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STRONG LIMIT THEOREMS OF EMPIRICAL FUNCTIONALS
FOR LARGE EXCEEDANCES OF PARTIAL SUMS OF LI1.D.
VARIABLES'

By AMIR DEMBO AND SAMUEL KARLIN

Stanford University

Let (X, U;) be pairs of i.i.d. bounded real-valued random variables (X;
and U; are generally mutually dependent). Assume E[X;] < 0 and Pr{X; >
0} > 0. For the (rare) partial sum segments where L!_,X; - », strong
limit laws are derived for the sums ©}_,U.. In particular a strong law for
the length (I — k& + 1) and the empirical distribution of U; in the event of
large segmental sums of ¥ X; are obtained. Applications are given in
characterizing the composition of high scoring segments in letter sequences
and for evaluating statistical hypotheses of sudden change points in engi-
neering systems.

1. Introduction. The following problems are of interest in connection
with molecular (DNA and protein) sequence comparisons [see Section 4, Karlin
and Altschul (1990) and Karlin, Dembo and Kawabata (1990)] and motivated
the developments of Theorems 1 and 2. The results can also be used in
ascertaining the asymptotic maximal waiting time distribution for the general
one server queue system GI/G/1 and in characterizing the biases of interar-
rival and service times over the busy period of the maximal waiting time.
Other applications relate to insurance risk models and traffic flow.

In the simplest model the sequence

(1) X, X,,..., X

nye-*-*

are i.i.d. random variables based on observations from a finite alphabet {a,}],
where

Pr{X=si} =D, i=1’2"-"r’ pi>0’ Zpi=1’

is interpreted in the manner that sampling the letter a; yields a score s; (see
Section 2 for our general formulation). Let {S,,}7, S, = 0, be the partial sum
process subtended from (1). We assume

(2) E[X]<0

and also Pr{X > 0} > 0 so that {S,} entails a negative drift but positive
probability of attaining early a positive score. The quantity

(3) M(n)= sup (S;-S,)

O<k<l<n
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1738 A. DEMBO AND S. KARLIN

corresponds to a segment of the sequence {S,,}§ with maximal score. Recent
studies of the random variables M(n) in various contexts occur in Deheuvels
and Devroye (1987), Rootzén (1988), Iglehart (1972), Siegmund (1988) and
Karlin, Dembo and Kawabata (1990). It is convenient to characterize M(n)
through successive excursions of positive values as follows: For the sample
path X, X,,..., we define

(4) K, = mkin{kz 1, S, <0}

and sequentially the stopping times

(5)
Ko=0, K,-min{k>K, ;+1,8,-Sg <0}, wv=12....

By virtue of the negative drift of {S,}, these random variables are finite-val-
ued. Fluctuation theory for sums of i.i.d. variables affirms that K; — K;_, are
ii.d. positive-valued integer random variables having a distribution function
with tails of at least exponential decay.

The time frame K, ; + 1 to K, designates the vth excursion epoch encom-
passing the vth segment of the process {S,,} starting from zero until hitting a
nonpositive level.

For each y > 0, it is useful to define the stopping time

6 T(y) =min{m:0<8S,<y,k=1,...,.m—1
(6) and either S,, > y or S,, < 0},
indicating the elapsed time until the first departure of {S,} from the open
interval (0, y).

The realizations in (6) are of two kinds:

I(y) =10r0if0 < S, <y,0 <k < Ty(y) and

Sty 2 ¥ or Sg,y < 0, respectively.

(7

Starting fresh in each excursion, we define [cf. (5)] successively
T,.(y) = min{m: m > K, and either S,, — Sg,<0o0r S, — Sk > y}.

Let I(y) =1 when Sr,— Sg _ >y and I,(y) = 0 otherwise and L,(y) be
the length of the vth segment, namely L,(y) = T.(y) — K,_,, so M(n) > y iff
I(y) =1 and T,(y) <n for some v =1,2,.... We prove the following limit
theorem.

THEOREM 1. Under the assumptions and notation above, let T.(y) be the
first time in the above succession where I (y) = 1. Then
Ly 1

€)) 5 o5 @.s.a5y >,

w* = E[ Xe® X], where 6* is the unique positive root of the equation E[e*X] = 1
(see Lemma 1 where w* > 0 is proved).
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Let {U;} be a sequence of bounded i.i.d. random variables; U, may depend on
X;, but is independent of X, j # i. We form W,, = L2 ,U; and let

A
(9) W) =W~ Wi, m(y) = LV8; .

THEOREM 2. Excluding a set of measure zero with the index v determined
as in Theorem 1, then

W,(y)
L,(y)

(10) - u* a.s.asy—>

where u* = E[Ue® X].

We generally omit the index » when referring to » determined as in
Theorem 1. The following application of Theorem 2 is important. Define
U= U(X)=1if X = s, and 0 otherwise. In this case the variable W(y)/L(y)
counts the proportion of occurrences of the letter a; during an excursion
confined strictly to positive values over a time segment achieving a level
beyond y, y — o, that is, conditioned on the sample realization I(y) = 1.

