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ON THE PARABOLIC MARTIN BOUNDARY OF THE
ORNSTEIN-UHLENBECK OPERATOR ON WIENER SPACE

By MicHAEL ROCKNER

Rheinische Friedrich-Wilhelms-Universitdt, Bonn

We study the positive parabolic functions of the Ornstein—Uhlenbeck
operator on an abstract Wiener space E using the approach developed by
Dynkin. This involves first proving a characterization of the entrance space
of the corresponding Ornstein-Uhlenbeck semigroup and deriving an inte-
gral representation for an arbitrary entrance law in terms of extreme ones.
It is shown that the Cameron-Martin densities are extreme parabolic
functions, but that if dim E = «, not every positive parabolic function has
an integral representation in terms of those (which is in contrast to the
finite-dimensional case). Furthermore, conditions for a parabolic function
to be representable in terms of Cameron—Martin densities are proved.

1. Introduction. In recent years there has been considerable interest in
the elliptic and parabolic Martin boundaries of the Ornstein—Uhleénbeck opera-
tor /process on R? (cf. [30], [8] and [21]). More recently, Taylor [35], [36]
(among other things) obtained some results for the corresponding infinite-
dimensional situation, that is, for the Ornstein—Uhlenbeck process on Wiener
space, and suggested looking at its harmonic and parabolic functions in further
detail.

In this paper we take up Taylor’s suggestion and concentrate on the
square-integrable parabolic functions on an abstract Wiener space (E, H, u). A
family p = (p(¢, - ), of functions in (real) L%(E; ) is called (L-) parabolic
if p(t,-) € D(L) and

d
(1.1) Lp(t,-) = E;p(t,'), teR

(cf. Definition 3.1 below), where L is the Ornstein—Uhlenbeck operator on E,
that is, the L2(E;u)-generator of the transition function (7,),,, of the
Ornstein—Uhlenbeck process on E. Let & denote the convex set of all positive
parabolic functions on E normalized so that [pp(¢,2)u(dz) =1, t € R. We
study its extreme points and discuss integral representations for any p € & in
terms of them. Our approach to this problem is entirely in the spirit of Dynkin
(cf. [9]-[12]; see also [14] for the case of random fields). It can be roughly
described as follows: One considers the entrance law u, == p(¢, - )u, t € R, for
()50 given by p € & and constructs a probability measure P on the space
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1064 M. ROCKNER

Q = C(R, E) of continuous functions from R to E such that the canonical
coordinate process X,: ) — E, t € R, is Markovian, has entrance law (u,),c g
and transition function (m,),.,. If .# denotes the convex set of all such
probability measures on ) and .#, its extreme points, a fundamental result
by Dynkin (cf. [12]) states that an arbitrary P € .# can be represented as an
integral of elements in .#,. This induces a corresponding representation for all
the entrance laws of (7,),., which in many cases gives a representation for
the densities p(z, - ), t € R.

A major step to implement the above program is to characterize .#,. We
prove in Theorem 2.7 that .#, and hence the extreme entrance laws are
parametrized by E. The methods to derive this result are quite similar to those
in [29], Section 4 (see also [28] and for the case of random fields [26], [27]),
where such a characterization was proved for a much more difficult case,
namely for the Ornstein—Uhlenbeck process associated with the free quantum
field (cf. Remark 2.12(iii) below and also Remark 2.9 concerning the precise
relation with the recent results in [13]). The tools that we develop to prove this
fact are also used to prove Dynkin’s representation theorem in this particular
case (Theorem 2.10) and to obtain more precise information about the repre-
senting measures.

In Section 3 we then consider whether the resulting representation for the
entrance laws (cf. Corollary 2.11 below) implies a representation for ele-
ments in &. The main difference from the cases studied in [9]-[12] is that if
dim E = + there is no transition density, that is, 7, is not absolutely
continuous with respect to a fixed reference measure for all ¢ > 0. (Note that
the same is true for the corresponding resolvent kernels so that [19] is also not
applicable.) In fact, it turns out that here the situation is entirely different
from the finite-dimensional case. On the one hand the extreme entrance laws
parametrized by h € H(C E) are absolutely continuous with respect to u and
their Radon-Nikodym derivatives, the Cameron-Martin densities p”, are
extreme points of &. In contrast to the finite-dimensional case, however, not
every p € & can be represented as an integral over p”, h € H (Example 3.10)
as H # E in an abstract infinite-dimensional Wiener space. Let &, be the
convex set generated by p*, h € H. For this subcone of & a characterization
and representation theorem is proved (Theorem 3.7). A rather mild condition
on Vp(¢, - ) ensures that p € &, (Theorem 3.11) and furthermore we show
that p € &, if p € & such that p(¢, - ) € L*(E; ) for some ¢ € R (Theorem
3.14).

By using an abstract Wiener space we reprove the integral representation
theorem for the finite-dimensional case. In the case of the classical Wiener
space, a result about the exit space that corresponds to Theorem 2.7 was
obtained independently by Féllmer [15].

2. Characterization of the entrance space and integral representa-
tion. Let (E, H, u) be an abstract Wiener space (cf. [17] and also [18] and
[37), that is, E is a separable real Banach space, u is a Gaussian mean zero
measure on (E, Z(E)) with u(U) > 0 for each open nonempty subset U of E
and (H, {,)y) is a real separable Hilbert space such that H c E continuously
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and densely and for all ,,1, € E’,
[E w1y, Y (ly, 2)pu(dz) = (1}, l)n.

