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WEAK CONVERGENCE TO A MARKOV CHAIN WITH AN
ENTRANCE BOUNDARY: ANCESTRAL PROCESSES IN
POPULATION GENETICS!

By PETER DONNELLY
Queen Mary and Westfield College

We derive conditions under which a sequence of processes will converge
to a (continuous-time) Markov chain with an entrance boundary. Our main
application of this result is in proving weak convergence of the so-called
population ancestral processes, associated with a wide class of exchangeable
reproductive models, to a particular death process with an entrance bound-
ary at infinity. This settles a conjecture of Kingman. We also prove weak
convergence of the absorption times of many neutral genetics models to
that of the Wright—Fisher diffusion, and convergence of population line-of-
descent processes to another death process.

1. Introduction. In spite of recent advances and the continuing develop-
ment of the theory of weak convergence, together with its extensive applica-
tion [see for example Ethier and Kurtz (1986)], one setting which does not
seem to have attracted special attention is that in which the limit process has
an entrance boundary which is the accumulation point of a countable state
space. The work described here is motivated by an outstanding problem in
population genetics in which such processes arise naturally. The other novelty
in that context is that the raw materials available for proving weak conver-
gence differ from those usually available. Here one does not have knowledge of
finite dimensional distributions but of the behavior of the prelimiting pro-
cesses after they have reached “finite” values. Equivalently, in trying to infer
the behavior of processes describing the whole population, in the limit as the
population size tends to infinity, one is armed with knowledge of the limiting
behavior of samples of fixed but arbitrary size.

In Section 2 we prove a general result. As well as highlighting the essential
features of the problem, the result and the associated techniques may be of
wider interest. Section 3 introduces the genetics models, defines the ancestral
process and gives the finite sample result of Kingman (1982c¢). Next we verify
that, in an appropriate sense, the prelimiting processes do not “get stuck at
infinity.” The convergence result may then be applied to prove that with an
appropriate time scaling, population ancestral processes associated with a wide
range of exchangeable models converge to a particular death process with an
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entrance boundary at infinity. Convergence of (neutral) discrete genetic models
forward in time to the familiar diffusion approximations is [Donnelly (1985)] a
consequence of the finite sample result. In Section 4 we show that weak
convergence of absorption times to those of the diffusion is a consequence of
convergence of population ancestral processes, thus extending some results of
Ethier (1979) to a wide class of neutral models. In fact weak convergence
of absorption times is equivalent to weak convergence of the marginal distribu-
tion of the ancestral process to that of the limiting death process. Griffiths
(1981) used known results about absorption times in the specific case of the
Wright-Fisher reproductive scheme to prove convergence of ancestral pro-
cesses for that model. The final section discusses the related problem of
population lines of descent in genetic models incorporating mutation, and
again uses the general result to prove weak convergence to a (different) death

process.
st

Throughout, we will use the symbol = to denote weak convergence, < for
stochastic ordering of elements of a partially ordered set [Kamae, Krengel and
O’Brien (1977)], and write [x] for the integer part of x.

2. The general convergence result. The form of the conditions for
Theorem 1 is motivated by the genetics problem we discuss later. Note that
the property of (stochastic) monotonicity in the initial value is natural in that
context, as it is indeed for many death, or birth-death type processes. We
remark, however, that while this property is used repeatedly throughout our
proof, similar techniques are applicable in related situations in which other
conditions may apply. In connection with condition (A3) of Theorem 1, one
may well have hoped [Kingman (1982¢)] that the “finite sample’’ behavior (A2)
might play a role analogous to that of finite dimensional distributions in other
invariance results. This does not seem to be the case, and some condition like
(A3), whose effect is to ensure that the prelimiting processes do not get
“stuck” at the entrance boundary, appears essential.

