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MARKOV CHAINS WITH STOCHASTICALLY STATIONARY
TRANSITION PROBABILITIES!

By STEVEN OREY?

University of Minnesota

Markov chains on a countable state space are studied under the assump-
tion that the transition probabilities (P,(x,y)) constitute a stationary
stochastic process. An introductory section exposing some basic results of
Nawrotzki and Cogburn is followed by four sections of new results.

0. Introduction. Let X be a finite or denumerably infinite set, and
consider a stationary stochastic sequence (P,), where each P, is a stochastic
matrix (P (x, y), x € X, y € X). One may consider P, as the time n-to-(n + 1)
transition probabilities of a Markov chain moving on X. The study of such
Markov chains with random transition probabilities has been pursued for
some time, often for special cases or examples. Nawrotzki [12, 13, 14] intro-
duced a general theory. Then Cogburn [3, 5] developed such a theory in a wider
context making use of more powerful tools. It is Cogburn’s theory that will be
our setting. For extensive references to previous work, we refer to the discus-
sion and bibliography in [3, 4, 5, 12, 13, 14]. There is of course no implication
that the general theory subsumes all the special investigations. In this article
we attempt no historical survey, nor a discussion of the applied problems
which have motivated much of the literature. Our concern is primarily with
questions related to the ergodic theory of the Markov chains. For example,
central limit problems, treated in [6], will not be discussed.

Section 1 is intended as an introduction to the theory. There our notation
will be introduced. For ease of comparison we have followed the notational
setup of [3, 5], but we do not always use the same symbols to denote the same
concepts as in [3, 5]. The work of [3, 5] draws heavily on the Hopf theory of
L,-Markov chains. In Section 1 we assemble the necessary facts from this
theory and then outline some of the major concepts and results from Cogburn’s
theory. For detailed proofs of some of the results, we refer of course to the
original papers [3, 5. It is our intention, however, that except for a few facts
(which the reader can take on faith, try to prove him- or herself or look up in
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908 S. OREY

the provided references) the present paper is self-contained. Thus the aim of
Section 1 is expository, with perhaps some minor novelties.

Sections 2-5 contain new contributions to the theory. Each section has its
own introduction and motivation. Though the sections deal with distinct
problems, they are connected by a common theme.

Several open problems are mentioned. These are given as Problems 1.3.1,
1.3.3, 1.3.6, 5.1 and 5.7.

1. Background. We shall use the same setup as Cogburn [3, 4, 5] which
extends that of Nawrotzki [12, 13, 14]. X is to be a finite or denumerable set,
& the o-field of all subsets of X. Let (0, #,) be a measurable space, () = 07,
Z being the integers. Let @,: 0} = @ be the nth coordinate function, that is,
0,(w) = w,. Let &} be the o-field generated by the ©,, k — 1 <n <[ + 1,
where —®© <k <l <o, Let &= %>, The shift T: O — Q is defined by
(Tw), = w,.1, n € Z. Let (Q, #,7) be a probability space such that = =
moT 1. Let P be a measurable map from @ into the space of stochastic
matrices, the latter equipped with the obvious Borel field. Then (0,) is a
stationary process, and so is (P  ©,). (Thus P - ©, takes the place of P, in the
Introduction. For our present purposes one could take ® to be the space of
stochastic matrices and P the identity function.) Define

Plw,, " w,) =P(w,)P(0,s1) ' P(w,) for —o<m<n<wx,

and write P(w,, *** w,;%,y) = Plw,, " 0,Xx,y), x,y € X. For a fixed
sample point w, P(w,) can be considered as the time rn-to-(n + 1) transition
probability of a corresponding sample Markov chain X, moving on the space
X. If this chain is started at time 0 at position x, then the probability that the
chain visits x4, x;,...,x, at times 0,1,..., n is given by

wa[Xo =x0,X1 =x1,...,Xn =xn]
(1.1)

= I(x)(xO)P(wO;xO’xl)P(wl;xl’x2) o P(w,_13%,-1,%,),

where 1, is used throughout as the indicator function of the set A. Note that
(1.1) determines the measure P on X%+, with Z, the nonnegative integers. A
typical question dealt with by the theory is the behavior of

n—1
lim — 3 P?[X, =y]
n—wo N E=0

as a function of (x, o). Cogburn had the good idea to make the connection with
the well-developed theory of Hopf Markov chains. We now review some results
from this theory.

1.1. Hopf Markov chains. This theory originated with Hopf [10] and was
further developed subsequently. For present purposes the work of Foguel [7] is
a particularly useful reference. We summarize some key concepts and results
for later use.
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A Hopf Markov chain is a quadruple X = (E, &, P, II), where (E, &, II)is a
measure space with positive o-finite measure I1 and P is a positive contrac-
tion on L,(I1). The result of P acting on ¢ in L,(II) will be written ¢P. The
dual operator for P is a positive contraction on L.(IT); its action will be
written as Pf. When not otherwise specified, ‘“a.e.” will mean ‘“‘almost every-
where with respect to the reference measure II”’; furthermore since L, and
L., functions are defined only as equivalence classes, we will sometimes write
f =g or A C B with the understanding that these relations hold a.e.

For ¢ € L(II), f€ LI) let o, f) = [¢ - fdIIl. Then

(1.2) (P, ) =<e, Pf).
For A € &, write P(z, A) = PI,(2), z € E. Every ¢ € L(II) gives rise to a
signed measure ® on & via
(1.3) ®(B) = [¢dll, Bed,
B

and defining

®P(A) = [P(x, A)®(dx),
one finds

(1.4) ®P(B) = [B¢ dll, Bed&, withy=¢P.

We note that P(z, A) defines a sub-Markovian ‘‘transition probability kernel”’;
. the quotation marks are a reminder that all the usual relations hold, but only
up to II-null sets; see [7], page 2.