CoRrROLLARY 1. The empirical frequency distribution u(y) of the letters
{ay,...,a,} observed during the vth excursion epoch, v defined in Theorems 1
and 2, converges (as y — ») with probability 1 to the frequency measure p*
which takes the value a; with probability q, = p,e®*,i=1,2,...,r.

For X nondiscrete-valued but of bounded range, let U(X) =1if X A(A a
Borel set of the real line) and zero otherwise, then u(y) — E[e®* XI,(X)], I(-)
the indicator function of A.

As a simple consequence, we can calculate the following random size ballot
count probability. Consider two contestants, I and II, cumulating votes as-
signed to I versus II with probability p and g, respectively, p + ¢ = 1, ¢ > p.
We inquire, assuming I strictly leads II throughout the count, as to the
probability of the proportion of votes I received until the vote gap between I
and II first attains a level y. By identifying

X, - {1, prob. p,

-1, prob.gq, (a>p),

we ascertain that the limiting conditioned ballot count probability (as y — «)
of this event converges to g.

For the variable M(n) defined in (3), let L(M(n)) be the duration of the
excursion until first reaching the level M(n) before returning to a nonpositive
value. The strong law 6*M(n)/log n — 1 a.s. is proved, for example, in Karlin
and Dembo (1992). It follows from Theorems 1 and 2 that

6*L(M(n)) 1
-

(11) TTlogn  wF AvEro where w* = E[ Xe® X],
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and the frequency distribution of scores during the maximal excursion interval
converges to

(12) n(M(n)) — u*,

where u* takes value a; with probability p;e®"*: (or more generally, u*(A) =
E[e® X (X)D.

Note that L(M(n)) differs from the longest positive excursion of the partial
sum process. For example, the latter when divided by log n approaches a
constant exceeding 1/6* w* [see Deheuvels and Steinebach (1989), Theorem 6].

The proofs of Theorems 1 and 2 rely on properties of the Wald martingale
family

08,

(13) Pn(o) = T N ¢(0) =E[eGX],

[6(6)]
coupled with information from renewal processes and fluctuation theory for
sums of independent random variables. Extensions of the results to the case
where {X,} are generated as Markov-dependent are presented in the compan-
ion paper [Dembo and Karlin (1991)].

A conditional central limit theorem applicable to the variable

W(y) —u*L(y)
(19 Vo)

and other limit laws will be discussed elsewhere.

Various applications of Theorems 1 and 2 are presented in Section 4
describing the segment composition for periodic score patterns, matching
among multiple letter sequences and connections with likelihood ratio tests for
detecting a change of measure.

conditioned on I(y) =1 [see (7)]

2. Formulation and preliminaries. Let {X,} be real i.i.d. random vari-
ables with bounded range |X,| < K (we shall drop the subscript writing X for
X, whenever possible), negative expectation, E[X] < 0, and positive with
nonzero probability, Pr{X > 0} > 0.

Let {U,} be another sequence of random variables with bounded range such
that {X,, U,} are jointly i.i.d. pairs but typically U, depends on X,. Denote

m
(15) Sm = E Xk
k=1
with S, = 0 and define the sequence of stopping times
KO = 0,
1
(16) K,,=min{k:k>K,,_1,Sk—SK”_ISO}, v=12,....
The stopping times K, delineate a sequence of epochs with largest attained
height in the vth epoch given by
%)) Q, =sup(S, - S, _,K,_ ,<k<K).
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For y > 0, let for v = 1,2,...,

T,(y) = inf{k: & > K,_, such that either S, — S, _ <0

18
(18) or S, — Sg,_, =y holds},

so that T,(y) is the first exit time of S, — Sy _, k> K, _,, from the range
0,y). T(y) < K, iff @, > y in which case we indicate this event by

(19) IL(y) =1

and refer to the epoch (K,_,,T,)) as a y-excursion (y is positive throughout
this paper). Otherwise the realization is designated by I,(y) = 0. We shall
investigate the distribution of

T.(y)
(20) L(y)=T(y)—K,_; and W(y)= Y U

i=K,_;+1

for large y-excursions and during the epoch of the maximal M(n)-excursion;
see (3). Because of the independence of {X,,U,} with respect to &, the
variables {W (y)}_, and {L (y))}>_, are i.i.d. sharing the distribution of W(y)
= W(y) and L(y) = L,(y), respectively. Likewise {I,(y)f;_, are i.i.d. sharing
the distribution of I(y).

The principal results are stated in Theorems 1 and 2 of Section 1. The
proofs are organized centered on the following series of lemmas. Henceforth
the assumptions (|X| bounded range, E[ X] < 0, Pr{X > 0} > 0) prevail unless
explicitly stated to the contrary.

LeMMA 1 (Wald [see, e.g., Karlin and Taylor (1975), pages 264-265]). There
exists a unique positive solution 0* of E[e®®] =1 and

(21) w* = E[ Xe®"X] > 0.
LeEMMA 2. For any v > 1, the probability that I (y) = 1 [see, e.g., (19)] has
exporential decay
(22) 0<8<Pr{I(y)=1}e" <1 forally> 0andsome > 0.
[Actually, Pr{I(y) = 1}e®"¥ - C* as y — », where C* has an explicit evalu-

ation; see Iglehart (1972), Karlin and Dembo (1992).]
Define

(23) u* = E[Ue®X].