THEOREM 1. Let {BN(-))3,_, be a sequence of Markov processes with respec-
tive state spaces E, CE,C --- c{0,1,2,...}. Denote by E' the union
U%-1Ey and for n € Ey, by BY(-) the process BM(-) conditional on BN(0) =
n. Suppose that {D(t), t > 0} is Markov with state space E = E' U {} [again
we write D,(-) for the process D(-) conditional on D(0) = n] and that:

(1) The state © € E is an entrance boundary for the process.
(ii) No states x € E’ are instantaneous.
(iii) Whenever k,n € E' with k < n,t > 0, P(D,(¢t) = k) > 0.

In addition, we make the following assumptions:
(A1) Forl,n € Ey with l < n,

BN(-) £BY()

as elements of DEN[O, o],
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(A2) For each n € E', as N - » (with N > min{N: n € E\}),
BY(:) = D,(")
as elements of Dgl0, ).
(A3) For each t > 0,

lim liminfP(BY (¢) <M
aim_ lminfP(B,(t) < M) =
for some sequence {n yJ3 _;.

Then, provided n — © as N = =,

BY() = D)
as elements of Dg[0, «].

Proor. We will first show that the sequence { B Jn—1 is tight, then collect
together properties inherited by any weak limit of a subsequence of the BNN
and finally show that these properties characterize any such limit as the
process D.(-).

For tightness we verify Aldous’ sufficient condition: For each T, each n and
each ¢ > 0, there exists a § > 0 and N, such that

P(d(BY(py + &), BN (py)) 2 n) <& for N> N,

whenever p,, is a stopping time for B,I:'N that takes values in [0,T'] and &' is a
real number with 0 < 6’ < §. [Here and throughout we use d(-, - ) to denote a
metric which generates the usual topology on E. Without loss of generality we
will further assume that d(x, «) is decreasing in x.] Pollard (1984) shows that
an analogous condition guarantees tightness in Dy[0, ©]. The compactness of
E and Theorem 3.9.1 of Ethier and Kurtz (1986), for example, gives the
desired extension.

Choose z € E with d(z,o) < /2 and suppose that N is large enough to
ensure z € E. Then, conditional on B,I:’ (pny) =K = 2,

:u;;d( N(py+8), BY(py)) < d(K, oo)+d(meK(5') =)
st

<n/2+ d(ai,r;f&B;V(a'),oo) by (A1).

Since by (A2), BY = D,, it follows that

inf BN(8') = 1nfD ,(8")
8'<é

and, in particular, that

Iglinwp( inf BY(8') <z - 1) - P(Sigt;Dz(B') <z-1)

<1-P({D,(¥) =2,0<8 <3d}).

Assumption (ii) guarantees that there is a value of §, §, say, which ensures
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that this last is bounded above by £/2 and hence that for some N,,
P(inf BN(8') <z - 1) <z forall N>N,.
8'<é
Thus for 0 < §' <4,,if K€ Ey, K > 2,
P(d(BX(px + ), BM(pn)) = n|BN(py) = K) <&
for all N > N,.
Now for y € E5 with y < z,
P(d(BY(py + &), B (pn)) <n[BN(pn) =)

> P({BY(&) =y,0 <8 <3}
- P({Dy(8') =y,0 <& <3})

as N — o, as a consequence of (A2). Further, assumption (ii) ensures that
there is a value of 8, 8, say, for which this last probability is at least 1 — /2
and hence that for some N,,

P({BY¥(8') =y,0<8 <8})>1—¢ forall N>N,.

Thus whenever 0 < &’ < §,,

P(d(BY(pn + &), BY(px)) 2 n|BN(py) =y) <& forall N > N,.

Finally, put

8o =min{s,:y € E, y < 2}
and
N, =max{N,:y € E, y < z}.
Thus for all & with 0 < §' < §,, and all N > N,
P( (BN(PN +6'), By (PN)) 2 "7)

= ¥ P(d(BN(pn+ &), BN (py)) =, BN(px) =)

y€EN

<e ¥ P(Blox) =)
y€EN
=,
so that the sequence { B ( Ny, is tight.