The conservative part of E is defined by

(1.5) C = {z: Y yP*(2) = °°},
k=0

where ¢ € L(Il), ¢ > 0; the definition does not depend on the choice of ¢ (see
[7], page 11). Furthermore ([7], page 11) if ¢ € L(II), ¢ > 0, then

Y UP*(x) < o, x€ENC,
(16) *

Y yP*(x) =0or», x€C.

k=0

It is also possible to characterize C in terms of the dual operator; see [11].
The o-ring of invariant sets is defined by

(L.7) &={Ac&:PL,=1) ([7],page8)

and the larger o-ring of deterministic sets is defined by

(1.8) &= {A € &: thereexists B, € & with P"I, =I5 ,n=1,2,...}
([7], page 7). Aset A € & is closed if TI(A) > 0 and I, < PI,. If a closed set
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A satisfies B C A and B closed implies B = A (up to II-null sets of course),
then A is a minimal closed set. An important fact is

(1.9) 0<f,feL(Il)and Pf>fonCimply Pf=fonC  ([7], page 15).

Hence if F is a closed subset of C we have, since C itself is closed (when not
void) that C \ F is also closed or void. Define now the class of invariant
probabilities absolutely continuous with respect to I by

(1.10) A, = {®: ® is a probability on &, ¢ < II, PP = ¢}.

If ® € .#, it has a Radon-Nikodym derivative ¢ with respect to II; we call ¢
the density of ®. The class of ¢ obtained in this way is the class of invariant
densities; it coincides with

(1.11) 9, = {¢eL1(n);<pP=<p,<pzo, Jedm = 1}.

From [7], page 46, we cite the important result

1 -1 )
_ . b i = j _
(1.12) #; = J < there exist A,, 1 E with 1'IlnnJ§0PIAm°° 0
for each m.

Furthermore ([7], page 45), if .#; + & then there exists a ® € .#; such that
¥ < @ for every V¥ € .#,. Though ® is not unique (unless .# = {®}), it is
clear that the set {¢ > 0}, with ¢ the density of ®, is uniquely determined; we
now define

(1.13) M = {¢ > 0}

with M := @ if .#, = &. Then M c C; see [7], Theorem E, page 45. (In the
case of a Markov chain with countable state space and constant transition
probabilities, C will be the set of recurrent states, M the set of positively
recurrent states.)

All the above definitions depend on the Markov chain 3. When it seems
necessary to indicate this dependence, we will write &(3), .#,(3), etc. Starting
with a Markov chain 3 as above, one sometimes wishes to look at a smaller
Markov chain obtained by a process of restriction. If &’ is a o-sub-ring of &
with the property that A € &’ implies P(-, A) is &’-measurable, then we may
consider 3’ = (E, &, P',II'), where II' =I1|& and P'f = Pf for fe L(II');
then for ¢ € L(IT'), P’ must be given by the conditional expectation
II{¢P|£&”}. The most common situation is &’ = &N F, where F is a closed set.
In that case we shall define 3 = (F,&N F, P,II) with the understanding
that IT is restricted to &N F and P is the corresponding P’. From (1.9) and
the succeeding remark, one sees that &(3.) [or &(2,,)] coincide with the class
of all closed subsets of C (or M) supplemented by the empty set.
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The Chacon-Ornstein ergodic theorem is given in a somewhat generalized
form in Revuz [15], Chapter 4. It states that for ¢, ¢ € L(I1) with ¢ > 0:

En _ Pm
(1.14) lim =m0

Zm=0"

exists and is finite IT-a.e. on {X5,_,¢P, > 0},

T _ YyP™ o
(115) L(‘I’,(p) = WZP"’ on(E N\ C) N {mz=0(me > 0},
a3 -
(1.16) L(l[t,(p) = W onCnN {mzzo(pp > 0}

if {l¢| > 0} < C, {¢ > 0} c C, where the expressions on the right side of (1.16)
denote the obvious conditional expectations. If the proviso in (1.16) is violated
the right side must be replaced by a more complicated expression; see [15].

Another important ergodic theorem gives us the following information: Let
® € 4, with density ¢, F = {¢ > 0}. For f e L(®),

n—-1

1
(1.17) lim ~ Y, P*f=®(fI€(3p)}, P-ae.andin L(P).
n k=0
This is a consequence of [7], Theorem A, page 80.

1.2. The work of Cogburn. In order to study the sample Markov chains
introduced earlier, it is natural to introduce a skew Markov chain with
constant transition probabilities on a bigger state space. This was done by
Nawrotzki [12, 13, 14], but not having observed the connection with Hopf
Markov chains, he was forced to obtain his results without the benefit of a
well-developed theory and had to impose stringent conditions: In his work O is
always countable and sometimes X is finite. In this section we therefore follow
Cogburn [3, 5]. We outline some of the concepts and results from [3, 5] with
minor variations and additions with a view to our applications in the subse-
quent sections. Of course, there are many results in Cogburn’s work which we
do not mention or give only partially.

Let E=XXQ,&=&X B, also & = &X B}. For F CE let

(F),={w€Q:(x,0) €F}, (F)°={xeX:(x,0)€F}.

Let « be counting measure on X, Il = k X 7 product measure on &. Next
P(z, F) is to be a transition probability kernel on E X &. It is determined by
requiring

P((x,w),{y} X B) = P(wy;%,y)I5(Tw), x,yeX, 0w, Be #.
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Then P is II-nonsingular, that is, II(F) = 0 implies P(z, F') = 0 for Il-a.e. z.
Now

(1.18) Pf(z) = jp(z, du) f(u)

will be a positive contraction on L (II): If f, = f, as elements of L (II), then
Pf, = Pf, in the same sense. Indeed,

3 = (E,&,P,1)
is a Hopf Markov chain. From (1.18) and (1.2) one obtains

P*f(x,w)
(1.19) =Y P(wy ** w,_1;%,%) f(y,T"), feL(Il),n>1.
Yy
oP™*(x,w)
(1.20) =Y o(3,T0)P(w_, - 0_1;9,%), ¢ e€Ly(ll),n=1.
Yy

The Markov chain moving on E according to P will be called the skew
product Markov chain. For each initial point (x, w) € E, there is then deter-
mined a measure P ,, on the product space E*+:== X?+Xx %+ Denoting by
X, or O, the nth coordinate function on X%+ or Q%+ respectively, our
Markov process is (X,,,0,), n = 0,1, ...). As usual the initial point x may be
replaced by an initial probability distribution ® on E giving us P,. Then P,
will be stationary if and only if ® = ®P. Denoting the marginal of P; on X%+
by Py, we have P, ,, = P?; see (1.1).