LEMMA 3. For y — o« [ for notation, see (20)],

o X2 - Ll -1 -of 5

Ty w*
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LEMMA 4. For y — = [ for notation, see (20)],

(@) £ 72 - - 1] - o[ 3).

L(y)

[Henceforth O(y) (or O(y?)) will signify a bound Cy (or Cy?) for y large
where C is a generic positive constant which can change over successive
equations.]

These estimates applied via the Chebyshev inequality and the Borel-Cantelli
lemma lead to the following conclusion.

LemMA 5. For any sequence y,, y,, ... and v§ ; v, ..., integer-valued ran-
dom variables such that Is(y,) =1, Z°,‘; 11/y2 < o (where the choice of
vi,vi,..., do not alter the dlstnbutlon of any of L,,W, corresponding to
{L,,W.}), the random variables L (y,)/y, and W*(y,,)/L,,*(yn) each con-
verge to a finite constant with probagzlzty 1.

Let L(y) and W(y) correspond to the initial y-excursion to which Theorems
1 and 2 refer. These theorems exclude a set I' of probability 0 such that for
every sample path not in T,

L) L W) L
y w* L(y) '
We proceed by specifying levels in blocks to which Lemma 5 applies such that
Y1=Y2= """ =Yg, =1
(26)
Yart1= " TVay =253V 1= T = Y, =N

with the level y, ., or greater attained in the jth epoch of the type
(K,_, T,(n)) in which I,(n) = 1. These successive excursions are denoted by
(27) (KV 1 v(yan 1+j)) EBJ(n)’ J = 1""’an_an—1‘

Let a, —a,_; =[Alogn] with A a fixed large constant to be determined
later and a, = 0. Note that

=1 * logn
Y 5 <AY < o
o1k no1

so that the conditions of Lemma 5 are met. Therefore L.(n)/n - 1/w* and
Wi(n)/L(n) — u* with probability 1 [here L;(n) and W(n) are L,(y) and
W(y) correspondlng to the epoch of B,(n)].

We will estimate the probability of the following events:

&, = {the first excursion to level n + 1 does not include any

(28) of the first [ A log n ] consecutive excursions to height .}

By suitable choice of A large enough but fixed, the convergence L Pr{€)} <
will be established. Application of Borel-Cantelli implies:
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LEMMA 6. With probability 1, the first excursion to level n + 1 with n large
enough (dependent on the sample path) is coincident with one among the first
[Alog n] excursions to level n.

We then deduce that the first exeursion to level y or greater for any y
satisfying n <y < n + 1 is also coincident, with probability 1, with one of the
initial [ A log n] excursions that reach height n.

For the sample realizations 8;(n), where the level n at least is first attained
at the index time 7;(n), let J (n) be determined satisfying

sz ) [Sk 'rj(n)] = J'J(n)+‘rj(n) - S‘rj(n)'
The variable J (n) is well-defined by virtue of the negative drift of the process
{S.). Moreover J (n) is governed by the same distribution as the time span
required in ach1ev1ng the maximum of {S,} starting from time zero. Thus, for

n<y<n+1 and where the event &, does not occur then for some j
(1<j<[Alogn),

(29)  IL(y) - L;(n)| < max(dy(n), Fo(n),..., Fargnm(n)) = i

We will prove:

LEMMA 7.

Iy
— >0 a.s.
n

In view of (29) and Lemma 7, since L;(n)/n — 1/w* with probability 1
and with n <y <n + 1, we infer L(y)/y = 1/w* for the same sample real-
ization as asserted in Theorem 1.

3. Proofs of lemmas and theorems.

Proor oF LEMMA 1. Because X has a nondegenerate bounded range,
#(0) = E[e®X] is analytic and strictly convex for all real 6. Also ¢(0) =1,
¢'(0) < 0 by hypothesis and lim,_, _,, ¢(6) = =, because Pr{X > 0} > 0. The
existence of a unique * > 0 satisfying ¢(6*) = 1 and ¢'(8*) > 0 is accordingly
assured.

Let
(30) ¥(0,t) = E[e?**U]
and set S,, = 27", X;, W,, = L",U;. The family of random variables
eOSm+tW,,
(31) P,=—m:, =0,1,...,
[v(6,)]

constitutes the familiar Wald martingale (a two-dimensional version). Since
the distribution function of the stopping time random variable L = L(y) of
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the first exit time from the interval (0, y) tails down exponentially fast [see (61)
below], we can apply the optional sampling theorem yielding

(32) E[eosLHWL—L{(O,t)] = 1’

where W, = Wi(y), £(6,t) = log (6, ¢), and this equation is valid for |¢| suffi-
ciently small and all real 6 > 6* as |S;| <y + K and the U, terms are
bounded ensuring |W;| < L(y)K'.

We need to assess the asymptotic probability that an excursion attains
height y or more, Pr{I(y) = 1}. O

LEMMA 2.
(33) 0<8<e®™Pr{I(y)=1}) <1.

