

< P{N,>zx} +B(1 - B)_lP{"Tnll >y} (byLemma4.2). O

In the case of symmetric r.v.’s, the following lemma is closely related to
results that are implicit in papers by Kuelbs (1977) and Kuelbs and Zinn
(1979).

LEmmA 44. Let N, == max{||Y}ll: 1 <j < n}, and suppose that
(4.42) ElY,l<w foralke(l,...,n).
If (4.38) holds for some B € [0,1/5), then

48 7! o
(443) ElTll<a+ (1 - m) (3a + 4[a P{N, > x} dx).
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Proor. We have
(449)  EITI= [ “P(IT, I > x} dx <a + [ P(IT,II> x} da.
Now

[ PIT,I > aydx = [*+ [* <3+ 4 PIT,| > 4x} dx

a @ 4a @

<3a+4[ P(N, >z} dx

+48(1 - B) " [ P{IT,Il> x} dx
(by Lemma 4.3). Therefore

-1
(4.45) f:P{nT,,Il > x)dx < (1 - %) (3a + 4f:P{Nn > x) dx),

which together with (4.44) leads to (4.43). O

4.3. A general stability result for vector-valued r.v.’s. We now return to
the setting underlying Theorems 1.4 and 1.5, that is,

{X;; j € N} is a sequence of independent F-valued r.v.’s,

(4.46) S, =L}_1X; for n €N, and {R;; j € N} is a sequence
of independent Bernoulli r.v.’s which is also independent
of {X;; j € N}

Moreover,

(447) la;ieNLG)jeNL A JOW@ENN{L), ¢, dand
p are as in (4.3)-(4.7).

In the sequel, it is always assumed that
(4.48) the sequence {v(j); j € N} has the property Il(c,d, p, {a;; j € N})

(recall Lemma 4.1).

The next theorem gives an upper bound for limsup,, _,,, a;;'llS, || under the
assumption that the sequence {R,||Xl; j € N} satisfies a Nagaev type condi-
tion. Combining this result, Theorem 4.2, and Lemmas 4.5 and 4.6, we obtain
Theorems 1.4 and 1.5 (see Section 4.4).

In conjunction with Lemmas 4.5 and 4.6, Theorem 4.3 can also be utilized
as a convenient starting point (note that its proof does not depend on Theorem
4.2) for deriving various sufficient criteria for the SLLN that are easier to work
with than (4.49) and (4.50). [For further details, see Berger (1991).]
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THEOREM 4.3. Let 8,2,y € R*. Suppose (4.48) is fulfilled, and in addi-
tion:

the sequence {R,|| X lI; j € N} satisfies the Nagaev condi-

4.49
( ) tionN(b‘,s,{v(j);jEN},{aj;jEN}),
(4.50) limsupa'E| ¥ X;I({Il Xl < 8a,})|l < v.
n—oo j=1
Then
(4.51) limsupa,'lIS, Il <dp~tc(c — 1) "' max(8z + 67, 8) a.s.
Proor. For p € Nand q € N \ {1}, define
p
T, 5= lejl({nxjn <da;})
j=
and
M, ;= a,q k’é‘%)"Tk,s ~ Tg-v,sll-
Using (4.48) and arguing as in (4.35), we find that
l
(4.52) @ T, 5 — T, sll <dp™ ¥ e ¢"PM,

k=2

for any pair (I,n) with 1 €N\ {1} and n € J(I). Now let v* € (y,») be
arbitrarily fixed, let

Tj,6 = Rj”Xj”I({”Xj“ < 3aj}) for j € N,
éj,s(t) = log E(exp(tﬁj,s)) forjeNand t €R,

and let the sequence {t,; ¢ € N} in R* be chosen in such a way that

(4.53) Y Cs(t;) <ea,, forleA
jed)
and .
(4.54) Y exp(—za,t;) <
leA
[recall (4.49) and Definition 4.2]. By (4.50), there is a Do € N such that
(4.55) E|T, sl < y*a, for p > p,.

For k € A with »(k — 1) > p, and n € [v(k — 1), »(k)] N N, we have
(4.56) P{IT, 4,5 — T, ol > dy*a,) < %
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[by (4.55) and Markov’s inequality] and
P{M, ;> 8¢ + 6y*}
< 2P{I Ty, 5 = Toe1y,oll = 2(4e + v*)a, )
[by (4.56) and Lemma 4.2]
< 2P{| 1Ty, = Tock—1y, sl

_E”Ty(k)’a - T,(k_l),glll = 88a,(k)} [by (455)]

(4.57)

< 4exp(—2sa,4)t,)E exp(tk > ﬁj,s) (by Theorem 1.3)

jed(k)
S 4exp( _tk(zsav(k) - Z C;J,,s(tk)))
jeJ(k)
[by (4.53) and Proposition 4.1]

<4exp(—ea,pt;) [by (4.53)].
(4.49) also yields
(4.58) Y P{IX;l > 8a,} < .

Jj=1

Combining (4.52), (4.57), (4.54), (4.58), the Borel-Cantelli lemma and the
Toeplitz lemma, we get

limsupa;UlS,|l < dp~te(c — 1) "' max(8¢ + 6y*,5) a.s.

n—o

Since y* € (y, ®) is arbitrary, this implies (4.51). O

4.4. Conclusion of the proof of Theorems 1.4 and 1.5. The notation and
assumptions are as introduced at the beginning of the preceding section. By
virtue of Lemma 4.1 and Theorem 4.2, to establish Theorems 1.4 and 1.5, it
suffices to prove the following two theorems.

THEOREM 1.4'. The assertion of Theorem 1.4 holds if instead of (1.12) it is
assumed that

(4.59) for each & € RY, the sequence {R;|X,ll; j € N} satisfies
the Nagaev condition N(e, &, {v(j); j € N}L{a;; j € ND.

THEOREM 1.5'. The assertion of Theorem 1.5 holds if instead of (1.14) it is
assumed that

there exist 8, € R™ such that the sequence
(4.60) {R;IIX;ll; j € N} satisfies the Nagaev condition
N(By 87 {V(j); j € N}a {aj; j S N})~
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Using Theorem 4.3 (and recalling Definition 4.2), we see that Theorems 1.4’
and 1.5 will be proven once the following two lemmas are verified. Both
lemmas being easy consequences of Lemma 4.4, the proofs are left to the
reader.

LEMMA 4.5. The notation is as in (4.46) and (4.47). Suppose

(4.61) a; S, ll—p0

and

(4.62) Y. P{IX,ll > 8a,} <~ forsomed € R".
k=1

Then

n

(4.63) limsupa;'E| ¥ X;I({IX;ll < 8a,})| < 86.

n—o j=1

LEMMA 4.6. If condition (4.61) in Lemma 4.5 is weakened to
(4.64) the sequence {a}!IlS,|l; n € N} is bounded in probability,
then

(4.65) lim supa;E

n—o

< oo,

i X1({I1X;0 < 8a})
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