As mentioned earlier C can be thought of as the recurrent part of the
Markov chain. (See, however, [2] for another notion of recurrence and [2],
the example on page 911, for further insight.) From the definition of the
conservative set C, one obtains

(1.21) C= {(x,w): i Plo_, " w_1;%,x) = 00}.
k=1

Indeed, define x, = I,xq. By (1.20), P(w_, - w_3;%,%) = x, P*(y, 0) so
that by (1.6) for each x € X,

{(x,w)= Y xPH(x,0) = °°} cC
k=0
and also, since x,P%x,w) = 1,
{(x,w): Y x.P¥(x,0) < 00} cX\C
k=0
and (1.21) follows. See also [2], Theorem 4.1.
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There are simple conditions for .#, # &. In fact,

Let F be closed. Then
HA(2p) * D

(1.22) Lnet
. H{(x,w) € F:sup limsup—’; Y P¥wy - @y x,y) > O} > 0.
y n k=0

This is essentially [3], Theorem 3.1. The implication < follows easily from
(1.12); the implication = follows from (1.17) using this time P*(w, ‘- w,;
x,y) = Pry (x, 0).

To obtain a characterization of M, note first that if ® € .4, has density o,
then F = {¢ > 0} is closed and

1 -1
F),c{lim— Y P(wy - wy;x,x) > 0.
0 k
L O

To justify the inclusion, note that on applying the ergodic theorem (1.17) to
Xz = I(x)xﬂ’

1n-1
~ Y P(wg w32, %) > D(x,|E(3c)(2,0), Tl-ae. (z,0) €F
k=0

(since on F, I and ® are mutually absolutely continuous). Let A be the set
where ®(x,|&(2)) vanishes. Then

[( o 2@ @)m(da) = @((x} X (4),) = fA X, d® = [A {x1&(3c)}d = 0.

Since F = {¢ > 0}, (A), N (F), = &. This is the desired inclusion.
A characterization of M is given by

M= {(x,w): Y Plo_, " w_;x,x) =,
E=0

(1.23)
n—1
limsup— Y P(wg " w,;%,%) >0},
n Mi=o

To see this, denote the right side of (1.23) by M’. The first condition in the
definition of M’ just ensures (x, w) € C, according to (1.21), and as mentioned
after (1.13), M c C. Now the preceding paragraph shows M c M. If M'c M
fails, M’ intersects the closed set C \ M, and (1.22) shows .43 ;) # ;
but then there exists ® €.#, with ®(C \ M) = 1, and this contradicts the
definition of M. So (1.23) is established.

As in Cogburn [5] define

S(x,w,n) = {y: P(wy *** w,_1;%,5) > 0}, (x,0) €E,n=1,2,...,
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and

(x,0) © (y,0) ®0=0¢ and | [S(x,0,n) N S(y,w,n)] * 3.
n=1
The relation < is supposed to correspond to that of two states intercommuni-
cating in the theory of Markov chains with constant transition probabilities.
The relation < need not be transitive. However, it follows from [5], Lemma 3
and Proposition 1 (see also Remark 1.3.5 below) that

(1.24) © restricted to M X M is an equivalence relation.

For (x, w) € M, the corresponding equivalence class will be denoted by [x, w];
we emphasize [x, w] c M. (If (x,0) € M, [x,w] is not defined.) For every
equivalence class [x, w], there exists a unique equivalence class [x', Tw] such
that P(wg;y,[(x', Tw)D = I, ,(y,®) for (y,w) € M. We denote the class
[x',Tw] by S(x, w]). The map S is a bijection of the set of equivalence classes
onto itself. For F c M let [F] = U, ,yerl(x, wD. Then F € &N M implies
[F]1€ &N M is easily shown ([5], Section 2). Also there the following elegant
characterization of &(2,,) is obtained:

(1.25) &(3y) = {[F]: Fe &n M).

Hence a function on M is &,(3,,)-measurable if and only if it is &measurable
and assumes a constant value on each equivalence class [x, w]. For F € &,(2,/)
let A(w, F) equal the number of distinct < -equivalence classes contained in
(F)“. Then A(-, F) is #-measurable for F € &,(3,,); and for fixed w, A(w, *)
is a measure on &,(3,,). Let

A(F) = [Mo,F)m(dw), F e &(Sy).

On &,(3,), A and II are mutually absolutely continuous. Since S is a
bijection

(1.26) AP =A oné&(2y).

Recall that £(3;) € &,(3¢). For F € &(3,;,) one sees that when = is ergodic
Mw, F) = A(F) m-a.e. Suppose now that ® €.#, with density ¢ and that

F = {p > 0} is a minimal closed set. Then A(F) < » (use (1.17) with f= yx,
and P*y (y, w)P*x,(z, ) = 0 if [y, 0] # [2, »]) and one obtains

(1.27) ®=Ap on&y(3y),

where Ay is defined by

A(ANF)
ACF)

To see (1.27), note that for A € &(3,,), PI, = Iy, where necessarily B €

&,(2,). So as explained in Section 1.1 we can restrict 2, to the o-field

&,(3,1), obtaining a restricted process, say 2'. For this process F' is a minimal
closed set and Ap and ®|&(3,) both belong to .#(3%). Because F is

Ap(A) = A€ &(Sy).
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minimal, &(3%) is trivial and (1.27) follows from the ergodic theorem. Note
again that for our F,
(1.28) A(F) < .