Proor. Take 6 = 6%, t = 0 in (32) [so that ¥(6*,0) = $(6*) = 1], then
1 = E[e"S:9] = Pr{I(y) = 1} E[e” Sr0|I(y) = 1]
+ Pr{I(y) = 0}E[e®"Sto|I(y) = 0].

Since Si,, >y conditioned on I(y) = 1 and 6* > 0, the upper bound in
(83) results simply by discarding the second term of (34). For the lower bound,
observe that Sy, <y + K and if I(y) =0, then S, < 0. Moreover, the
event {X; < 0} is included in I(y) = 0. These facts combined into (34) yield

1 < Pr{I(y) = 1}e”7e" ¥ + E[e*S1; I(y) = 0].
Rearranging the terms produces
1 - E[e"*; X, < 0] - E[e”S1; X, > 0, I(y) = 0] < Pr{I(y) = 1}e”e*K,
The left side exceeds
1 - Pr{X; >0} - E[e”*; X, < 0] = Pr{X, < 0}E[(1 - " %)X, < 0]
and therefore
8 =Pr{X < 0}E[(1 - ¢”¥)IX < 0]e~""K < Pr{I(y) = 1}e™.

Since E[X] < 0 entails Pr{X < 0} > 0 and E[e?"¥|X < 0] < 1 (as 6* > 0), we
deduce that § > 0 as was to be shown. O

(34)

Proor or LEMMA 3. The expression (32) is analytic for all 6 and |¢| small.
Differentiating in 6 successively four times with ¢ = 0 and afterwards setting
6 = 0* [since (6%, 0) = $(6*) = 1] produces the formulas

(35a) E[(Sy - w*L)e” ] =0, w*=¢/(6*) >0,
(35b) E[(S, — w*L)’e”%:] = k(0*) E[Le”St],  k(0) = di[ﬂ]
0] #(6)
E[(SL - w*L)4e9*SL] = 6k(0*)E[(SL _ w*L)zLeo*SL]
(36) +4k'(6*)E[(S, — w*L) Le®*St]

—3[k(6*)]*E[L%"S1] + k"(6*) E[ Le®"S:].
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We rewrite (35a), decomposing by the event I(y) = 0 or 1, yielding
w*E[Le®*5r] = e Pr{I(y) = 1}E[ S e”Sr|I(y) = 1]
+ Pr{I(y) = O}E[Se”SrlI(y) = 0].

Since y < S, <y + K conditioned on I(y) = 1 while S; is bounded condi-
tioned on I(y) = 0, by virtue of Lemma 2 and since K is fixed, we deduce for y
large

(38) C,y < E[Le?5:] < Cpy,

where C,; and C, are appropriate positive constants.
We ascertain from (35b) that

(39) E[(S, - w*L)’” %] = O(y).

Paraphrasing the analysis of (37) leads to the estimate D? = E[S7e® 5:] =
o(y?).
Next, expanding the square on the left of (39) gives

(40) (w*)’E[L2%"5:] — 2w*E[(S L)e® 5z] + E[SZe”5:] = O(y).

Setting £2 = E[L%e° 5] and applying the Schwarz inequality (using Efe
=1) to the second term of (40) produces a quadratic inequality for the
(positive square root) quantity £, namely

(41) (w*)?£2 < 2w*¢D + E,

where D = O(y) and E = O(y?). It follows that the largest root of this
quadratic equation is certainly O(y) and £, being positive and obeying the
inequality (41), has the order growth

(42) §2 = E[L%%5:] = O0(y?).

Applying the Schwarz inequality in (36) to the terms E[(S, — w*L)2Le® 5z]
and E[(S; — w*L)Le® St] yields the inequality

n? < A(y)n + B(y),
where A(y) = O(y) and B(y) = O(y?), for the variable

n? = E[(SL - w*L)4e"*SL],

(37)

o*SL]

taking account of the result of (42). The reasoning attendant to (41) applies,
mutatis mutandis, implying

(43) E[(S, — w*L)*e”St] = 0(»?).
In particular, we obtain (since Pr{I(y) = 1}¢®"? > § > 0)
(44) E[(S, - w*L())*e” = l(y) = 1] = 0(»?).

Since S; — y is bounded conditioned that I(y) = 1, we can convert (44) (use
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the Minkowski inequality) into
E[(y - w*L(»))1(y) = 1] = 0(y?).
To sum up, we have
1
=0 37 . O

Proor oF LEMMA 4. Paraphrasing the analyses leading to (45) by differen-
tiating the identity (32) with respect to ¢ and evaluating at 6 = 6* and ¢t =0
will yield
(46) E[(W, - u*L)"I(y) = 1] = 0(»?),
where u(0,t) = (0/3t){(6,t) and u* = u(6*, 0). Here is how it is done.

Successive differentiation of (32) in ¢ [cf. (835)-(36)] produces
(47a) E[(W, — u*L)e”Sr] =0,

E[(Wy, — u*L)%""S:| = «(6*,0) E[ Le**5:]

(45) E

1\4
—y———ﬁ)”(y):l

(L(y)

(47b) ad
where k(0,t) = au(e,t),

E[(W, — u*L)*e""St| = 6x(6*,0)E[(Wy, — u*L)*Le*"5:|

a *
(48) + 45K(0*,0)E[(WL — u*L) Le”5t]
82
— 3[k(6*,0)]*E[ L%°*5L] + b-t—zk(o*,())E[Le*’*SL].

