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Let {X;} be independent, identically distributed random variables with
continuous nondegenerate distribution F which is symmetric about the
origin. Let {X, (1), X, (2),..., X,(n)} denote the arrangement of
{X,,..., X,} in decreasing order of magnitude, so that with probability 1,
|1 X,(Df > X2 > -+ > |X,(n)|l. For integers r, » » such that
r,/n = 0, define the self-normalized trimmed sum T, =X}, X,(i)/
{Z 7, X2(i))'/%. The asymptotic behavior of T, is studied. Under a proba-
bilistically meaningful analytic condition generalizing the asymptotic nor-
mality criterion for T),, various interesting nonnormal limit laws for T, are
obtained and represented by means of infinite random series. In general,
moreover, criteria for degenerate limits and stochastic compactness for {T',}
are also obtained. Finally, more general results and technical difficulties are
discussed.

1. Introduction. The purpose of this article is to investigate in general
the asymptotic behavior of the studentized intermediate magnitude trimmed
sum formed from a continuous symmetric distribution, and in particular to
obtain its asymptotic distribution under an analytic condition generalizing the
criterion for its asymptotic normality. The resulting nonnormal limit laws will
be represented by means of random series whose form explains and is ex-
plained by the probabilistic interpretation of the analytic conditions used. The
main results are contained in Proposition 2.1, Theorem 5.3 and Theorem 5.30.
Discussion of more general results is found in Section 7 [see also Hahn and
Weiner (1990)].

Let X, X,, X,,... be independent, identically distributed (i.i.d.) random
variables with common nondegenerate distribution F and partial sums S, =
X, + -+ +X,. Let N(0,1) denote the standard normal law and let -£(Y)
denote the law of the random variable Y. When EX? < «, the central limit
theorem asserts that

11 / S, — nEX
— &=
where o? is the variance of X. Moreover, (1.1) remains valid when the
constant normalizers on are replaced by their empirical, random analogues:

>

) - N(0,1),
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456 M. G. HAHN AND D. C. WEINER

Letting X, = S, /n, we have
S, — nEX

{ Foa( X, - Xn)z}l/z

The left member of (1.2) is often called a self-normalized or studentized sum.
Such quantities are of considerable importance in statistics.

When EX? = o, (1.1) must be modified. The analytic criterion for
constant-normalized asymptotic normality for S, [i.e., the existence of con-
stants o,, and b, such that -~((S, — b,)/0,) = N(0, 1)] is due to Lévy (1937):

t2P(1X] > ¢t)
i B(X2 A £2)
For symmetric F, (1.3) is also the precise criterion for (1.2) to hold without
modification [as observed in Griffin and Mason (1990)]. This suggests that
studentization can improve and simplify the behavior of sums vis & vis
constant normalization.

But when (1.3) fails, the behavior of the left member of (1.2) is quite
complicated, even in the case of variables X in the domain of attraction of a
stable law of index 0 < @ < 2, that is, X such that the limit in (1.3) is
(2 — a)/2 [Csorgd and Horvath (1988), LePage, Woodroofe and Zinn (1981)
and Logan, Mallows, Rice and Shepp (1973)]. The form of the subsequential
limits for more general distributions and convergence criteria for them have
not yet been completely obtained, even in the symmetric case.

To see how to increase the scope of asymptotic normality for the sums and
also to simplify their general asymptotic behavior, recall that for symmetric F,
(1.3) is equivalent [(Lévy (1937)] to

1X;| R
T 18, e
Thus asymptotic normality fails (in the symmetric case, for both constant- and
self-normalizations) precisely when there are relatively nonnegligible sum-
mands in the sum. This raises the question of whether removing these
extreme, relatively nonnegligible summands leads to a more robust theory of
asymptotic normality in particular, and convergence in distribution in general,

for both the sums and their self-normalized versions.
Henceforth assume that

(1.2) 7 - N(0,1).

(1.3)

(1.4) 0.

(1.5) F is nondegenerate and symmetric about the origin
and
(1.6) " F is continuous.

Continuity is not essential here, but it allows for a great deal of technical
complication to be avoided, in order not. to obscure the main techniques and
results.



SELF-NORMALIZED TRIMMED SUMS 457

Arrange the random sample {X},..., X, } in decreasing order of magnitude:
Since continuity prevents ties with probability 1, we can denote the results
(X,(D),..., X,(n)} with

(1.7) X, (D > 1X,(2) > -+ > |X,(n)l.

Given an integer 1 < r < n, define the magnitude r-trimmed sum S,(r) by
n r—1

(1.8) S,(r) = X X,(i) = S, — X X.(i),
i=r i=1

where S, = S, (1) = X; + -+ +X,. By convention, an empty sum is 0. Thus
in S,(r), the r — 1 summands largest in modulus have been removed from the
full sum, and the leading summand retained is X,(r), the rth largest in
magnitude. [Here the notation differs slightly from that of previous work on
magnitude trimmed sums, where r summands are deleted and X, (r + 1) is
the leading term retained. This change is appropriate in that previous tech-
niques conditioned on the last summand removed, but here conditioning takes
place on the leading summand retained in the trimmed sum; see also Remark
3.24.] For fixed r, no improvement with respect to asymptotic normality for
S, (r) results [Maller (1982) and Mori (1984)]. Thus we consider r = r, — .
But in order to obtain asymptotic results depending on and utilizing the entire
distribution F, it is necessary to require r,/n — 0. When r, are integers with
0 < r, < n such that

rn

(1.9) r,> and — —0,
n

then S,(r,) is called an intermediate magnitude trimmed sum. Restrict
hereafter to this case.

Pruitt (1985) proved that S,(r,) is (constant-normalized) asymptotically
normal provided

t2P(1X| > t)

. li ———— <
(1.10) im sup E(XEA L) ,

t—>w
that is, F belongs to the Feller class . [This is precisely the class of
distributions generating full sums S, which can be centered and scaled by
constants so that the resulting affine-normed sums are stochastically compact,
i.e., tight with only nondegenerate subsequential limit laws [Feller (1967)]. In
particular, % contains every distribution with regularly (but not slowly)
varying tail.] Thus intermediate trimming does, indeed, provide a more robust
theory of asymptotic normality for sums, since (1.10) is considerably weaker
than (1.3).