Consider now any ® € .#;, with density ¢. Then ¢ = ¢P and by (1.20),
3, ¢(x, ) = 3 ¢(x, T 'w). Hence
(1.29) 2.¢(x,0) =1 for ¢ € Z,,if = is ergodic.

If 7 is ergodic and F is closed, w(U,(F),) = 1. It follows now from (1.27) that
if o € 9, F = {¢p > 0} is a minimal closed set and 7 is ergodic, then

(1.30) Y  o(y,0)=(A(F))"' mae.onF.
y:ly, ol=[x, 0]
We note next the surprising fact, [3], Proposition 2.1, and [13], Theorem 2,
that

(1.31) ¢ is &,}-measurable whenever ¢ € Z;;

the key to the proof is (1.20).

Returning to our coordinate variables (X,,), let o(X,: £ > n) be the o-field
generated by {X,: £ > n} and let = N5 _,0(X,: k > n) be the tail o-field.
For a closed set F € &, say that the zero—one property holds on F if for Il-a.e.
(x,w) € F, P, , restricted to  assumes only the values 0 and 1. In [3]
various necessary and sufficient conditions for the zero-one property are
derived. In particular ([3], Corollary 3), if .#, + &, then

(1.32) the zero—one property holds on M.

Let .#(X) denote the set of all probability measures on X, topologized as a
subset of .#Z(X), the Banach space of all signed measures on X with finite

total variation, using the total variation, denoted by | - ||, as the norm. For
a,B €.#4(X)let

(1.33) 8.(a, B, 0) = l(a = B)P(wy *++ @, 1)l

and define

(1.34) é8(a,B,w) = lir{nﬁn(a,B,w).

Using (1.24), one can obtain a useful reformulation of (1.32). Consider ¢ € 9,
and suppose F = {¢ > 0} is a minimal closed set. Define

(135) qo[x,a)](y) = A(F)¢(y’w)1[x,w](y’w)7 (x’w) EM,.')’EX
Then
(1.36) ¢, , €#(X) forll-ae.(x,w) € F,provided = is ergodic,

by (1.29) and (1.30). The reformulation of (1.32) ([5], Corollary 5) now be-
comes: Let ¢ € 9, with F := {¢ > 0} a minimal closed set; then
Ip(x,w)d(ey, pr,0p@) =0 ae.

(1.37)
if [x,w]=][y, ], provided 7 is ergodic,
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where ¢, is the unit mass at y. Note also, following Cogburn ([5], proof of
Theorem 5), that regardless of whether = is ergodic, for m-a.e. w and all x,y
such that (y, w) and (x, T ") belong to M,

Z ‘P[y,w](z)P(wO T wn—l;z’x)
z

(1.38) _ {A(F)qo(x,an), P(a)o - a,n_l;z,[x,T"w]) >0,

0, otherwise.

1.3. Open problems and remarks. We present some problems and remarks
related directly to the material of the previous section.

ProBLEM 1.3.1. Find conditions for the existence of a o-finite measure ®
on (E, &) with ® < Il and ® = ®P.

ReEMARK 1.3.2. The corresponding problem for general Hopf Markov chains
is studied by Foguel ([7], Chapter 6). At present no nice conditions applying
specifically to the chains 3 discussed in Section 1.2 are known. In the
nonrandom case (i.e., countable state space Markov chains with constant
transition probabilities) C # & is according to Derman’s theorem a sufficient
condition ([1], Theorems 7 and 8).

ProBLEM 1.3.3. When does the zero—one property hold on C?

REMARK 1.3.4. In the nonrandom case the answer is: always; see, for
example, [8], Section 1.13. Presently no counterexamples are known in the
general situation, nor are any nontrivial sufficient conditions known. Even
under the assumption that the underlying coordinate process (0,) is a two-state
Bernoulli process the problem is open.

ReMARK 1.3.5. In [5] a stronger result than (1.24) is proved. With &,
representing the unit mass at x, let C; = {(x, w) € C: 8(¢,, ¢,, T"w) < 2 when-
ever ¥,z € S(x,w,n), n>1}. Then C, is closed, M cC, and < is an
equivalence relation on C, X C;,.

ProBLEM 1.3.6. When does C; = C?

REMARK 1.3.7. As can be seen from the preceding discussion and our
subsequent results, that part of the ergodic theory of Markov chains with
constant transition probabilities dealing with positive recurrence by and large
extends nicely to the present situation. Just the opposite is the case for the
null recurrent theory: appropriate generalizations are not known, nor are
counterexamples.
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2. Minimal closed sets. Closed and minimal closed sets were defined in
Section 1.1 for the general Hopf Markov chains. One cannot expect that closed
sets always contain minimal closed sets. For a simple example consider the
closed unit disk in R2, with Lebesgue measure, and the measure preserving
transformation which sends re® into re’®*®), with « an irrational multiple of
7. In an obvious way (see [7], (c), page 6) such a transformation may be
considered as a Hopf Markov chain. In this example there are many closed
sets, for example, any annulus centered at the origin. However, the only
candidate for minimal closed sets are circles of radius r, 0 < r < 1, and center
at the origin, and these are null sets; so there are no minimal closed sets. Note
that in this example X = M.

We now discuss the existence of minimal closed sets for the systems 3,
introduced in Section 2.1. To avoid the kind of counterexample of the previous
paragraph, it is reasonable to assume that 7 is ergodic. Then for any closed set
F, U,m(F), = 1, and using this Cogburn ([3], Proposition 2.3) proved that if F
is closed and II(F) < «, then F will contain a minimal closed set.

The main result of this section is that if 7 is ergodic, then every closed
subset of M contains a minimal closed subset. This gives immediately
(Corollary 2.2) an ergodic decomposition for elements of .Z;.