From previous estimates we deduce sequentially

E[W,e? S| = 0(y),
(49) E[(W, - v*L)%""S:] = 0(y),

E[W2eSt] = 0(y?).

Observe next that
E|L(W, — u*L)’[¢""%+] < yE[L%" ] ¢S]

(50) XV E[(W,, — u*L)*e"S:]

= 0() o, [we use (42)]

where ¢, = (E[(W, — u*L)%°® St])/2,
With (50) in hand, returning to (48) we see that {, satisfies the quadratic
inequality

(51) {3 <A(¥)4 + B(y),
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where A(y) = O(y), B(y) = O(y2). On the basis of (51) we deduce as before
[cf. (41) and after (42)] that

(52) E[(W, - w*L)'e"S:] = 0(y?).
In particular, following the method of (44), we further infer (46), that is,
E[(W, - w*L)41(y) = 1] = 0(»?).
The inequalities (45) and (46) imply
i) )
E{| —= - u*|I(y) =1|=0|—|.
( L(y) @) y?

We are now prepared to prove Lemma 6. Let 7,(y) be the time duration of
the excursion of {S,};_; on the positive axis where {S,});_, first attains a level
at least y, that is, 7,(y) is the first time index satisfying

y < max (S;-8,)=8 S

O<k<l<t(y)

(53)

() T Py

where k,(y) indicates the starting time of the relevant part of the excursion.
After 7,(y), the {S,} process returns to the nonpositive axis, say at time o(y).
Commencing the process {S,} fresh after time o,(y), we determine the first
passage time defined by the relations

max S, —8,]1< but S -8 >y.
0'1(y)<ksl<‘rz(y)[ l Kl <y 2 T Pra) =Y

Continuing in this way, the time indices

(e2(3)> 7(¥), 01(9))s (k2(¥), 72(¥) 5 02())s - - o> (6,(2), 7 (¥) 5 0,(3))s - - -

represent successive epochs with S, = 0 specifying the vth epoch such that
the process {S,} starting at «,(y) first departs (0, y) at time 7,(y) at a level at
least y and returns afterwards to the nonpositive axis at o,(y). Therefore,
7,(y) — k,(y) has the distribution of L(y) conditioned on I(y) = 1.

For the level y = n, we construct [ A log n] such n-excursion epochs charac-
terized by stopping times

Tl(n)’TZ(n)"‘"T[Alogn](n)
(54) . :
with corresponding x(n), k3(n),..., Kalgny(R). O
LEmMMma 8.
T(n) —k;(n 1
(55) lim max —A—)—’—(—)— - —/=0 a.s.

n—wo j=1,...,[Alognl] n w

Arrange these random variables in lexicographic order such that (n, j)
precedes (m, k) ifn <morifn=mandj <k.
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Proor. We have the estimate [see (45)]

E(M_l) _

y w*

and in particular for n = 1,2,...

. — K. 1 \*
E (M - ) for some C < oo.

<
n w*

Cc
)

(56) -

Applying the simple Markov inequality based on (56), we have for every
prescribed ¢ > 0, for some C, < o,

) [Alogn] (n — An had ].0 n
57 ¥ Y Pr{l()—K—’(—) >e}<CAZ B2 cw
n=1 j=1 n n=1

Invoking the Borel-Cantelli theorem completes the proof of (55). O

By using the bounds of (53) paralleling the analysis leading to (55), we
deduce the following result.

LeEmMa 9.
EH 41U,
(58) lim  max | xl 0 g
n-wj=1.. [Alogn] Tj(n) - Kj(n)

To continue the development of Theorem 1, we first prove Lemma 6.

Proor or LEmmA 6. Since Pr{X > 0} > 0, we have for some finite m,
(possibly m, = 1),

(59) Pr{0 <S; <8,< - <8,,,<1<8,}=a>0.

Determine A large enough such that A((—1log(1 —a)) =y > 1. For y = n,
consider the first j, =[Alogn] distinct successive excursions to level n
occuring at times 7,(n), 75(n), ..., 7; (n) as determined in (54).

Consider the event [defined earlier in (28)]

&, = none of the j, excursions characterized by

{x;(n), 7,(n), 0j(n)}{» attain level n + 1 or higher.

Since these j, excursions are clearly independent, by virtue of (59),

(60)

Cc
[Alogn]
Pr{é;}s(l—a) € S;;

and consequently

oo

Y Pr{&)} < =.

n=1
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Applying again Borel-Cantelli, we conclude that
Pr{&, infinitely often} = 0.

Therefore with probability 1, for n large enough (depending on the sample
path) at least one of the level n-excursions corresponding to {r;(n)}~ also
reaches level n + 1. This confirms Lemma 6. O

Proor oF LEMMA 7. Consider the partial sum process {S,,);,_o, Sy = 0.
The maximum M = max S, =S, is well-defined, since E(X) <0 and J
represents the index in which M is first achieved.