Now focus atbentlon on a particular weakly convergent subsequence of
{B} (-)}%_, and denote its limit by X(-). (For convenience, here and below, we
w1ll “also index the subsequence by n,.) Note that as Jacod, Memin and
Metevier (1983) observe, the weak limit of any sequence of processes satisfying
Aldous’ tightness condition will be quasi-left-continuous. In particular

{t: P(X(t -) = X(8)) = 1} = (0,)
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so that, for example, if 0 < ¢, <t; < -+ <t, <o, thenas N - =,
| (Ba(20), BR(21)s- s BR(8)) = (X(2o), X(8), ..., X(2,)).
Next we show that the limiting process X(-) enjoys the following properties:
(P1) P(X(0) = ) = 1.
(P2) For any t > 0, P(X(#) < ®) = 1.
(P3) Forany t > 0, k € E', P(X(¢) = k) > 0.
(P4) For t > s> 0, k, j € E', P(X(¢) = kIX(s) = j) = P(Di(t — s) = k).
(P5) Forany t > 0, k € E', P(X(¢) = k) = P(D(t) = k).
Recall that (along the subsequence in question) n, — «. Thus for any M,

P(X(0)=M) > limsupP(B,{’N(O) > M) =1,
N-ow
from which (P1) follows.

For (P2), note that for ¢ > 0,
P(X(t) < )

lim P(X(t) < M)

= Alliinw Alliian(B,{‘jv(t) <M)

=1
by (A3).
Next suppose ¢ > 0, & € E'. Then with 0 < s < ¢, Fatou’s lemma and (A2)
guarantee that

P(X(t) = k) = Alliian(B,l,VN(t) = k)
1 w
@ > Y P(X(s) =1)P(Dy(t - s) = k).
=k

Now assumption (iii) ensures that for each ! > k, P(D,(¢t —s) = k) > 0 for
any 0 < s < ¢, so that (P3) will follow provided we can findan [ > k,0 <s <1,
with P(X(s) = 1) > 0. The existence of such a pair follows from (P2) and the
fact that lim,  , P(X(s) > k) = 1 [recall (P1) and the right continuity of X(-)].
Nowfort>s>0,k,j<€E,
P(X(s) =j)P(X(t) = k|X(s) =)
= P(X(s) =j, X(t) = k)

lim P(BJ(s) =j, Bi(t) = k)

lim P(BY(s) =j)P(BN(t) = k[BY(s) =)

= P(X(s) =j)P(D;(t —s) = k)

by (A2), so that (P4) now follows from (P3).

Before establishing (P5), we derive several properties of the process D(-).
Note that in many applications these will be immediate; the point here is that
they follow from the assumptions of the theorem. First observe that D(-)
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inherits monotonicity properties from the B™(-). For our purposes it is
enough that as a consequence of (A1) and (A2), for L, L’ € E’ with L < L’ and
keE,t>0,

P(Dy(t) = k) < P(Dy(t) > k).
Next we prove that for any ¢ > 0, k € E,
P(Dy(t —h) 2 k) > P(Dy(2) > k)
as h — 0, uniformly in L € E. For
|P(Dy(¢t — h) 2 k) — P(Dy(t) = k)|
=P(Dy(t —h) =k, Di(t) <k)+ P(Dy(t —h) <k,Dy(t) 2 k)
= T P(Dy(t - h) =j)P(D,(k) <k)
Jek
+ Y P(Dy(t - h) =j)P(D;(h) = k)
"
< P(Dy(h) <k) + P(Dy(h) 2 k)
by monotonicity, where we have written 2 = max{j € E': J < k}. By assump-

tion (ii), each of these may be made small by taking A small enough, from
which the desired result follows. Now we show that for any ¢ > 0,k F,

P(D(t) = k) = Jlim P(Dy(t) = k).
Write 7, for the limit of the bounded, monotone sequence {P(D,(¢) > 3
and suppose ¢ > 0 is given. Then, with 2 chosen to ensure
IP(D (¢ — h) = k) — P(Dy(t) 2 k) <&

forall L € F',
P(D(t) = k)= Y, P(DJ(h) =j)P(Di(t - h) = k)
JEE'
< X P(D(h) =j)P(D;(t) 2 k) +¢
JjEE
<m, + ¢&.