More generally, Griffin and Pruitt (1987) completely determine the asymp-
totic distribution of constant normalizations of S,(r,) for symmetric F as well
as criteria for convergence to each of the possible limits. In particular, a
criterion is given for S,(r,) to be constant-normalized asymptotically normal;
this criterion is considerably weaker even than (1.10).
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To give their criterion (which is important here), for ¢ > 0, define
G(t) = P(IX] > ¢),
M(t) = EX?I(1X] <¢),
M(2)
t2

(1.11)

K(t) =

For0 <t <1, put
(1.12) G (t) = inf{s > 0: G(s) < t}.
For « € R, define for neNand j = +£0,1,2,...,

r,+tj—ayn,+j
(1.13) by(a) = G-t 22 T
n

and write b, = b,, throughout. Note that b,(-) is nondecreasing, and is
everywhere eventually defined due to (1.9). Given a, continuity and (1.9)
guarantee that for all sufficiently large n, b,(a) satisfies

":B\/E

r’l
(1.14) G(b.(B)) = "—
for all B with |B| < |a|. Finally, define functions f, by

nK (b,(a)) = nM(b,(@))/bX(@),  by(a) >0,
0, otherwise,

(1.15) fy(a) = {

and let n, — » be a given sequence of integers.
Then one result of Griffin and Pruitt (1987) is that S, (r,,,) is (constant-
normalized) asymptotically normal if and only if

ful®)

T‘nk

o,

(1.16) Ve

This result raises the natural problem of completely determining the self-
normalized asymptotic behavior of S,(r,), in or out of the presence of con-
stant-normalized asymptotic normality for S,(r,) as delimited by (1.16).

Define the magnitude r-trimmed sum of squares V,(r) by

(1.17) AGERNEA0)

By continuity, P(V,(r) = 0) < P(X = 0) = 0 when r < n. Thus we can always
define the studentized magnitude r-trimmed sum ¢,(r) by
S,(r

(1.18) t,(r) = V)
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Finally, given integers {r,} satisfying (1.9), define

(1.19) T, =t,(r,).

T, is called the intermediate studentized magnitude trimmed sum. Tradition-
ally, the studentized form of a sum involves the sample variance, as opposed to
the sum-of-squares being used here. The adjustment here to the technically
easier form using V,(r,) rather than

Vi(r) = Vi(r,) - — (8u(r)*

-r,+1
causes asymptotically no change in the studentized distribution. (This will
follow from Remark 2.11 and Lemma 2.13 below.)

Under (1.5) and (1.6), Hahn, Kuelbs and Weiner (1990) proved that

(1.20) T, -, N(0,1),

provided (1.10) holds. Moreover, Hahn, Kuelbs and Weiner (1990) also showed
that (1.20) still holds along a given subsequence {n,} provided only

(1.21) fa,(*) = « uniformly on compact sets,

which is considerably weaker than the criterion (1.16) for constant-normalized
asymptotic normality for S, (r, ). [Note that when (1.16) holds, it holds
uniformly on compact sets, as is easily seen from the proof of Lemma 3.6 in
Griffin and Pruitt (1987).] Thus, in contrast to the situation for full sums,
self-normalization does actually enhance the possibility of asymptotic normal-
ity for trimmed sums as compared to constant normalization.

The precise criterion for (1.20) along a given subsequence {n,} is slightly
weaker than (1.21), and was recently obtained by Griffin and Mason (1990). In
our notation (cf. Remark 3.24 below), their result can be stated as follows:
Given {n,}, (1.20) holds along {n,} if and only if

fn, = ® in measure with respect to N(0,1),

or equivalently,
(1.22) fnk(Z) =, ®,

where Z ~ N(0, 1). Clearly (1.22) implies (1.16).

The purpose of this paper is to elucidate further the asymptotic behavior of
the self-normalized trimmed sum T, = S,(r,,)/ /V,(r,) . Section 2 establishes
that {T,} is always stochastically compact and makes some observations
concerning when the ‘“trivial most” possible limit, the Rademacher, arises.
~ The main objective of the remainder of the paper is to determine the asymp-
totic distribution of the subsequence {7),,} when

(1.23) fulZ) —p c foxr some ¢ € [0, ).

Toward this end, Section 3 establishes some useful representations, Section 4
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develops the required analytic facts and Section 5 establishes the main theo-
rems. In particular, Theorem 5.3 characterizes the Rademacher limit as
occurring if and only if (1.23) holds with ¢ = 0. When (1.23) holds with
0 < ¢ < o, Theorem 5.30 identifies the limit distributions that arise, repre-
senting them in a natural way via random series. Then Section 6 shows that
each limit in Theorem 5.30 does actually arise by providing a ‘‘limit-generating
law”’ which is attracted along different subsequences to each of the possible
limit laws. Two essential new ingredients are (i) a refinement of a well-known
representation of order statistics by means of an ii.d. unit mean exponential
sequence, and (i) a special analytic relation between the inverse tail and
normalized truncated second moment functions. Finally, Section 7 explores
some results and technical difficulties in the study of the general case.

2. Stochastic compactness of {7,} and observations about the
Rademacher limit

ProposiTioN 2.1. {Z(T,)} is stochastically compact.

The proof of this proposition depends on the following widely known fact
whose proof is included both for completeness of exposition, and because it is a
convenient mechanism by which to introduce certain facts and representations
which are crucial later.

LEmMmA 2.2. Fort = 0,
(2.3) sup E exp(tT,) < '’ /2.
ProoF. Let g, &, €9,... be iid., independent of {X}, with P(e; = 1) =
P(g; = —1) = 1/2. Then
D Li Xa(Dle;,
(zr(xG))"

where {c,;: 1, <j < n} is independent of {¢;: r,, <j < n},

(2.4) T,

(2.5) l2c,, 2Cpp412 """ 2€C, 20
and
(2.6) Xn‘, ez, =1.
J=T
Let
(2.7) I =0(Xy,..., X,),

the o-algebra generated by X,,..., Xn Then, using independence of %,
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and {¢},
Eexp(tT,) =E|E exp(t Y cnjsj) 9;})
J=rn
n etan + e—tan
a5 e [
J=ra

22 t? & 2-
<ETTe"d/ - exp| = ¥ 2| = e,
J=rn 2 Jj=r,

where the last line uses (e* + e *)/2 < e* /2, which follows from a Taylor
series expansion:

x2m x2m

<

x2 /2
zm)t =, ’

™s

=e

(e +e®y/2= ¥

m=0

02Mm!
since 2m)! > 2™ m!. O

Proor oF ProrosiTion 2.1. Markov’s inequality and (2.3) immediately
yield tightness for {_£(T,)}. It remains to establish that every subsequential
limit is nondegenerate.