Note for 2 > 1 that

Pr{J =k} < Pr{S, > 0} < ¢*(0) = e~ %*
by Markov’s inequality, where ¢(6) < 1 for 0 < 6 < 6*. Accordingly,
(61) Pr{J > k} < Ce b

and the random variable J has at least an exponential decay tail probability.
For each of the level n-excursions of time duration 7,(n)—k,/(n), v =
1,2,...,j, [see (54) and before for notation],

(62) let J,(n) be the time span beyond 7,.(n) where
max . ., i{Sy — S, (n)} is first achieved.

Obviously the tail behavior estimate in (61) applies to each ,(n).

Consider an arbitracy level y and determined n(y) satisfying n(y) <y <
n(y) + 1. Let 7(y) be the first time index such that {S,} reaches a height
greater than or equal to y.

Consider
(63) T*= sup  min [r(y) - n(n)].
n<y<n+1 1l=<vs<j,
7,(n)<7(y)

By Lemma 6, for almost every sample path of {S,} for n large enough, the
excursion to level y agrees with one of the excursions among
{k,(n),7,(n),d,(n)H~ reaching the level n (one of these actually reaches level
n + 1). On this basis it follows that

(64) T < max{Jy(n), dy(n),...,J;(n)} = J%,

with J,(n) defined as in (62). We claim that T*/n — 0 with probability 1.
Indeed, for each ¢ > 0, by virtue of (61), we have

=) T':k © 5 ©
Y Pr{-n— >e} < Y AlognPr{d >ne} <CY. Alogne *"® < x,
n=1 n=1

n=1
Now apply Borel-Cantelli, yielding
T;

(65) T -0 a.s. 0O
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Proor or THEOREM 1. From Lemma 8, we know that

(©6) k() 1

=10 as.asn — o,
v=1,...,jn n w

Combining the facts of Lemma 6 with (62)-(65) entails the conclusion
() —x(y) 1
_)

67 —_— > — a.s.
(67) ; —
The sets of measure zero precluded relate only to the convergence statements
involving the excursions of {«,(n),7,(n),o,(n)}", n =1,..., those occurring

in Lemmas 6, 7 and 8. Therefore, the statement of (67) applies with probability
1 as y T in any manner. The proof is complete. O

Proor or THEOREM 2. For a level y, let n be determined as before, namely

n(y) <y < n(y) + 1 and the 7(y), (), o(y), {r,(n), k,(n), g,(n)}/~ ;. Consider
(y) 7,(n)
(68) W¥*= sup min Y U- Y Ul
n<y<n+11=<v<j,|i=«x(y)+1 i=k,(n)+1

For almost every sample path and all n large enough, on the basis of Lemma 6
we know that k(y) = «,(n) for an appropriate v. Thus (with K = max|U)|) we
have

Wn* . |7'(y) - Tv(n)l
<K sup mm —————
n n<y<n+1 l<v<j, n
(69) 1-,,(n)s-r(y)
o O QRT3
n n

which by Lemma 7 tends to 0 with probability 1. We have already established
that (r(y) — k(y))/y and (7,(n) — «,(n))/n both converge to 1/w* a.s. and
therefore Lemma 9, that is,

1 7,(n)

max |[———— Y U -u*|->0 as.asn—w»
v=1,...,j,| T, (R) — K, (n) )41 : ’

implies Theorem 2:

1 (y)
—— Y U ->u* as.asyto. [}
T(y) - K(y) i=k(y)+1

4. Applications.

1. Assume Pr{X=s}=p;, i=1,...,r and E[X] < 0. The segment of
the maximal excursion from {S,,}} corresponds to the index »°(n) with
the property that 0 < S, — Sgs < M(n), K,o,, < m < Ty, and
S0y = SKyo, = M(n). Since 6*M(n)/Inn — 1 as. as n — , the result of



STRONG LIMIT THEOREMS 1751

Theorem 1 entails
Lo 1

- *
M(n) E[ Xe” X]

where L Wo(ny = T,0t,y — K, 0(,)- Moreover, Theorem 2 posits that the letter
frequencies in the maximal segment are approximated almost surely by the
probabilities

(71) Pr{X =s;} = p,e®*

2. The conclusions of paragraph 1 apply to the second highest excursion,
third highest excursion and to the several top segmental score values which all
with probability 1 have asymptotic growth rate Inn/6* and their content
realize scores with the biased frequencies {p;e®"*i}.

3. Suppose in evaluating the segments S; - S,, 1<k <l <n, we are
allowed to delete up to d (d fixed) summands. In this context we seek to assess

(70) a.s.,

(72) My,n)= max {S,-8S, - ) X,
O<k<l<n k<A<l
i=1,...,e;e<d

i

Because X; have bounded range, 6*M (n)/Inn — 1 and for the segment
achieving M,(n), the results of Theorems 1 and 2 are again in force.