In the other direction, for the same &,
P(DJt) = kY=Y P(Dh) =j)P(Dj(t -h) > k)
JEE'
> ) P(Dh) =j)P(Dj(t —h) > k)
JEE'
j=M
2> P(Dy(t) = k)—¢
> Ty — 2¢
for suitably large M.
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To prove (P5), write, for 0 < h < ¢,
P(X(t) 2 k) = ‘ZE P(X(h) =j)P(X(t) = k|X(h) =)

JEE

= Y P(X(h) =j)P(Dj(t —h) > k)
JEE

>P(Dy(t—h)=k)P(X(h)=L)

— P(Dyt) = k)

as first A~ — 0 (recall that X is right continuous) and then L — . Also
P(X(t) =k) =) P(X(h) =j)P(Dj(t —h) > k)
JEE

<P(D(t—-h)=k)
- P(DJt) 2 k)

as h — 0, from which (P5) follows.

Finally, we are in a position to establish the theorem by proving that X and
D, have the same finite dimensional distributions. Thus suppose ¢, <, <

- <t, and ky, ky,...,k, € E. Note that in view of (P1), we may assume
¢, > 0 and in view of (P2) and (i), we may take k&, k,,..., k, € E’, all without
loss of generality to what follows. Then

P(X(t)) = by, X(t5) = ko ..., X(t,) = k)

= l\lll_rfle(BN(tl) = ky, BN(8;) = ky,...,BN(t,) = k,)

= lim P(BY(#)) = k1) P(BN(t2) = kol R (11) = )

P(BY(t,) = ko|BY(ta_1) =k, 1)
=P(X(t,) = k1)P(Dk1(t2 —t) = 2) ce P(Dk,,_l(tn - n—l) = kn)

= P(Dy(t,)) = ky, D(ty) = kg, ..., D(t,) = k)

in view of (P5) and the Markov structure of BY and D,. This is enough [recall
the topology of E’ and, for example, Lemma 3.4.5(a) of Ethier and Kurtz
(1986)] to show that X and D, do have the same finite dimensional distribu-
tions. O

3. Convergence of ancestral processes. Much recent work in mathe-
matical population genetics has focussed on the genealogy induced by genetic
models. The central result [Kingman (1982a, c)] states that with an appropri-
ate time scaling the genealogy of a sample of fixed size n, say, arising from any
of a wide class of reproductive models, converges as the population size tends
to infinity to a particularly tractable process called an r-coalescent. A conse-
quence of this is that (in rescaled time) the so-called ancestral process, which
simply counts the number of ancestors of the sample, converges to a particular
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death process. While many questions of genetic interest may be expressed in
terms of the genealogy of samples of fixed size, some problems require knowl-
edge of the genealogy of the whole population. Potential limiting processes
must take particular forms and have been closely studied [Kingman (1982b),
Donnelly and Tavaré (1987)], but no convergence results exist. In many senses
the most fundamental of the open problems, conjectured but unsolved in
Kingman (1982c), concerns the convergence of the ancestral process associated
with the whole population. Our purpose here is to prove that conjecture.

Our starting point is a general model, initially introduced by Cannings
(1974), for the reproduction of a haploid population. [See Ewens (1979) for
background.] Assume that the population evolves in discrete, nonoverlapping
generations and that each generation is of fixed size N. [In fact, as noted in
Kingman (1982a) and elsewhere, the following results apply to a number of
models with overlapping generations (notably the Moran model) and varying
population sizes, but in these cases a different time scaling is appropriate.]
Label the members of the rth generation in random order and let v,
be the number of children born to the ith member. The random variables
V1, Vg, ...,vy are then exchangeable and v, + v, + -+ +v, = N. Further
assume that the v; are independent of family sizes in other generations (this is
an assumption of genetic neutrality) and that the joint distribution of the v.
does not depend on r. The most celebrated model of population genetics, the
Wright-Fisher model, corresponds to the case in which the joint distribution
of these offspring numbers is symmetric multinomial.