From (2.3) and standard arguments also follows uniform integrability of
{TP: n > 1)} for each integer 1 < p < ». Thus {T'?} is uniformly integrable, yet
ET? = 1 due to independence and

2
( Cnj€ j) |,
J=rs

n
“B[ £ t)-m-n

j=rn

ET?=E|E

s

(2.9)

recalling (2.6). Hence [cf. Chung (1974), page 97]
(2.10) Z(T,) ~>Z(Y) = 1=ET? - EY?
Moreover, -#(Y) will obviously be symmetric about the origin. Hence {_£(T,,)}

possesses no degenerate subsequential limits. O

REMARK 2.11. Ordinary studentization for S,(r,) would take the form
1/2

1 , 2

‘as is easily checked. However, using Proposition 2.1, we obtain the following
lemma.

Lemma 2.18. T,-T, -, 0.
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Proor. Write T, = T {1 — J2}~1/2, where

2
1 1
(Sa(ra))” _ T2 5 o,
n—r,+1 V(r,) n-r,+1 " P

(2.14) J?2 =
due to Proposition 2.1. O

As is evidenced by the proof of Proposition 2.1, every subsequential limit
law for {T,} is symmetric about the origin and has variance 1. Thus the
Rademacher law A = 1{8, + 6_}, is the most “trivial’’ limit. Naturally enough,
the analogue opposite to “T, —p N(0,1) « f,(Z) —,” holds, that is,
“T,, 7p A= f,(Z) —,0.” This will be fully established in Section 5, but
some preliminary observations are useful here.

Griffin and Mason’s (1990) proof of the asymptotic normality criterion
(1.22) for T,, depended, in part, on establishing the equivalence of their
criterion to the uniform asymptotic negligibility of the studentized sample,
specifically, the condition (X, (r,,,))?/V, (r,,.) —, 0. Analogously, characteriz-
ing the case of a Rademacher limit involves characterizing the dominance of
the leading term X7 (r, ) relative to the trimmed sum-of-squares V,, (r, ).

LemmA 2.15.  Given a subsequence {n,}, T, —p A if and only if

(Xni(70,))

2
- 1.

(2.16) TR

Proor. Recall the notation and setup of the proofs of Proposition 2.1 and
Lemma 2.2, and suppress the subscript k. Simple computations analogous to
those in (2.9) lead [cf. Efron (1969)] to

(2.17) ET!=38-2 'Z Ec;;.

J=T,

Suppose -Z(T,) — A. Since {T'*} is uniformly integrable, ET* — 1, so that
[recalling (2.4)-(2.6)]

1< ) Ec,;<E|ci, ¥ ci;
(218) J=r, j=r,
=Ec2, <1.

n,r, —

Since ¢2, <1, weobtain E|l —c2, |=1~Ec2, 6 — 0, whence c2, —, 1
This is the same as (2.16).
Conversely, if (2.16) holds, then £%_, , ¢, -, 0 due to (2.6), whence [as in

(2.10)] E(X%_, ,c,;&)* — 0. Thus, since ¢, , —, 1 due to (2.16), it follows
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that

[RS]

n
Cn €1t . Z 1cnjej -, &~ A,
J=r,+

(2.19) T,

proving the lemma. O

Analytically, characterizing the dominance condition (2.16) is soniewhat
more involved; see Theorem 5.3 below.

3. Representations. Here we develop and adapt a well-known represen-
tation of order statistics involving exponential random variables. In addition,
convergence of certain of these representations (in a strong sense vital to the
subsequent analysis of the studentized quantity T,) will be established. Some
related facts needed later are also presented here. [Much of what is included
here for convenience and completeness may already be known, but we were
unable to find references. For some similar results, however, see Reiss (1989).]

Let E,, E,, E,, ... be iid. exponential random variables with unit mean.
Put T, = E, + --- +E,, with I'; = 0. Then [e.g., Breiman (1968)]

(XD, 1X,(2)],.. ., 1X,(n)])

2 (G_l(rl/rn+1)7G_l(r2/rn+1)" ":G_I(Fn/rn+1))’

where we recall (1.12) for the definition of G~!. Thus, given 0 < N < r, such
that r, + N < n, we have

(3.1)

n+1l

(3:2) Q(bn(‘/a(l——n—fﬂ)):—stsN)

T, l-‘n+1

. . D 1-‘r+j .
(X (r, +J): —=N<j<N)=|G™* F”— :-N<j<N

(6,(2,;): -N <j <N),

recalling (1.13).

In Hahn, Kuelbs and Weiner (1990), Lemma 5, it was shown that for j
fixed, Z,; »p N(0,1). Here, however, much more detailed information is
required.

For N as above, define

tun = (Z00s VTn (Zoo = Zut) V7w (Zos = Zn3), - -,

Viu(Zo -1 = Zuw))-
Let Z ~ N(0, 1) be independent of E, and {E;: j > 1}, and let
(3.4) §N=(Z’E1’E2”“’EN)’

(3.3)
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ProposiTION 38.5. _Z(£,n) has a Lebesgue density which converges in
LYRN*1) with respect to Lebesgue measure to that of -£(¢y). In particular,

(3.6) Z(énn) 21v L (6n),

where —y denotes convergence in total variation for measures.

Proor. Note that

n L. n n n
(3.7) gnN = ‘/—— 1 - — = —_E"n+1’ —_E"n+2" ey _Er,,+N )
Fn+1 L l“n+1

r Fn+1 n+1
which certainly makes the lemma plausible, since I,,,/n — 1 a.s. by the
strong law of large numbers, I is independent of the i.i.d. unit mean
exponential collection {E, .,,..., E, .y}, and (T, —r1,)/ Vra =p 40, 1) by
the classical clt [since Var(E,) = 1].

Consider the random vector in R¥*2 given by

_ Tn n
EnN_ (— \/r‘ 7Er,,+1’~“’Er,,+N7
n

Liyi— L 4n(n+1-1,—N)
yn+N-r,

It has independent components, the first and last of which have densities
which converge uniformly to the standard normal density. [This follows easily
from the remark following Theorem 15.5.2 in Feller (1971), applied to the unit
exponential distribution.] Thus the density of .#(E, 5) converges uniformly to
that of (&5, Z7), where Z' ~ #70,1) is independent of &,. Moreover, the
density of (2, ) is continuous on R X (0,)" X R.

We can write

(3.8)

l—‘ln+1_l—‘lr,,+N(n-|-]'_rn_N)
yn+1-r,—-N

(39) Kn = gnN’ = Wn(EnN)’

where W,: R X (0,0)Y X R - R X (0,0)¥ X R can be explicitly (albeit te-
diously) identified, and is locally invertible and smooth. Moreover, it is easily
checked (from the explicit form) that the Jacobian det(dW,) converges uni-
formly on compact subsets of R X (0, )" X R to unity. Clearly, W, — I in the
same manner on R X (0,©)N X R, where I is the identity on R X (0, )Y X R.
The standard transformation/densities lemma [e.g:, Billingsley (1986), page
229] now shows that the density of _#(K,) converges pointwise to that of
j(Z' £x). Thus, by the Scheffé lemma [e.g., Billingsley (1986), page 218], the
convergence is actually in L*(R™*2). By “integrating out the final coordinate”
of these densities (using Fubini), it follows that the density of _£(¢,y)
converges in LY(RN*1), to that of £(£y), proving the first assertion. The total
variation assertion now follows immediately. O
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Note that Proposition 3.5 immediately gives
(3.10) (Z,0:2,1,..-32,5) 2p(Z,2,...,2).