For ® € .#,, F any closed set with ®(F) > 0, define ® by

1
(2.1) e(4) = Gy ®F N A).

Clearly &5 € #,. If F is a minimal closed set, ® is ergodic in the sense that
it assigns measure 0 or 1 to each element of &(Z,,).

THEOREM 2.1. Assume 7 is ergodic. Then every closed subset of M contains
a minimal closed subset.

Proor. Put &' = &(3;,). What must be shown is that every ® € .4 is
atomic on &”’. So let ® € .#, with density ¢. Then

(2.2) 0<o¢(z,w) <1

follows from (1.29). Let F be closed, ®(F) > 0. Then @ defined in (2.1) has a
density ¢ given by

<P'IF

(2.3) Pr = ®(F)

and applying (2.2) to this density, we have
(24) O(F) = ¢p(2,0)Ip(2, ).

We wish to show that ® is atomic on &”. One easily sees that if that is not the
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case there is an element of .#; which is nonatomic (i.e., it has no atoms) on
&”'. So we assume now (in order to obtain a contradiction) that ® is nonatomic
on &”.

Since ® is nonatomic on & it is possible, for each positive integer n, to
partition M into {F;,, 1 <i < n}sothat F, € & and ®(F,)=n"',1<i<n.
By (2.4), ¢ < n~! ®-a.e. Hence ¢ = 0 ®-a.e., and this is impossible. O

COROLLARY 2.2. Assume 7 is ergodic. Then for each ® € .4,
P =) O(F)Pp,

where the sum extends over all minimal closed sets F with ®(F) > 0; the ®p
are ergodic.

Proor. Follows immediately from Theorem 2.1. O

ProBLEM 2.3. Do closed subsets of C always contain minimal closed
subsets?

REMARK 2.4. In the nonrandom case, C decomposes into minimal closed
sets; these are just the recurrent classes ([1], Chapter 1).

3. X and X*. Instead of beginning with the bilateral sequence space
introduced in Section 1, one can begin with Q(*) = @%+, where Z, is the set of
nonnegative integers and proceed to the corresponding skew product Markov
chain moving on E" := X x Q(*), giving rise to a Hopf Markov chain 3", ¥
and 3(* each have their own advantages, and it is useful to consider both, and
the relations between them.

In place of (") we will study an isomorphic Hopf Markov chain 3*, which
we now specify. Starting with 3 as defined in Section 1.2, 3* is obtained by
restricting to the o-field &*:= &;. Note that if A € &%, P(-, A) is &*-mea-
surable, so the restriction is legitimate. We write "= (E, &*, P*,I1*), where
M*=T1|&* and P* is the restriction of P to L,(II*). Observe that if ¢ is a
& *-measurable function, then y(x, w) depends on w only through «*, where
™ is the restriction of w to Z,, and we will write ¢(x, w) = ¢(x, ®™).

We turn to the formulas corresponding to (1.19) and (1.20). Choosing
f € L(I1*) and replacing P" by (P*)" on the left side of (1.19), the right side
requires no change. Now consider the analogue of (1.20) with n» = 1. For
¢ € L,(I1*) one finds now from (1.2) that

(3.1) YP*(x,0%) = ¥ [0(y,007)P(8;y,x)mo(dblw*),
y
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where 8w ™= (0, ®,, w;,...) and
To(dblo™) = 7+ {0, € d6l(0,,0,,...) = (o, 0f,...)]}.

If one does not want to assume the existence of this conditional probability
distribution, the right side of (3.1) can be rewritten as a conditional expecta-
tion.

Most results about 3 reported in Section 1.2 carry over to 3*;
some evidently have no analogue, for example, (1.31). Since (1.23) also holds
for 35, #(3) + @ if and only if #(3) + O. If ® € #(3), then ®* defined
by

(3.2) D= P|E+

will belong to .#;(27); if furthermore ® has density ¢, the density of ®* will
be given by

(3.3) ot=M{ple"}.
Since the right member of (3.3) also equals eI+ ¢|&*}, one obtains
(34) {¢ >0} c{e*>0}.

Frequently the inclusion in (3.4) is strict, and then knowing that something
holds [e.g., the existence of the limit in (1.17)] ®*-a.e. is better than just
knowing it holds ®-a.e. In particular, when .#,(3%) # &, .#/(3*) will contain
a probability with density having maximal support, as guaranteed by (1.13).
We will write M*= M(3*), and continue to write M for M(3). By (3.4) then
McM*. If ® €.#, has density ¢ with {¢ >0} =M and F is any closed
subset of M, then ¢y :=(®(F)) 'pI; belongs to Z,, and by (1.81), F is
&~ l-measurable. That is,

(3.5) F is & }-measurable if F c M, F closed;

of course, we do not distinguish between sets differing by IT-null sets.
Under the assumption that ® is countable, the following theorem was
proved by Nawrotzki [12, 13, 14].

THEOREM 3.1. The restriction map taking ® € .#(3) into d*e .#4(3*) is
a bijection #(3) — H(3).

Proor. 1. Let ®; € #(3), j=1,2, and suppose ®;= ®;. It must be
shown that ®, = ®,. Let the density of ®; be ¢;, j =1,2. By assumption
@1 = ¢4, so that for any bounded & *-measurable function f,

(36) L [eux,0)f(x,0)m(dw) = L [ga(%,0) f(x,0)m(dw).
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For such an f and any positive integer n, we claim

z e, 0) f(x, T"0)m(dw)
-z Jer(x, T"w) f(x, 0)m(dw)
= L [(eP")(x.T"0) f(x, @)m(dw)
(3.7) - L oy @) Plag *+ 0,157, %) f(x,0)m(do)
= £ [on )£ Py -+ 0, 153,) (3 0) J(de)
- £ feal o) E Ploo - 0rsi3.3) F(3 ) ()

= L [eux,0) f(x, T "0)m(dw),

where the second equality comes from ¢, € ,, the third equality follows from
(1.20) and the fifth equality is (3.6) applied to the expression in parentheses in
place of f; finally the sixth equality comes from the equality of the first and
fifth members by replacing ¢; by ¢,. It follows now that (3.6) holds for any
bounded &, ,-measurable f and hence, since n is arbitrary, also for any
bounded &measurable f. This shows that ¢; = ¢,. Thus the restriction map
is injective.