Choose a sample of n (< N) members at random from the rth generation.
For t =0,1,...,r, let AN(¢) denote the number of distinct ancestors of the
sample in generation r — ¢. Then AY(0) = n and AYN(t + 1) < AN(¢). Further-
more the conditional distribution of AJ(z + 1) given AY(0), AY(1),..., AN(z)
depends only on AN(#). Thus {AN(¢): t =0,1,...,r} is a Markov chain on
E, ={1,2,...,n} whose transition probabilities depend only on N, n and the
joint distribution of the offspring numbers v;. Although only defined for ¢ < r,
its distributions do not depend on r and are therefore those of a Markov chain
{AN@), t=0,1,2,...}. We will identify these two chains throughout the
sequel. Thus for example, for the Wright—Fisher model,

PAN(t + 1) = j|AY(t) = i)

3 Y E

1<k;<--- <k

The appropriate limiting process is a death process. Throughout this and
the next section we denote by {D(¢); ¢ > 0} the simple Markov death process in
continuous time with state space E = {1,2,...,»} and death rate 1(I — 1) /2
from [ to [ — 1. Recall that D,(-) denotes the process D(-) conditional on
D(0) = n.
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THEOREM 2 [Kingman (1982c)]. Suppose that, as N — «, the variance of v,
converges to a nonzero limit 0% and that

supE(v]) <o
N

for all s > 1. Then the finite dimensional distributions of the process AN(p) =
AN( No~2t]) converge to those of D, (t).

The result is a consequence of Theorem 1 of Kingman (1982c), which
concerns a more informative, equivalence-relation-valued, genealogical pro-
cess. In fact not all the moment conditions are essential to Kingman’s proof,
although all are satisfied by the familiar genetic models.

Note that because of the quadratic nature of the death rates, the state « is
in fact an entrance boundary for the process D,(-). For example D,(-) could be
constructed by defining independent exponential random variables 7,,73,. ..
on a common probability space with 7, having mean 2/k(k — 1), defining
7, = » a.s. and putting D(¢) = s on the set

{ Y m.<t< Y Ty -
k=s+1 k=s
Note also that it is clear from this construction that D(-) € Dg[0, ).

It is natural to ask about the process {AN(#), ¢ > 0} which counts the
number of ancestors of the whole population. In view of Theorem 2 and the
behavior of DJt), a sensible conjecture, 1mphcit in the final section of
Kingman (1982c), is that the sequence AN((No~2-]) converges weakly
to D).

THEOREM 3. Suppose that as N — », the variance of v, converges to a
nonzero limit o2 and that

supE(v{) <

for s=1,2,.... Then for any sequence of positive integers {nyly_, with
ny <N and nN — o gs N - », the sequence of processes AY ([N(r'2 D
converges weakly to D) as N — «. In particular

AY([No72-]) = DJ")
as N - o,

Proor. We will apply Theorem 1 with BY () = AN W No~2-)). First note
that the limiting process {D(?); ¢ > 0} clea.rly satlsﬁes "Theorem 1(3), (ii) and
(iii). For ! < n, an easy coupling argument, founded on the observation that
one way of taking a sample of size [ is first to take a sample of size n and then
to take a subsample of size / from this first sample, guarantees the stochastic
monotonicity in (Al):

AV([No~2]) < AN([No™2-]).
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Condition (A2) is exactly Kingman’s finite sample result, Theorem 2. The
result will follow then provided (A3) holds. In the case n, = N, this is a
consequence of the next proposition and, say, Markov’s inequality. The general
result then follows from the fact that

P(AY ([No=%]) <M) = P(AY([No~%t]) < M),

which is itself a consequence of monotonicity. O

ProposITION 3.1. For any t > 0, there is a finite constant C (depending on
t) with E(AN(No~2t]) < C for all N.