Proposition 3.5 also guarantees total variation convergence of each marginal
distribution. For example, for each 0 <j < N,

Z(Z,;) >y N(0,1),

A2 \10 (2o = 2, 511)) 1w £(Z, Ey).

We will require a uniform version of the first convergence in (3.11).

(3.11)

LemMmA 3.12. Given integers 0 < N, < n — r, such that

N,
(3.13) -0,
Vra
we have
(3.14) Z(Z,;) 21y N(0,1) uniformlyin 0 <j <N,.

Proor. Letting ¢,,;, ¢ denote (respectively) the density of .#(Z,;), #10, 1),
it will be enough to show that given any {j,} with 0 <j, < N,,

(3.15) 15, = $1dr =0,

where A denotes Lebesgue measure on the line. [That (3.15) suffices for (3.14)
follows by a standard contradiction argument.]
So, given 0 <j, < N,, consider the random vectors

(3 16) A = l—‘lr,,+j,,_(rn +Jn) l—‘ln+1_l—‘lrn+j,,_(n-'-]'_rn _Jn)
' " Vr +Jn ’ yn+1-r,—j, ’
The density @, of .#(A,) converges uniformly to the uniformly continuous

density ¢o(x,y) = ¢(x)¢(y) [again quoting Feller (1971), note following 15.5.2,
and using (8.13)]. As in the proof of Proposition 3.5, we can write
- lF‘rn+j+n - (n +1- Tn _Jn)

Vn+1-r,—j,

n+1

) = W.(4A,),

(3.17) B, =|Z2,;.,

where W,: R? > R?, and where W, —> I in the norm of CR?). Thus the
.density of _#(B8,) converges uniformly to ¢, on R% By the Scheffé lemma and
then by Fubini, ¢,; — ¢ in L'R), so that (3.15) holds. O

An immediate consequence of Lemma 3.12 is the tightness of the real
triangular array {Z,;: j < N,, n > 1} for any {N,} satisfying (3.13).



466 M. G. HAHN AND D. C. WEINER

Also needed is a related fact. Let Z, E, be as above (in particular, indepen-
dent).

LemMa 3.18. A(Z — Ey/ \/r,) =1 N, 1).

Proor. Let ¢ denote the standard normal density, and let ¢, denote the
density of .£(Z — E,/ /r,,). By independence,

(3:19) ¢u(t) = [(t —x) d-£(Eo/Vr, )(x) > [6(t - x) ddg(x) = $(2),

since ¢ is bounded and continuous, and E,/ ‘/E —, 0. Now apply the Scheffé
lemma. O

Finally, the following technical result will be required for use in the proof of
Lemma 5.18. Recall notation (1.13) for b,, ;.

LemMA 3.20. Given integers N, — ® such that N, //r, = 0, for 0 < |j| <
N, define

3.20 7, -z, 4 J
( . ) nj ~ “nj r, - ‘/"; .
Then for each j,
(3.21) nK(b,,(Z,;)) = fol Z0;)
and
(3.22) _/(an) -y N(0,1) wuniformlyin |j| <N,.

Finally, for each fixed j > 0,

(3.23) A Znos V1o (Zno = Z,;)) 21w L2, - ).

Proor. The proof is a straightforward computation using the statements
and patterned after the proofs of Proposition 3.5 and Lemma 3.12. In particu-
lar, note that the transformations Z,; - Z, ;j are linear, with slopes and
intercepts converging uniformly, in |j| < N,, to 1 and 0, respectively, as
n— o O

REMARK 3.24. Combining Lemma 3.20 with the result of Griffin and
Mason (1990), we can easily see that their result may be stated in the form
(8, (1,,)/\/Vu(1,)) = N(©,1) & f, (Z) -, . In our notation, they actu-
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ally proved for each {r,} that
(ST + 1)/ YVel(Tay + 1)) = N(0, 1) £, (Z)
= nkK(bnko(Z)) -, .
But [cf. argument in (4.3) below], applying their result to {’“n,, -1}, wé have
il Z) =% = fo(Zn,, 1) =p© = nK (b, (2)) =,

Snl(Tn,)

VVal7n,)

thereby establishing the claim.

e L ) - N(0,1),

4. Analytic facts. Fix a sequence of integers n, — « and throughout
this section assume

(4.1) Z ~N(0,1), E, ~ Exp(1), Z is independent of E|.
Assume furthermore
(4.2) fnk(Z) -, c,

where 0 <c¢ < «. (Often the case ¢ =0 must be separated from that of
0<c<wm)
By Lemma 3.18, A(Z — E,/ \/E) -y £(Z), so that for any Borel set B,

E,
P Z—- —|€B

N =,/(z— _‘/]i:i)(f"_l(B))

=Z(Z)(f,(B)) +o(1)
= P(f.(Z) € B) + o(1).

Choosing B = [c — ¢, ¢ + ¢]°, where ¢ > 0, we see that condition (4.2) forces

also
E,
— | - .
Vro ] 7°

The following convenient formula relating the inverse-tail function b, to the
normalized truncated second moment function f, will be required.

fa

(4.3)

7 —

(4.4) f,

. LEmMMA 45. Forze€ R and a > 0,

a )bﬁ(z—a/\/a) +fabﬁ(z—s/\/a)

(4.6) fn(2)=fn(z- Jr b2(z) o ba(2) *
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Proor. Since F is assumed continuous, we have [recalling (1.11)-(1.13)],
for large enough n,

M(b,(s)) = EX?I(X] < b,(s))
- EX2I(1X| < b,(s))

- fG‘l(u)zl(G‘l(u) <b,(s))du

i)

= fG-l(u)21(G-1(u) <G—1( - -

u

r, — sy,
u> ——C)du=f G Y(u)®du,
n (rpy—syfr)/n

= [67(w)’I

where continuity was required only in the second and fifth equalities. Chang-
ing variables,

M(b,(s)) =~ M(bn(1)) = (y) dy.