4. A periodic version of M(n) relevant for molecular sequence studies
pertains to an alternating sequence of random variables {X,}, where {X,,}}
are identically distributed and separately {X,,, .} are identically distributed
with Pr{X, , = s5;} = p;, and Pr{X,,, ., = s/} = p} and all {X,} are independent.
As usual we assume negative drift, namely L 7_,(p;s; + p's:) < 0. In this case
the 6* parameter is determined as the unique positive root of the equation

(73) (Erlpi )( Y ple ) -1

The composition of the maximal segment score (or any high scoring segment)
has letter a; occuring with approximate frequency

r
%pi (Z p/eo sl) + 1 I 0 s,( Z pjeo*sj)'
Jj=1 =1

Analogous results prevail for more general periodic patterns in sequences.
5. In molecular sequence analysis it is frequently of interest to compare two
letter sequences

(74) A, A,,..., A, and A, A,.. A,
both i.i.d. independently distributed, with
Pr{A = letter a,, A’ = letter a,} = p,p,

and the score for such a match being s,,. We assume as before that
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L o, pSapPa p;; < 0 and Pr{of obtaining a positive score} > 0 or, more generally,
replace p,pg by p,g-

For convenience of notation, let X(A, A’) =s,, when A samples a, and 4’
samples az. In the aligned case, we define

S, =X(A,A) + - +X(A,,A,), m>1,8,=0
and for n = n/,
M(n) = S, - 8,).
(n) 03,?2;; (S, %)
The analogs of Theorems 1 and 2 apply to this situation without alteration.
There are r? generic values for X in this model and 6* is the unique positive
root of the equation

(75) Y poppe’e = 1.
a,B
Another problem of interest is to ascertain the maximal score among all
possible, not necessarily aligned, intervals, that is, of obtaining the asymptotic
distributional properties of max, ,, , S S, (m, n), where

m+k
n+k

(76) S,(m,n) = Z X(A;, A)).

i=m

j=n
The asymptotic behavior of the quantity (76) is as yet unresolved. A special
case was dealt with in Arratia, Morris and Waterman (1988).

6. Consider aligned sequences and score assignments for every pair of three
independent sequences: {A®}}, {A®)? and {AP)} generated with probabilities
{p®), (p{?} and {p®}, respectlvely The scoring arrays are (s}, (s$-2} and
{s). We seek to characterize the maximal scoring segments among any two
of the three sequences, that is,

(77) M(n) — . I’?af [ S(l 2) _ Sé1,2)), (Sl(1,3) _ Slgl,3))’ (Sl(2,3) _ 3122’3))] .
<RkR=<(=<n

For each pair there is the critical parameter 6% ,, 6% 5, 6% ; determined as in

(75). If, say, 61, < min(65 5, 05 5), then the maximal segment score in (77)

derives exclus1vely from the comparisons of the first and second sequences.

We established in (33) the exponential decay Pr{I(y) = 1} = O(e~?"). In-
deed, the precise asymptotic behavior is indicated in Karlin, Dembo and
Kawabata (1990), giving

(78) lim Pr{T(y)e®™ <t} =1-e%"  ¢>0,
y—mo

where T'(y) is the dual of M(n) and K* is an explicit constant represented in
general by a geometrically fast convergent series involving familiar quantities
from the fluctuation theory of partial sums of i.i.d. random variables. Let K* L2
K¥ ) and K3 ; be the corresponding parameters for the respective sequence
pairings. In the case 07 » = 07 3 < 03 3, then the maximal segment occurs with
probability Ky ,/(K{, + Kf 3) for the sequence pair 1 and 2 and with proba-
bility K 3/(K¥, + K 13)in the matching of sequences 1 and 3. When 6% , =
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07 3 = 03 3, then the maximal segment score can be achieved from any pair of
sequence comparisons with appropriate probabilities KF* /(Kfqs+ Kfs+
K3 ;) for sequences i and j. Consider a desirable target set of frequencles
{an} X 8-19.p = 1. The likelihood ratio scores

. q

Go ) = __1eB )
s = In| ———
a,B (p‘(:)péj)

are meaningful in many circumstances [the rationale for these assignments is
elaborated in Karlin and Altschul (1990)]. For these scores, necessarily 6% , =
07 3 = 03 3 = 1 and the interpretations above on mixtures pertain.

Adaptlng the above arguments in a straightforward manner allows us to
apply Theorems 1 and 2 for objectives of ascertaining the high scoring aligned
segments, involving comparing all subsequences from r out of s sequences.

7. The following scenario underlies realizations of many engineering sys-
tems and in other social and managerial contexts. Observations A,, 4,,..., A,
accumulate sequentially. For simplicity of exposition we assume {A,} come
from r possible values and are mutually independent but not necessarily of
identical distribution. Specifically, to time ¢ (unknown), the A; are governed
by the probability law P with {p;}; and then abruptly change to follow a
different probability law @ with {g,}]. The change in the probability law could
reflect sudden failure of the measuring equipment or a more critical phase
transition during the system process. Where the change occured after the
epoch ¢, ¢t < n, the joint probability distribution of {A,}} is

() 1)

A common statistical test used to decide if a change in probability law has
occured is founded on likelihood ratio statistics such as

log( Q(At+1’ A ] An) )
P(Apy - AL) )

We have the problem of discriminating between a set of hypotheses
Hy:t>n versus H,:t<n.