We first extend Theorem 2 and bound the expected number of ancestors of a
sample whose size increases with the population size N (in fact N1/3 will do)
and then exploit the structure of the process, and monotonicity, to bound the
expected number of ancestors of the whole population. Throughout we wﬂl
denote by K, (N = 2,3,...) the smallest integer larger than N/3: K,
[N/3]+1,for N=2,3,..., and put K, = 1.

LEMMA 1. Foranyt > 0, there is a finite constant C, (depending on t) with
E(AX (No~?]) < C, for all N.

Proor. It follows from Kingman [(1982c¢), page 103] that for any % and any
M=FkEk+1,...N,
P(AY (t+1) =k - 1]AY () = k)

B[N v - (- NEGY) - (* 5 2 NEGD)

Throughout what follows we will have 2 < K, and we will assume that N is
large enough to ensure that

N-'var(v,) — (Ky — 2)N-2E(v?) + (KNz‘ 2)N—2E(V§Vg) > IN-152,

(Recall the moment conditions in the statement of the theorem.) Then, for
k = 2,3,...,KN,

1
P(AY (t+1) =k — 1|A¥ (¢) = k) > 5(’;)N‘1cr2 =Y, say.

Now for &k = 2,38,..., Ky, let W be independent geometric random variables
with respective success probabilities IT}. Define

Ky
Tgun= 2 W
k=n+1
Elementary calculation then gives

64 N2

3o4nd®’

AN
E(Tgyn) < = and var(T§],,) <
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An easy monotonicity argument shows that
P(AR ([No=%t]) > n) < P(Tg,, > No~%)
and by Markov’s inequality this last is bounded above by

ot 64 16
werE(Thn)) = g5 +

Thus
E(AX ([No7%t])) = 3 P(AY (INo7%t]) 2 n) <1+t72C' <,
n=1

where C’ is a constant which does not depend on N, and the result follows. O

LEmMa 2. Foranyn,n=1,2,..., N, and any t,

E(AY(t)) < (nN™V3 + 1)E( A¥ (1)).

Proor. For n < K,, monotonicity means that AN(#) is stochastically
smaller than A% (#) and the result is immediate.

For n > K, partition the sample of size n into j (< nN~1/3 + 1) disjoint
subsamples of size at most K, and denote by Af{), ceey Aﬁ’,) the ancestral
process corresponding to each of the J subsamples, and for convenience
suppose that Af‘{) corresponds to the largest of these subsamples. These
processes are not independent, but they have identical transition mechanisms
and would be identically distributed were it not for the fact that the subsam-
ples may be of different sizes. A coupling argument, founded on the observa-
tion that an ancestor, ¢ generations into the past, of any of the original sample
of n must be an ancestor of at least one individual in at least one of the
subgroups, gives

AN(t) s_<tAg)(t) + AN (t) + - +AN(2).
Thus
E(AN(t)) <JE(A{(t)) < (nN~'% + 1) E(A¥ (2))

as required, where we have again exploited the stochastic monotonicity of
A¥@®)in k. D

Now for 0 <u <s, let % denote the o-algebra generated by {AN(u),
u=0,1,...,[t]). Note that for all s and u,

[No2s] — [No~2u] = [ No~2(s — u)],

so that as a consequence of the fact that A% (¢) is stochastically nonincreasing
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in ¢, we may write

E(AN([No~%s])) = E(E(AN([No~%s])| Fy,-2,))

E(E( Aflgono-up([No ] — [No~2u])))

E( AAN([Ncr""u])([Na- Z(S_u)])))
((~

~1/3AN ([ No~2u]) + 1)

IA

<E
XE(A%N([NU‘Z(S - u)]))) (by Lemma 2)