Thus expanding and changing variables again,

M(b,(2))
by(2)

A

fa(2) =1

?'(sz (M(bn(z)) - M(bn(z - ‘/‘:_n )))

a \b%(z—a/yr,
(4.7 +f"(z' e ) (b%:(z> )

Jrm

z @ )bﬁ(z—a/\/a_)
D) s Y-S BTE)

ab,zl(Z_S/ﬁ) a bﬁ(z—a/\/a)
e d”f"(z'ﬁ) B

proving the lemma. O

br(y) dy + 1,

Define, for z € Rand s = 0,

’ ' bz - Ty
(4.8) g.(2,8) = —%D

Note that 0 < g, < 1, and for each z, g,(z, - ) is nonincreasing.
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LemmA 4.9.  If (4.2) holds with 0 < ¢ < », then

(4.10) e /g, (Z,E;) -, 1.
If (4.2) holds with ¢ = 0, then
(4.11) 8.(Z,E) >, 0.

Proor. The proof makes repeated use of the fact that convergence in
probability is equivalent to the property that inside every subsequence is a
further subsequence whereon almost-sure convergence holds with the same
limit independent of the selected subsequence.

Inside any subsequence of {n,}, there is [due to (4.2) and (4.4)] another
{n (1)} along which both

(4.12) f,,1(Z) »c, as, and f, —c, as.

7 — ﬁ’_)
V7

Hence, for almost every (z,a) € R X [0, »), applying (4.12) to (4.6) leads to

(4.13) c= /;)gnk(l)(z, §)ds + cg,,1y(2,a) +o(1).

Fix z so that (4.13) holds for almost every a > 0. Given any further subse-
quence of {n,(1)}, select an even further subsequence {n,(2)} and a monotone
function g so that for every s,

(4.14) &n,2(2,8) > 8(2,8).

[Here Helly selection is used in the form given in Taylor (1985), page 398.]
" Using this subsequence {n ,(2)}, (4.13) yields (using the bounded convergence
theorem)

(4.15) c= fag(z, s)ds + cg(z,a)
0

for almost every a > 0. Now g(z, - ) is monotone, so that (4.15) guarantees it
is absolutely continuous when ¢ > 0. Thus, noting g(z,0) = 1, we obtain as
the unique solution of (4.15) that if ¢ = 0,

(4.16) Va>o0: g(z,a) =0, g(z,0) =1,
while if 0 < ¢ < o,
(4.17) Va>0: g(z,a)=e?/".

First suppose 0 < ¢ < «. Thus, for the subsequence {7 ,(1)} on which (4.13)
holds, and for almost every z, inside any further subsequence is another
subsequence {n,(3)} along which

(4.18) efo/°g, o(2,Ey) > 1, as.
Thus, for the subsequence {n,(1)} on which (4.18) holds, and for almost
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every z,
(4.19) e®/°g, (2, E¢) =, L.

Using independence, Fubini and bounded convergence, it follows from (4.19)
that on this same subsequence {n (1)} where (4.13) holds, given £ > 0,

P(le®o/°g,,1(Z, Ey) — 11 > ¢)

(4.20)
= [P(le®o/°g, (2, Eo) — 1| > €) d-£(Z)(2) = 0,

that is,

(4.21) ePo/°g, 1(Z, Ey) >, 1.

We have shown, therefore, that given any subsequence of {n,}, there is a
further one {n,(1)} whereon (4.21) holds. It follows now that for 0 < ¢ < =,
(4.10) holds on all of {n,}.

When ¢ = 0, a similar but easier argument leads to (4.11). O

5. Limit theorems. Before proving the main theorems, we recall a pow-
erful formula for analyzing magnitude trimmed sums by conditioning on the
magnitude of the last summand removed from the full sum, which is due in
general to Mori (1984); it has been utilized elsewhere many times.

Recall the representation (82).For0<j <N, let

(a)’ njl(a)’ njz(“)’ e Ynjn(a)
be i.i.d. with /(Ynj(a)) = AX¥Y Xl < bnj(a)), where [as in (1.13)]

1 rn+j_ Vrn+j

n

(5.1) b (@) =G~

By continuity of F, for any nonnegative or bounded Borel function p,
Ep(Vo(r, +J + 1) /X2(r, +J))

5.2 n

62 - Ep(b;f(a> > Ynjk(a>) 44(2,,)(),
k=r,+j+1
where we understand the interval of integration on the right to be the region
where b, ; is well defined and positive.
Fix 1ntegers n, — « as in Section 4. First, the case of the Rademacher limit

law for T, will be completely resolved. [A similar result can be found in
Griffin and Mason (1990).]

Tueorem 5.3. Z(T,,) = A if and only if
(5.4) fnk(Z) -, 0.

ProoF. In this proof we suppress the subscript % since no further subse-
quences are required. Due to Lemma 2.15, it suffices to show that (5.4) is
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equivalent to
X(r,)
5.5 _—
(55) AV
or, equivalently,
56 V(r, +1) 0
. —_— >, 0.
(59 X2

Assume (5.4) holds. Let & > 0, and choose p(x) = I(x > &) in (5.2). Then, by
Markov’s inequality (suppressing the index j = 0in Z,;,b,;, Y, ik Yo

Poum+1WXﬂm)za=[P@fuo 3 nuwzw)¢ﬂznw)
k=r,+1
(5.7)

(n—r,)EY,(a)
< j(l A ey )d_/(Zn)(a).

Choose R so that sup, P(IZ,| > R) < ¢ [since £(Z,) > N(0,1). On[—R, R],
it is easy to see [e.g., Hahn, Kuelbs and Weiner (1990), proof of Lemma 16]
that

EY(a)  EX?(X| <b,(a))
(5.8) (n=r) 2@y "' 6w
— nK (b,(a)) = f(@)

uniformly.
Thus, for all large enough n,

P(Vn( r, +1)/X2(r,) = s)

R (fu(@)
(5.9) <e+(1+ e)f_R(———E—— A 1) d.2(Z,)(a)

fZ,) 1}.