(79)

A generalized likelihood test for this problem decides in favor of H, once

n
(80) max log( Il q—Ai) >y
O<t<n i=t+1 Py,

for some critical level y. Interpreting the numbers log(q;/p;) = s; as scores,
the random variables (80) ascertain the maximal segment score among the
collection of segments extending from ¢ to n, 1 <¢ <n. Note under the
hypothesis H, that —E[X,] = ,p, log(p;/q;) is the Kullback-Leibler dis-
tance D(p, @) of the measure p relative to the measure q, so Ey(X,) is always
negative here. Under the hypothesis H;, let L = n — ¢ be the delay (penalty)
in detecting a change. Consider the partial sum process S,, = L7, X,, where
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X, takes values s; with probability p,. By the law of large numbers,

lim
n—t—o N — ¢

It thus follows that

(S, —S,) =D(q,p) inprobability (under H,).

L 1
_— — .

(81) }1_1)1:) v = Dlap) in probability (under H,)
Thus the threshold y of the test could be set to the level L*D(q,p) with L*
the tolerated delay. Large deviation estimates establish the behavior of L
under H;.

Under H,, eventually false positives (detection) result since

M(N)= max max (S, —S,) > » a.us.(attheratelog N);
1<n<N 0<t<n

see, for example, Karlin, Dembo and Kawabata (1990). Actually the probability
estimate of a wrong decision is ascertained there from the limit law (78) with
6* = 1 and an explicit formula for K*. As E [U(X)e” X] = E_[U(X)], Theo-
rem 1 requires equality in (81) under H,. Moreover, by Theorem 2, any
statistic averaged over the segment {K (y), T,(y)} under H, is distributed in
the limit (y —» ») as if the change of probability law occured at K,. The
foregoing calculations indicate that the generalized likelihood test is a suffi-
cient statistic in testing hypothesis H, versus H,. For other analyses of
related statistical problems and for further references, see Siegmund (1985).

8. Portfolio management. Suppose that a certain portfolio management
strategy in use leads over successive time periods to wealth accumulation
Wo, Wy,...,W,.... Then X, =log(W,/(W,_,)) is a random variable usually
of positive mean. The randomness in X, reflects the uncertainty of the
market economy and in particular of the investments comprising the portfolio.

For example, investing proportions b,,...,b, on ! stocks whose daily price
gains (losses) are (Y,),, ..., (Y,), yields X, = ©!_,6,(Y,),. An ii.d. assumption
on the changes X,,...,X, provides a first approximation model. S, =

log(W,/W,) = X, + -+ +X, assesses the (logarithmic) growth of wealth real-
ized by this portfolio. The largest negative exceedance

Mo = o Jpin, (51 S0
measures the largest segmental loss incurred during the time frame 1,...,n.
The variable L(M,) is the time duration during this loss and w(M,) the
composition of the wealth increments during such bad periods.

Our theorems, for example, provide predictions on the depth of the worst
stock market decline, expected length of such a recession and so on.

9. Population extinction. Now W, is the size of the population of a certain
organism at time period n and X, = log(W, /W, _,), the logarithmic reproduc-
tion rate in the population at this time. Under a resource unlimited model X,
can be considered i.i.d. (or Markov) random variables of positive mean. In this
case the size of the population grows without bound.
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Here M, assesses the largest extinction percentage experienced by the
population, while L(M,) indicates its time duration and u(M,) the empirical
distribution of {X,} during this period.

REFERENCES

ARRATIA, R., MoRRIS, P and WATERMAN, M. S. (1988). Stochastic scrabble: Large deviations for
sequences with scores. J. Appl. Probab. 25 106-119.

DEHEUVELS, P. and DEVROYE, L. (1987). Limit laws of Erdés—Rényi-Shepp type. Ann. Probab. 15
1363-1386.

DEHEUVELS, P. and STEINEBACH, J. (1989). Sharp rates for increments of renewal processes. Ann.
Probab. 17 700-722.

DeMBO, A. and KaRLIN S. (1991). Strong limit theorems of empirical distributions for large
segmental exceedances of partial sums of Markov variables. Ann. Probab. 19
1756-1767.

IGLEHART, D. (1972). Extreme values in the GI/G/1 gene. Ann. Math. Statist. 43 627-635.

KaRLIN, S. and ALTSCHUL, S. F. (1990). New methods for assessing the statistical significance of
molecular sequence features using general scoring schemes. Proc. Nat. Acad. Sci.
U.S.A. 87 2264-2268.

KarLIN, S. and DEMBO, A. (1992). Limit distributions of maximal segmental score among Markov
dependent partial sums. Adv. in Appl. Probab. To appear.

KarLiN, S. and TAYLOR, H. M. (1975). A First Course in Stochastic Processes, 2nd ed. Academic,
New York.

KarLIN, S., DEMBO, A. and Kawasarta, T. (1990). Statistical composition of high scoring segments
from molecular sequences. Ann. Statist. 18 571-581.

RooTzEN, H. (1988). Maxima and exceedances of stationary Markov chains. Adv. Appl. Probab.
20 371-390.

SIEGMUND, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer, New York.

SieeMuND, D. (1988). Approximate tail probabilities for the maxima of some random fields. Ann.
Probab. 16 487-501.

DEPARTMENTS OF MATHEMATICS AND STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305