< C(N"PE(AN([No~%u]) + 1))

for some constant C; < », depending on s — « but not on N, by Lemma 1.
The proof of Proposition 3.1 is completed by applying this last inequality three
times, first with s = ¢, u = ¢,, then with s = #,, u = ¢,, and finally with s = ¢,,
u = 0, for some ¢,,¢, € (0,¢) with ¢, <¢,. O

4. Convergence of absorption times. A central technique in mathe-
matical population genetics has been the approximation of suitably rescaled
discrete models (evolving forward through time) by more tractable diffusion
processes, with generator techniques predominating in the proof of appropri-
ate limit theorems [see, e.g., Ethier and Kurtz (1986), Chapter 10]. It was
shown in Donnelly (1985) that weak convergence to the so-called Wright-Fisher
diffusion is a consequence of Kingman’s finite sample result (Theorem 2), and
in this way the class of models known to converge was extended to include all
of those to which that result applies. A more delicate question, in the case of
no mutation, concerns the weak convergence of absorption times.

Consider a population evolving according to one of the exchangeable models
satisfying the conditions of Theorem 2, and suppose that there are two genetic
types, A and a, say, and that offspring always adopt the type of their parent.
(The restriction to only two types is one of convenience. The ensuing analysis
will apply to any K-allele model without mutation.) Suppose also that in some
initial generation, which we call 0, types are assigned to individuals indepen-
dently, in such a way that each individual is of type A with probability p,
0 < p < 1. Denote by Y(¢) the number of individuals of type A in generation ¢.
It is immediate that {Y(¢), ¢ > 0} is a Markov chain on {0, 1, ..., N} for which 0
and N are absorbing states. To make the dependence of N exphc1t we will
write YN(¢) for Y(2).

The limiting process {Z(¢), ¢ > 0} is the (so-called Wright-Fisher) diffusion
on [0, 1] with Z(0) = p, absorbing barriers at 0 and 1 and generator

1 1 92
(1 -x)75
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The convergence result of Donnelly (1985) is:

THEOREM 4. If the Markov chain {YN(t),t = 0,1,2,...} arises from one of
the exchangeable reproductive models satisfying the conditions of Theorem 2,
then as N » o, N"'Y¥(No=2-] = Z(-).

Define &, &;: Dy, 1[0, <] — [0, ] by
£o(x) = inf{¢ > 0: x(¢) =0 or x(¢t —) = 0},
E(x) =inf{t > 0:x(¢) = lorx(t—) =1},
where inf ¢ = ». Then ¢, and ¢, are Borel measurable, so we can define the
absorption times
SN =¢(N'YN([No~2-])) and S,=¢,(Z) fori=0,1.

We now prove the equivalence of the weak convergence of these absorption
times and the weak convergence of the marginal distribution of the ancestral
process. Note that for the next theorem we are not assuming the condltlons of
Theorem 2.

THEOREM 5. As N> », S¥ =S, and S =S, for all p €(0,1) if
AN(INo~2t]) = DJ¢t) for each t > 0.

Proor. The process Y™N(¢) will take the value N iff all the ancestors in
generation 0 of the individuals in generation ¢ are of type A. Condition on the
number of ancestors and invoke the independence of initial types to write

(2) P(SN<t)= 2 P(A ([No~2t]) = k) p*.

The distribution of S, is known [see, e.g., Ewens (1979), page 141] and in fact
can be written as

(3) P(S, <t) = ¥ P(Dt) = k)p*.

k=1
Now each ¢ > 0 is a continuity point of the (improper) distribution of S, so
writing p = e™* for A > 0in (2) and (3), we have S) = 8, for all p € (0, 1) iff
®N(A) - ®,)) for each ¢ > 0 and each A > 0, where

®N(A) = E(exp(—AAY([No~%t]))) and @,(A) = E(exp(—ADJt)))
are the Laplace transforms of the distributions of AN(No~2t]) and DJ2),
respectively. The result follows from the continuity theorem of, for example,
Feller [(1971), Theorem XIII.1.2)] and the observation that by symmetry
SN =S, forall pe(0,1iff S} - S, forall p €(0,1). O

REMARKS.