€

S:—:+(1+3)E{

Now £(Z,) - N(0,1) in total variation distance by Proposition 3.5. Thus
f.(Z) -, 0 implies f,(Z,) =, 0 [as in (4.3)]. It follows from boundedness that

E(f(Z,))/e A1} - 0.
Thus (5.6) holds.
Conversely, suppose (5.6) holds. Then, given 0 <z < 1,

0 « P(V,(r, + 1)/X2(r,) 2 ¢)
(5.10) =[P(b;2(a) Y Y(a) 2| dL(Z,)(a).
k=r,+1

Choose R > 1. Abusing notation slightly,‘write Vi(a) = b, ()X}_, oY, 2(a).
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We have seen in (5.8) that EV (a) = f,(aX1 + o(1)) uniformly on compact
sets; similarly,
EX*I(IX] < b,(a))

VarV,(a) <n b3 ()

(1 +0(1)) <fu(a)(1+o0(1))

uniformly on compacts.
Put F(R)=[f, = R]. For a € F(R),
P(V,(a) <e) = P(V,(a) - EV,(a) <& — EV,(a))
< P(IV,(a) — EV,(a)l > EV,(a) —
511) < P(V(@) - EV,(a)| > EV,(a) — ¢)
Var V(@)
(EVn(a) - 8)2 ,

by Chebyshev’s inequality. Let T' > &. Then from (5.10),

0« [P(Vy(a) 2 £) d-£(Z,)(a)

> P(Vn(a) >¢)d-2(Z,)(a)
[~T,TINF(R)
(512) 1o M) d/(Z,)(a)
[-T,TINF(R) (EV,(a) - &)

>P([Z,c F(R)« [Z,<T])
fa(@)

_T,T]nFn(R)m dA(Z,)(a).

—(1+o(1) [
The final line uses the fact that x — x/(x — )* decreases for x > R > 1 > &.
Now select R to obey 1 — R/(R — ¢)*> > 1/2. Then for each T,
P(f«Z,) =R)<P(Z,| >T)+P([2,€F(R)] n[Z,| <T]).

Given 8 > 0, choose T so that P(|Z,| > T) <, since £(Z,) — N(0, 1), and
then—using (5.12)—choose 7, so that n > n, implies P(Z, € F,(R)]N
[1Z,| < TD < é. It follows that for sufficiently large: R,

(5.13) P( f.(Z,) = R) - 0.
liecalling (4.1) and Proposition 3.5, it follows that

(5.14) P(f(Z - Eo/\rs) = R) = 0.
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Now 0 < X2(r, + 1) < V,(r, + 1), so (5.6) implies, in particular [recalling
(3.2) and (3.8)]:

Xn( r, + 1) bn(an)
(B18) 0y Ty | ™ 8z~ ErlBron Vi (B = Zu))
Now via (3.11), it follows that
(5.16) &.2,Ey) -, 0.

Recalling Lemma 4.5, the conditions (5.14) and (5.16) together imply

Fu(Z) = o Z = Bo/r, )8n( Z. Bo) + [g,(2,5) ds
(5.17) 0

—0,(1) + fOEOgn(Z,s)ds.

Finally, by passing to subsequences where (5.16) holds almost surely (as in
the proof of Lemma 4.9), the bounded convergence theorem implies (since
0 < g, < 1) that the integral term in (5.17) tends to 0 in probability. Hence
(5.4) holds. O

Note that ““(5.4) implies (5.6)” means, in particular, that (S,(r,)/ |X, (r,)I,
V.(r,)/X2%(r,)) —p (¢,,1). (Compare Theorem 5.30 below.)

Turning to the sufficient conditions for nonnormal, non-Rademacher limits,
we require first the following tightness lemma. [The case {N,} bounded is
contained in Griffin and Mason (1990).]

LeEMMA 5.18. Assume

(5.19) {£.(Z)} is tight.
Let 0 < N, < n — r, be integers such that
(5.20) IS
Vra
Then
(5.21) (Vi (ra, +3)/X2(r,, +7): 0 <j <N, } is tight.

~ Proor. Again subscripts .are temporarily suppressed. Given R, — o,
such that R,/ ﬁ—) 0, put p(x) = I(lx| = R,) in (5.2). Note that
Eb, ()Y} (a) ~ K(b, (a)) uniformly on [-R,, R,] (by direct computation,
or as in the proof of Lemma 16 in Hahn, Kuelbs and Weiner (1990)]. Let o(1)
denote a quantity tending to 0 uniformly in 0 <j < N,. Using Markov’s



474 M. G. HAHN AND D. C. WEINER

inequality in (5.2), we have, uniformlyin 0 <j < N,,
P(V(r, +j+ 1) /XXr, +j) 2 R,)
n—r —Jj)EY .
< j’ 1A ( n 2-]) nj(a)
[-R,,R,] Rnbnj(a)

(1 . (nK(bnj(a))

R,

)d-/(znj)(a) +o(1)

<
(5.22) [_Rn’ Rn]

sE(l A (ﬂl%z"’)-)-)) +0(1)

fn(znj)
R,

)) d-#(Z,;)(a)(1 + o(1)) + o(1)

=E(1A +0(1),

utilizing (3.21). By (3.22), {f,(Z)} tight [by (5.19)] implies that the triangular
array

(5.23) {f(Zu) 0<j<N,,k> 1}
is tight. Thus
(5.24) JFQI%,ka(fnk(Znu) > ‘/R—,,k) >0 0.

Hence, since R, — o, (5.22) leads to

jn;a}g:P(Vnk(rnk +j+1)/X2(r, +]) > R,,)

(5.25)

VE
~ ng
= ﬁ?\]}:P( fnk(znkyj) = VRnk) + Rnk + 0(1) how 0.
Since R, — « was arbitrary (subject to R,/y/r, — 0), (5.25) validates
(5.21). O

Before stating the main theorem, we require some observations on certain

random series which will appear there.
Recall that {E;: j = 0} is ii.d. ~ Exp(1), independent of the Rademacher
sequence {¢;: j > 0}, and recall T,, = E, + -+ +E,, with T, = 0.

LeEMMA 5.26. For each 0 < ¢ < «, the random series

(5.27) S=8,=Y eei/* agnd V=V, =Y e /e
Jj=0 Jj=0

each converge absolutely almost surely to finite random variables. Conse-
quently, Z(S — ¢y) and £(V) are each infinitely divisible, and the random
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variable
5.28 T=T 5
( . ) - 4 T \/‘_/‘

is well defined and symmetric with

(5.29) ET=0 and VarT =1.

Proor. By the strong law of large numbers, as n — o, I, /n - E(E,) = 1
almost surely. Thus almost surely, eventually, e 1/¢ < e7/2¢ where L e //2¢
converges. So the V-series in (5.27) converges almost surely. Likewise, almost
surely, eventually |e;e /2| < e™//*¢, where Le™//*° < «, so the S-series in
(5.27) converges absolutely almost surely. Finally, notice that V> 1 > 0, so
that (5.28) is indeed well defined. For infinite divisibility, see Remark 5.51
below. O

THEOREM 5.30. Assume f,(Z) —, ¢ € (0,). Then

~ ~ Snk(rnk) Vnk(r"k)
(5.31) ‘/(S"k’ "’*)=°/(|Xnk(rnk)l’X3k(rnk))
- -Z(8., V).
Consequently,
S,
(5.32) £(T,) = Z(T,) E‘/(‘/Vc)'

Proor. To see that (5.32) follows from (5.31), note V > 1 > 0.
Turning to (5.31), assume f, (Z) —, c € (0, ). Given o, write [recalling
(2.9)]

$ - S.(r.) b ZJ‘. X, (r, +J) N "i’" X (r, +J)
n = ————[&; ——|§;
(533) !Xn(rn)l j=0 Xn(rn) ’ J=J+1 Xn(rn) ’

=0,(J) +ay(J).