2. Let ® € .#,(3) be ergodic, with density ¢. We will show ®* is ergodic. By
assumption {¢ > 0} is a minimal closed set, and it must be shown that the
closed set F :={p*> 0} is also minimal closed in 3*. Suppose otherwise:
F = F, UF, with F, and F, disjoint, closed sets in &*. Then F; N {¢ > 0} is
either a null set or a closed subset of {¢ > 0}, j = 1,2. Since {¢ > 0} is
minimal closed, the first alternative must hold for j = 1 or j = 2. Say F, N
{¢ > 0} = &. Then [I{I5¢|&*} = Iy ¢*= 0 a.e., contradicting the choice of F.

3. By paragraph 2 the ergodic elements of .#,(3) map into ergodic elements
of .#,(3"), and using the ergodic decomposition of Corollary 2.2, it follows that
to conclude that the restriction map is surjective it only remains to show that
{(pp)™> 0} = M, that is, F .= M*\{(¢,)*> 0} = &. Suppose F # J; then
F is a closed subset of M*, F € &% and there will exist ¥ € .#(3") with
W(F) = 1. From this one obtains, by applying the ergodic theorem,

n-1
II{(x,w) € F: sup limsup— ), P*¥(wy ' " w,;%,5) >0} >0
y n o M=o
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and so, by (1.23), #(3;) # &. Hence F N M +# &, so that ¢, I, does not
vanish a.e., which contradicts the assumption that (¢,,)* vanishes a.e. on F.
O

CoroLLARY 3.2. The ergodic decomposition in Corollary 2.2 holds for
e L (ZH).

Proor. Use Corollary 2.2 and Theorem 3.1. O

We follow Nawrotzki [14], Theorem 5, and now apply Theorem 3.1 to the
case that the coordinate random variables (®,) are independent under 7. For
¢ € Ly(7) define @(y) = [¢(y, w)m(dw); also set P(x,y) = [P(w,; %, y)m(dw)
and 9, = {y € #(X): y = yP}.

THEOREM 3.3. Assume the (®,) are independent. Then the densities D(3,*)
are nonrandom (i.e., they do not depend on ) and I,(3*) = 9.

Proor. Let ¢ € Z,(3). Then by (1.20),

(3.8) e(x,0) =Y o(y, T 'w)P(w_y;y,%).
y

According to (1.31), ¢ is &~ 1-measurable, so the two factors inside the sum on
the right are independent. Integrating, one obtains

(3.9) #(x) = L 8(y)P(,%).
y

Since ¢ belongs to F(2), ¢*:= [I{p|&*} belongs to Z,(3+), and again using
that ¢ is &7 !-measurable and that = is product measure, one sees that
¢ "= @. By Theorem 3.1 every element of Z,(37) is of the form ¢* for some ¢
in 9(2). So 2(3*) C 9, has been established. '

Now assume ¢ € Z,. Then ¢ € L(II*) and ¢ does not depend on w. Using
(3.1) and the fact that 7 is product measure, one obtains yP*(x, w*) = yP(x)
and by assumption ¢ P = . This proves 9.c 92,3%. O

COROLLARY 3.4. Assume the (®,) are independent. If F and G are disjoint
closed subsets of M, then for every x € X either (F), = @, or (@), = @.

ProoF. If the corollary is false there must exist disjoint minimal closed
subsets F and G of M and x € X with (F), # &, (@), # @. Then there will
exist ® and ¥ in .#; with densities ¢ and ¢ satisfying F = {p > 0}, G =
{¢ > 0}. It follows from Theorem 3.1 that ®* and ¥* must be distinct ergodic
members of #£(%") and hence {¢*> 0} N {y*> 0} = &. By Theorem 3.2,
¢"=9 and ¢*=¢ and so H(x)¢y(x) = 0. On the other hand (F), # @ and
(@), # & imply @(x) > 0, ¢(x) > 0. This contradiction proves the corollary. O
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4. A weak convergence theorem. In [5] Cogburn investigates
n—1

lim_ Z I(O’I](P(a)o ct wk;y, x)),
n Mo

showing in [5], Theorem 5, that if ® € .#; and ® is ergodic and x € X, then
the limit exists ®-a.e. and giving the value of the limit. We will obtain this
result again in Corollary 4.2. Theorem 4.1 is the main result of this section; it
was found in the process of trying to get a better understanding of Cogburn’s
result.

A vector (P(x)), < x will be denoted simply by P(-). Note that

P(wO T Wph_152%, ') E'/(X)'
For (y, w) € E and N a positive integer define:

m* is the probability on .#(X) assigning mass 1/N
to Pwg " w,_1;5 *)y,n=1,...,N.

In Theorem 4.1 it is shown that if 7 is ergodic and ® € .#; is ergodic, then
there exists a probability m on .#(X) with m‘;\”,’ “) converging to m weakly as
N - « for ®-a.e. (y, ), and m is given explicitly.

If 7 is ergodic and .#; # &, the assumption that we are dealing with an
ergodic element of .#; is not an essential restriction, in view of Corollary 2.2.
On the other hand, if 7 is not ergodic, and if it is assumed that there exists an
ergodic ® € .#, with density ¢ and F = {¢ > 0}, then = restricted to U (F),
would be an ergodic measure with total mass less than 1. So to avoid
introducing and carrying along another constant, one may as well assume that
o is ergodic.