1. It is perhaps worth noting that S} = S, does not follow from Theorem 4.
The function ¢, is discontinuous at every x € Dy, ][0, ] for which §;(x) <
and it is known that P(S; < ©) > 0. [In fact P(S; A S; <®) =11]
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2. Theorems 3 and 5 now guarantee the convergence of absorption times for
any of the models satisfying the moment conditions of Theorem 2. This
result was known for the specific case of the discrete Wright—Fisher model
[see Ethier (1979) and references therein]. Even in this case the direct proof
is formidable (although the results apply to more general genetic models, in
particular in allowing selection). Griffiths (1981) used this result and an
argument similar to the one above to prove Theorem 3 (or at least weak
convergence of one dimensional distributions) for the Wright—-Fisher model.
The novelty of the current approach is that diffusion approximations and
approximations for absorption times follow readily from genealogical ap-
proximations, and these in turn require few model specific calculations.

3. The observation at the start of the above proof is exactly analogous to the
duality relationship for voter models. See, for example, Durrett [(1981),
equation (3.7)]. In fact the connection has recently been shown to be rather
more intimate [Cox and Griffeath (1986)]. One interpretation of this is that
with suitable spatial and temporal rescaling the two dimensional voter
model shares the dual process D.(-) with the genetic models. °

4. The assumption of a binomial distribution for Y"(0) is standard in the
genetics context. More generally, denote by fy(k), k =1,2,..., N, the
probability that a random sample of size & taken from the population in its
initial generation will consist entirely of individuals of type A:

fr(k) = (ZZ)_IE((YIZO))), kE=1,2,...,N,

and put fy(k) =0,k € E\{1,2,... N}. Fix p € (0,1) and define f: E - R
by

f(k) =p*, k=1,2,...
and f(») = 0. If AN((No~2t]) = D(¢t) for each ¢t > 0 (and in particular if
Theorem 3 obtains) then the continuity theorem [Billingsley (1968)], the

topology of E and the fact that for ¢ > 0, P(D(t) = «) = 0, guarantee that
as N - o,

P(S{Y <t) = E(fy(AN[No~%t])) » E(f(D.(t))) = P(S; <t)
for each ¢, whenever fy(k) — f(k) for each £ =1,2,3,... .

5. Lines of descent. When genetic models incorporate the effects of
mutation it is often more useful to count “lines of descent’’ than numbers of
ancestors. In the interests of brevity we refer the interested reader to Griffiths
(1980) or Tavaré (1984) for motivation and exact definitions. Loosely speaking
the number of lines of descent of a sample is the number of ancestors without
intervening mutation. We will denote by RYN(-) the Markov chain which
counts the number of lines of descent of a sample of size n from a population
of size N. Again, finite sample behavior is well understood. Let {D(2); ¢ > 0}
denote the death process with state space E = {0,1,2,...,x} and death rates
21(1 + 6 — 1) from [ to I — 1. (Here 6 > 0 is a mutation parameter.) It follows
from the main result of Donnelly and Tavaré (1986) that as N — o,
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BYN(No~2 -] converges weakly to D (-), but the problem concerning popula-
tion lines of descent has remained open.

THEOREM 6. Suppose that the population is evolving according to one of the
exchangeable models of Section 3 and that the finite sample result of Donnelly
and Tavaré (1986) obtains. (This requires the moment conditions of Theorem
2 and a condition on the mutation rates.) Let {n y)3_, be a sequence of positive
integers with ny < N for each N and limy _, ,ny = ©. Then as N — » the
sequence of processes B,’,‘; ((No—2 -] converges weakly to D(-) in D0, »].

ProOF. Again apply Theorem 1. Stochastic monotonicity of BN(:) in n
follows as before, and Proposition 3.1 and the (immediate) observation that for
ny < N and any ¢,

st
B (t) < AN(t)
ensure condition (A3). O
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