Similarly, write
L V) & X, t)) S XA )
\% Y ) IA VLS

n = = ———
(534) Xr%(rn) j=0 Xr%(rn) Jj=J+1 Xr%(rn)
‘ v, (J) + vl(d),

(5.35) S, = Zse Tj/%e 4 Z g, i’ =o'(J) +o"(J)
j=J+1
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and

<

(5.36) V.= Y e/t Y e L/e=v(d)+v(J).
Jj=0 j=d+1

Here it may be advantageous to outline and motivate as well as explain the
technical proof to follow. It can be seen, via Lemma 4.9 and the representa-
tions in Section 3, that under the assumption fnk(Z) -, ¢ € (0,»), for each
fixed J the key collection of successive ratios of intermediate magnitude order
statistics {1X,, (r,, +J + DI/IX, (r,, +)I: 0<j<dJ -1} behaves asymp-
totically like an i.i.d. sample “from the distribution (e Eo/2¢), Since
X, (r, +7)/I1X,(r,)| is a telescoping product of intermediate ratios, when
combined with the independence of signs and magnitudes due to symmetry,
this crucial probabilistic consequence of the analytic assumption f,(Z) —, ¢
suggests that for each fixed J the pair (o, (J), v}, (J)) behaves asymptotlcally
like (0'(J), V'(J)). In order to be able to con81der J large enough to render
(a"(J), v"(J)) negligible via Lemma 5.26, we also need to have {(a,, (J), v}, (J):
Jo <J < N, )} uniformly negligible for some sufficiently large JO and some
N, — oo. This will be accomplished with the aid of Lemma 5.18, which applies
since here f, (Z) —, ¢ < «. The success in implementing this outline relies on
the ““suitability” of |X, (r )| as a normalizer for both the trimmed sum
S, (r,,) and the trimmed sum- -of-squares V, (1, )1/ 2, which is a consequence of
the assumption f, (Z) -, c.

Hereinafter, suppress the subscripts 2 in this proof. Let £ > 0, and let
d(-, - ) be any distance between probability measures, which metrizes weak
convergence. Note that

X,(r,+J)\ V(r, +J)
X, (r,) )Xf(rn+J)'

Fix integers 0 < N, < n — r, such that

(5.37) vi(J) = (

(5.38) N, - =, - 0.

r

By Lemma 5.18, choose R so that uniformlyin 0 <j < N,,
(5.39) P(V,(r, +7)/ X% (r, +j) = R) <¢g/8.

By Lemma 5.26, choose J; so that J > JJ, implies
P’ J t t
" — )< —

(" (J) = 16) 16

P(v”(J) > EE) <.

“ (5.40)
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Choose J, > J; so that J > J, implies

5.41 ple-tres 2 c
. /e > < —.
(5.41) ¢ 7 =6ar) " 32

Finally, choose J, = J,. Consider [recalling representation (3.2) and also (4.8)]
Xr%(rn) Xr%(rn—i_ 1) Xr%(rn-l_JO)
Xi(r,)' XA(r) T Xi(rw)

u, - <|

(5.42) = (1, 80 Zaos VPn (Zuo = Za))s- -

gn(ZnO’ \/E/(Zn() - ZnJO)))'
By Proposition 3.5, M,, — M,, =y 0, where
M, = 2(1,8,Z,E),....8.(Z, E, + -+ +E,))
> L(Le /e e /)
by lemma 4.9. Utilizing independence of {¢;}, {|X/[}, it follows that
(5.44) Z(03(J0), Vn(Jo)) = Z(0'(Jo), V' (Jo))-
It remains to consider the terms o} (Jy), vi(J,). Noting (5.41)-(5.43) and
the continuity of £(T; ), choose n, so that n > n, implies
X, (r. +do) )" €
>
X, (r,) ~ 64R

Now choose n; > n, so that n > n, implies N, > J, [using (5.38)]. Then
(5.37), (5.39) and (5.45) imply that for n > n,

(5.43)

£

. < —.
(5.45) P -

" 83 £
(546) P Un(JO) > a— < g

Computing conditionally as in (2.9), note that (5.46) and Markov’s inequal-
ity give, for n > n,,

3

P(a;;(Jo) > 2) sP(u;;(Jo) > %) +P(a;;(J0)21(v;;(JO) < %1—) > ;—4)

42 3
n 2 " 8
< + ?Ean(Jo) I(v,,(J(,) < a—)

| ™

(5.47)

L)

16 " " 3
+ ?Evn(JO)I Un(JO) < a

®| ™

16 &3 3e

264 8

IA
| ™

+
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To complete the argument, in (5.44), choose n, > n, so that n > n, implies
(548) (L (o), (), A (o' (F), ¥ () < 3
Combining (5.48) with (5.40), n > n, implies
(5.49) d(L(0U(Jo), Vu(do)), £(S,V)) < 2.

Assuming 0 <& <1 is small enough that £3/64 <¢/8, (5.46) and (5.47)
combine with (5.49) to yield, for n > n,,
€ 3¢ 6

(5.50) d(£(S,.V,), 2(8,V)) < = + St g -ge<e

Assertion (5.31) now follows. O

Consideration of a converse to Theorem 5.30 is complicated by the lack of
availability at this time, of general sufficient conditions (but see Section 7
below).

REMARK 5.51. The laws £(S, —¢,) and Z(V,) in (5.27) are infinitely
divisible. To see this, represent the series in (5.27) by stochastic integrals with
respect to Poisson processes. Let {N(2): ¢ > 0} be a symmetrized unit intensity
ordinary Poisson process with N(0) = 0 and let {N(¢): ¢ > 0} be the total-vari-
ation process from {N(¢): ¢ > 0} (so that {N(¢): ¢ > 0}~is a standard unit
intensity Poisson process]. Let ¢ ~ A be independent of N. Then (viewing the
integration sample-path-wise), we may write, in joint distribution,

(5.52) S,=¢+ fwh(t) dN(t), V.=1+ /mhz(t) dN(t),
0 0

where h(t) = e '/?°, Representation (5.52) is especially illuminating when
compared to the series representations for stable laws and companion sums-
of-squares laws consequent from the work of LePage, Woodroofe and Zinn
(1981); in our notation, when F is in the domain of attraction of a stable law
of index 0 < a < 2, there are constants {a,} such that

(559 (8,(1)/a,, Vi) /a2) > [at) aN(n), [[g) aN (),

where g(¢) = t~1/* [see also Csorgs, Haeusler and Mason (1988)]. Here, the
change from h to g (and from ¢ to a) highlights the role played by the
analytic condition f, (Z ) =, ¢ as analogous to the regular variation with
exponent —1/a of G~!; indeed, Lemma 4.9 shows that this analytic condition
forces a certain “local” regular variation in G~1.