So we assume now that = is ergodic, ® is ergodic, ¢, F as above. Then
(1.36) applies. Relation (1.38) can be written

Z ‘P[y,w](z)P(“’o @, 132,7) = A(F)‘P("Tn"’)Is"[y,w]("Tn“’)

and this holds for m-a.e. @ and all y such that [y, ] € M; the dot signifies that
this is a vector equality, that is, if the dot is replaced by x the two sides are to
be equal for all x € X. Let

B(y,x,n) = {w: (x,0) €M, (y, T "w) €M, S"[y, T "0] = [x,0]}.
The preceding equality becomes
(42) X op,u(2)P(w =+ 0,_1;2,°) = A(F)o(+, T"0)Igg, (T "0).

Recall the Markov chain ((X,,,0,), n =0,1,.. ‘.) introduced near the begin-
ning of Section 1.2. Of course,

(4.3) P(y,w)[(')n =T"w,n=0,1,...] =1, (y,w) €E.
Let

(4.1)

A(x) = {(z,0) EM: (2,0) © (x,0),(x,0) € C}.
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Then
(4.4) Py,wl[(X,,0,) €A()] = [0, €B(y,-,n)]] = 1,
| (y,0)eM,n > 0.

Relations (4.2), (4.3) and (4.4) give
(4.5) X ¢pyu(2)P(wy *+ 0,_152,°) = A(F)o(+,0,)1,(X,,0,)

with P, ,-probability 1, for (y, w) € M.
Note that
(4.6) A(F)e(x, 0) I, (y, 0) = @, 0 (%)

and by (1.36), ¢, ,(*) € #(x) if (y, w) € F. Now let g: .#(X) — R be bounded
and measurable. Then

1 N-1
lim = ¥ 2(ex, 0,(") = [8(¢1,0())P(d(z X @)
n=0
(4.7)
= [&(¢p.of())AR(d(z X 0)),  Pyae.,

where the first equality comes from Birkhoff’s ergodic theorem, and since the
integrand in the middle member is %,-measurable, the second equality holds
by (1.27). Since the equations in (4.7) hold Py-a.e., they also hold P, .y-a.e. for

®-a.e. (y, w). Combining (4.7) with (4.5) and (4.6), one obtains: For ®-a.e.
(5, w),

1 N
h}{JnTV— Z g(Z ¢[3r,w](z)P(‘"0 T Wg_15 2, ))
(4.8) nelo s

= [g(v)m(dv), P, ae,
where the probability m on .#(X) is defined by
(4.9) m(dv) = Ap{(z,®): ¢, . (") € dv}.

If one now makes the additional assumption about g that it is continuous in
the total variation norm, it follows from (1.37) and (4.8) that

1 N
(4.10) h}{lnﬁnglg(P(wo cw,3y,0)) = [gdm,  Pae. (y,0).
This proves the following result.
THEOREM 4.1. Let m be ergodic and also ® € .#; be ergodic with density

¢, F={¢ >0} Then as N —» », mQ> - m weakly for ®-a.e. (y, w), where
mQ:«) and m are defined in (4.1) and (4.9), respectively.
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REMARK 4.2. As usual in the theory of weak convergence, it suffices for the
validity of (4.10) that g is bounded and m{v: g is discontinuous at v} = 0.

The measure m is the distribution under Ay of the .#(X)-valued random
variable defined on E with value ¢, , () at (2, »).

If, say, g depends only on v(x) and v(z) where x,z2€ X and x =2z is
allowed, so that g(v) = g,(v(x),v(2)), the right side of (4.10) reduces to
/8o dm™?, where m*™? is a probability on [0,11%, m**(U) = A {(y, w):
(€1, wi(%); @1y, ,((2)) € U} and the proviso in Remark 4.2 becomes m™*(s, t): g,
is discontinuous at (s, ¢)} = 0.

COROLLARY 4.3. Assume m is ergodic, ® € .#; is ergodic with density ¢,
F:={p > 0}. For (s,t) €[0,15%, x € X,

N-ox
(4.11)

1 N
lim N Z I(s,l](P(wO Wh_13Y, x))I(t,l](P(wO T Wa_15), 2))
n=1

Yo m{w € (F), N (F),: (x,0) o (z,0),
A(F)o(x,w) € [s,1], A(F)o(z,w) € (¢,1)}

for ®-a.e. (y, ), provided m{w: A(F)o(x, w) = s} = m{w: A(F)e(z, w) =t} =
0. In any case, for ®-a.e. (y, ),

1 N
z\lrim ‘ﬁ Z I(o,u(P(“’o T W,_15), w))I(o,u(P(“’o wn—l;yaz))
—® n=1

(4.12)

=A@ € ()0 (F)i(5,0) © (z,0)).

Proor. Assertion (4.11) follows from Theorem 4.1 and Remark 4.2 by
choosing g(v) = g, (v(x), v(2)) with g, , = I, ;)I, ;. Assertion (4.12) would be
a special case of (4.11), but now no proviso is imposed. Applying (4.11) with a
sequence of (s, ¢) satisfying the proviso and converging to (0, 0), one obtains
(4.12) with liminf in place of lim and > in place of =. For the opposite
inequality use (4.8) with g, , in place of g, and note that the resulting sum in
(4.8) majorizes the sum in (4.12). O

REMARK 4.4. Since the measures m%“ introduced in (4.1) depend on
only through the future and present, it seems curious that the limiting
measure m of (4.9) is defined in terms of ¢ € ,, which according to (1.31)
depend on the past.

5. Asymptotic behavior of P(w_, ** w_;;x,y). In the theory of
Markov chains with constant transition probabilities, one can do much better
than (1.17). The Cesaro convergence can be replaced by convergence, except
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that in the presence of periodicity one must go to « along An, n =0,1,...,
where A is the period; see, for example, [1], Chapter 1.6. There is no hope of
such an improvement in (1.25); but as will be shown the situation is much
better for products P(w_, ' w_y;x,¥).

Assume ¢ € .#, with density ¢. Information about Cesaro convergence
comes directly from the Chacon-Ornstein theorem (1.14)-(1.16). Again let
Xy = Iiyyxq- Using (1.20), one obtains then

o roix, PH(x, 0) e TrP(w_, - w_139, %)
(5.1) n LZiZieP*(x,w) n ne(x,w)
=L(x,, ¢)(x, ), IT-a.e. on {¢ > 0}.

Assume furthermore that {¢ > 0} = M. It follows from Theorem 2.1 that M
can be partitioned into minimal closed sets F;, 0 <j < p, where 1 <p <.
Let ¢, be the element in ; with {¢; > 0} = F;, 0 <j < p. Now define

¢*(x,0) = ¢;(x,0) and F*(x,w)=F,
(5.2)
(x,0) €F;,0<j<p.

If X = C the identification (1.16) may be used. One then obtains

n—1

(5.3) li’xln;kglp(w_k L @_g3Y,%) = ¢*(w,x)w((F*(x,w))y),

IM-ae. (x,0) EM,yeX,if X=_C.

The last relation is similar to [5], Theorem 5.2, where however the hypothesis
X = C should be added.

ProBLEM 5.1. How does one obtain from the knowledge of (P(w,), —» <
k < —1) the value of p and the values ¢;(x,w), 0 <j <p, x € X? More
refined problems involve estimating these values from a knowledge of (P(w),),
-n<kx< -1

REMARK 5.2. The results of this section have some bearing on this prob-
lem, but do not solve it. For example, (5.3) is unsatisfactory because it assumes
X = C and because of the presence of the factors w((F*(x, w)),). When X is
finite Theorem 5.9 provides a lot of information but still does not quite solve
the problem.

The Cesaro convergence guaranteed by (5.1) will now be strengthened.

THEOREM 5.3. Suppose w is ergodic, X = M, #; = {®}, A(M) = 1; let ¢ be
the density of ®. For a € #(X),
n—1

1
lim— ) llaP(o_; - o_1) —¢(*,@)=0, ma.e.
n o
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Proor. Let a € .#(X). The hypotheses of the theorem and (1.37) imply

(5.4) 8(a,o(r,w),w) =0, mT-a.e.
Let £ > 0. By Birkhoff’s ergodic theorem and (5.4), there exists N, such that
n—1
lim — Y 8y(a, (-, T *w), T w)
L O )

- f‘sN(“W("w),w)W(dw) <e, N=N,.

In the first member replace 8, in the £2th summand by §,,0 <% <n — 1. For
k > N this causes the term to decrease or remain the same. Hence

n—1

limsup — Y. 8y(a, o(:, T %), T *w) <&
n M=o

and so in fact
n—1

1
(5.5) lim; Y Su(a, o(+, T *0), T *w) = 0.
r k=0

The left side of (5.5) agrees with the first member of (5.6) below, and
remembering ¢ € 9, and (1.20) one obtains

. 1n-1 X
lim— Y llaP(w_, - 0_1) = (", T *0) P(w_ =+ o_y)l
n n,_o
(5.6) _—
=lim— ) llaP(w_;, *** w_;) — ¢(*, )l =0. o
n n,_o

An immediate consequence is the following corollary.

CoROLLARY 5.4. Under the hypotheses of Theorem 5.3,

1 -1
(5.7) —~ Y IP(w, - w_135,%) —o(x,0) >0 7a.e w,x,ycX.
k=0

For a,B € #(X), §,(a, B,w) is nonincreasing in n; hence 8§%(w):=
sup(d,(a, B, w): a, B € #(X)} is also nonincreasing and §*(w) = lim, §*(w)
exists.

THEOREM 5.5. Suppose w is ergodic, X = M, #; = {®}, A(M) =1 and
8* = 0 m-a.e. Let ¢ be the density of ®. Then

(5.8) lirrlnllaP(w_n rw_y) —e(,e)ll=0, ac(X).

ProoF. It must be shown that in the proof of Theorem 5.3 the Cesaro
convergence in (5.5) can be replaced by ordinary convergence. To see this, note
5, (a, (-, T "w), T "w) < §(T""w). Now §%(T "w) is nonincreasing in n, so
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has a limit §,(w). Since 8% and &F - T~" have the same distribution under =
and 6* = 0 w-a.e. by assumption, it follows that §, = 0 m-a.e. O

ReMARK 5.6. If X is finite (in which case the hypothesis * = 0 is redun-
dant), Theorem 5.5 is known; see Nawrotzki [14], Section 6, and Cogburn [4],
Theorem 6. If X is finite and the (0,) are independent, a closely related result
was established by Takahaski ([16], Theorem 5). A number of other related
results appear in Nawrotzki ([14], Section 6).

ProBLEM 5.7. How can one weaken the hypothesis 6* = 0 in Theorem 5.5?
(In this connection the discussion in Nawrotzki ([14], Section 6), is again
relevant.)

REMARK 5.8. Condition (5.7) is known to imply that P(w_, * - w_g;
¥, %) = o(x,w) as k — », avoiding a subset K (w) of density 0; see the
discussion in [9], page 38.

One more result will be stated, without proof, for the case X is finite. The
proof is easily assembled from the basic results of Cogburn outlined in Section
1.2. Supplement definition (5.2) by

(5.9) é(x,w) = A(F*(x,0))e*(x,w), (x,0) €M.

THEOREM 5.9. Let X be finite. Then M = C #+ &. If furthermore m is
ergodic, then for m-a.e. w and all € > 0 there exists n* such that

Pw_, "+ o_1;¥,%) — ¢,(0,y,x) <&, n>n*x,yeX,

where
(%, ) (¥, T"w)eC, 8"y, T "0]=[x,0],
b (y’ T—nw) E C’ Sn[y’ T—nw] # [x’w]’
, (x,0) & C,

and no assertion is made when ¢, is not defined.

7]
‘pn(w’y’x) = 0
0
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