6. Examples. It is convenient to note that one distribution can generate,
along different subsequences, every sort of behavior (and only those) consid-
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ered in Theorems 5.3 and 5.30 together with the asymptotic normality theo-
rem [(1.20) along {n,} < (1.22)] of Griffin and Mason (1990). That is, a
“limit-generating” law exists to exhibit these phenomena. The law selected
here is a fairly standard one for considering pathologies for limit theorems for
sums.

ExampLE 6.1. Let X be a symmetric random variable with continuous tail
satisfying

1
(6.2) G(t) =P(XI>t) = io_g—t’ t>e.
Then
6.3 K(t ' _Lewy ¢
(63) )~ Saogr? ~ 20O :
so that [recalling (1.14)], for each a € R,
1
(6.4) fu(@) = nK(b,(@)) ~ 5n(G(b(a)))
3 1 (r,— a\/a 1 r?
T2 (—T—) “2n
as n — .

Given any subsequence {r,, } such that r,, /y/n, = ¢ € [0, ], we have
cd
(6:5) Ful2) =5 5

c

(in fact, the convergence is almost sure). When 0 < c¢ < x,
Su(rn) V()
(an( ra)l” X2(r,)
by Theorem 5.18. Therefore, by Theorem 5.3,
Su(r) V()
(an(rn)l " X2(ry)
and finally, by the theorem in Griffin and Mason (1990),
(6.8) T, —p N(0,1) ®c = .

(66) ) _)D(Sc’ ‘lc) and Tn d)) Tc

(6.7) )—>D(8,1)©c=0©Tn—>D €

The key feature of the preceding example, namely (6.3), can be somewhat
generalized. For convenience, call a function W: (0, ) — (0,%) continuously
vanishing near 0 provided lim,  ,W(x) = 0, W is continuous, and near 0:

(6.9) x,— 0and y, ~x, = W(x,) ~ W(y,)-
Also, recall the notation of (1.11).



480 M. G. HAHN AND D. C. WEINER

ProposiTiON 6.10. Suppose
(6.11) K(t) = W(G(?)),
where W is continuously vanishing near 0. Then, given 0 < ¢ < «, there exists
integers r,, — % such that r,/n — 0 and

r
12 = :
(6.12) nW( " ) -c
Then (6.6) holds if 0 < c¢ < », and (6.7) and (6.8) each hold.

ProoF. Certainly x, — 0 exists such that nW(x,) — c, using the proper-
ties of W. Thus arrange integers r,, with r,/n ~ x,, and then (6.12) holds via
(6.9).

Then, for each a € R, by (1.14) and (6.9),

f(@) = nK(b,()) = nW(G(b,(a))) = nW

=25

(6.13)
~ nW(%) - c.
Thus
(6.14) fu(Z) =, c €[0,],

so that Theorems 5.3, 5.18 and the Griffin-Mason (1990) result each apply as
in (6.6)-(6.8). O

Proposition 6.10 shows that in order for “3 ¢ € [0, %], f, (Z) —, ¢” to fail,
the tail G should be quite irregular. Section 7 discusses further results in the
direction of constructing ‘“limit-generating laws” for the most general kinds of
behavior of { f,(Z)}. [See also Hahn and Weiner (1990).]

REMARK 6.15. In order that in Example 6.1, there exist constants d, such
that for some probability measure u # 8y, S,(r,)/d, =p i, it is necessary
and sufficient that r,,/n?/® — ¢ for some 0 < ¢ < », with asymptotic normality
if and only if ¢ = « [see Griffin and Pruitt (1987)]. In example 6.1, even when
0 < ¢ < », such {r,} would lead directly to asymptotic normality for T, =
S,(r,)/ VV,(r,) . In fact, for r, ~ Vn, we have S,(r,)//V,(r,) converging
in distribution, but for no {d,} will {£(S,(r,)/d,)} even be stochastically
compact. Thus here, studentization partially compensates for the asymptotic-
normality-damaging extreme values, even when constant normalization could
not.

7. Progress toward the general case. In analogy with the case
‘ﬁk(Z) -, », Theorems 5.3 and 5.30 together cover the cases of constant
convergence f,(Z) -, ¢ € [0, ®). In general, of course, {T} is stochastically
compact (by Proposition 2.1) and {-£(f,(Z))} is relatively compact in the
topology of vague convergence. Thus, at least when considering sufficient
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conditions for #(T,,) — v and identification of possible limit laws v, we may
assume _Z(f, (Z)) - p vaguely, where p is a probability measure on [0, ].

Now, the key to our present approach is the derivation of the form of the
limit laws for intermediate successive ratios |X,(r, + 1)/X,(r,)| along the
subsequence, that is, determining almost sure limits (along further subse-
quences) for {b,(Z — E,/ \/;,: )/b,(Z)} explicitly represented as functions of
(Z, E,), in order to determine the asymptotic dependence (if any) among ratios
(IX(r, +j + DI/IX,(r, +j)I: 0 <j<dJ}. Unfortunately, this approach de-
pends on convergence in probability for {f,(Z)}, rather than the vague
convergence we are allowed to assume. (Of course, this holds when u =§,,
0<c<w»)

Using methods similar to those developed here, with suitable refinements,
but involving considerably more technical difficulties, it is possible to prove the
following theorem, covering the case f,(Z) —, f(Z) € [0,«], together with
construction of “limit-generating”’ examples. The details appear in Hahn and
Weiner (1990).

THEOREM. Let F be continuous, symmetric and nondegenerate. Assume
(7.1) folZ) =, 1(2),
where f: R = [0, ] is Lebesgue measurable. Then
A(T,) = Z(Su(0) /YY) )
> 1IN0, 1) + vp8 + 5-2((S//V, )0 < £(2) < o),
where y, = P(f(Z) = ), y, = P(f(Z) = 0), y3=1— v, — v and

— -I,/@Qf(Z
S;= Y e /IO,
Jj=0

(7.2)

(7.3) ®
Vo= ¥ e U/,

Jj=0
Here Z is independent of {&;} and {I}}. Moreover, there exist {r,} and F such
that r, > «, r,/n = 0, and such that given f, for some {n,}, (7.1)-(7.3) all
hold.
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