Here #(E) denotes the Borel o-algebra on E and E’ the (topological) dual of
E. We have that E’' ¢ H C E continuously and densely, and 5, ) restricted
to E' X H coincides with (,)y. “Gaussian’’ means that each / € E’ has a
Gaussian distribution in R under u [i.e., is N(O, || |1%)-distributed, where
Il |z = ¢, Y4?]. Besides the operator norm | ||z, we will also consider the
weak*-topology on E'. Recall that B/, := {l € E'|||llllg < n}, n €]0, [, equipped
with the weak®*-topology is compact and metrizable, hence, in particular,
separable. Let D, be a countable weak*-dense subset of B}, n € N, such that
D,cD,,, forall n €N, and let D, be its Q-linear span. Define

(2.0) Dy=UD

neN

n-

Define the semigroup (7,),., on the nonnegative #(E)-measurable func-
tions u by Mehler’s formula

m(z,u) = fEu(z')wt(z,dz')
(2.1)
= fu(e‘tz +V1l-e %2 )u(de), ¢=0,z€E.
E

As usual we set = C(R, E), X(0) = 0(?), w € Q,t ER,
F=o{Xt€R} and & =o{X]s<t}, teR.
Let .# be the convex set of all probability measures P on (2, &) such that
(2.2) Ep[X,€de|lF, | = m,_(X,,dz) forallt,s R, ¢t>s.
In this section we characterize
(2.3) #, = extreme points of .#

and show that every P € .# has an integral representation in terms of them.
We recall that a family (u,), . of probability measures on (E, #(E)) is called
an entrance law (cf. [9]-[12]) if

(2.4) wems = p,,, forallteR,s >0,

that is, (7 (z, B)u,(dz) = u,,(B) for all B € #(E). By considering the corre-
sponding Fourier transforms, we obtain

(2.5) um,=pn forallt >0,

that is, u is an invariant measure for (m,),, o, in particular an entrance law.

ProposiTION 2.1. Let P € .# and set
(2.6) w,=Po X 1 teR

(i.e., the one-dimensional marginals of P). Then (u,), g is an entrance law.
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Conversely, for each entrance law (u,),cg on (E, B(E)) there exists a unique
P € # satisfying (2.6). In particular, there exists P, € .# with entrance
law .

Proor. The first part is obvious. To prove the second part, note that by
Kolmogorov’s existence theorem there is a unique probability measure P on
(ER, o) (where & is the o-algebra generated by the canonical projections X,:

E® 5 E) such that for —0<ty< - <t,<wand A,...,A, € B(E),
B[X, cA,... X, €A,
(2.7)

= [ .[ o f Trtn—tn—l(xn—l’ dxn) T ‘n-tl—to(x07 dxl)"“‘to(de)'
Ay A, A,

We have to show the existence of a probability measure P on ({2, %) having
the same finite-dimensional distributions as P. We shall do this in two steps
and consider first the special case where u, = u for all ¢ € R. Then for ¢ > s
and all o > 0,

JIX, — X5 dP = [lly - 2lgm,_(y, dz)n(dy)
= [l = ey = VT = e 22 u(dz) u(dy)
<2%(1 - e““”)“/z[f”\/l——?my lew(dy)
+ [T+ e u(an)|

< 217272t — 5)*"? [llzlgu(dz).

But [llzllgu(dz) < © by the Fernique-Skorohod theorem (cf. [34], Theorem
(3.41)). Consequently, by the Kolmogorov—Prohorov continuity criterion, P
gives rise to a probability measure P, on (Q, &) with the same finite-dimen-
sional distributions. In the general case by ([6], 63.5, and the following
remark), it suffices to prove that for each fixed ¢, € R there is a probability
measure P, on (Q, &) such that for all tg <t < o <E, <o A, ..,
A, e B(E), P,[X, €A,...,X, €A,] is given by the right-hand side of
(2 7) with A, = ’E.
Define for z € E, 0,: Q —» Q by

w(t) +e 7 (z —w(ty)), ift=>¢,,
(@) (¢ .
0.(w)(t) = if £ <t,,

for o € Q, and let P, = P, > @' (where P, is as in step 1). Define

= fEPz [..Lto( dz).
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Then P, is a probability measure on (£2, &) and considering the correspond-
ing Fourier transforms we see that the finite-dimensional distributions are as
required (cf. [29], proof of 2.4). O

REMARK 2.2. (i) Note that under P,, (X,),cp is just the Ornstein—
Uhlenbeck process on E.

(ii) By the special form of (7,), . , and the martingale convergence theorem,
it is easy to see that P € .# if and only if

Eplexp(ip(l, X)e) % | = mi_o(X,, exp(ig{l, - dg)), P-as.,

for all s,z € Q, s < ¢ and all [ € D,. Note that these are only countably many
conditions (which will be important below in order to ‘‘control” zero sets).

(iii) Let P €.#. Since (Q, %) is standard Borel (cf. [23], Chapter V,
Definition 2.2), there exists a regular conditional probability [17(w, de’) given
Z .. Since each & is countably generated, by (i) we see that I1%(w, - ) € .#
for P-a.e. w € Q. (Later it will turn out that in fact we can replace .# by .Z,
here.)

Define for w € Q, T (¢') = &' + 0, o' € Q, and for P € .# denote its image
measure under T, by P o T, !. Correspondingly, for z € E define T,(2') == 2’ +
2,2 €E, and vo T, ! for a positive measure v on (E, Z(E)). Furthermore,
define for z € E, K, € Q by

(2.8) K, (t)=e'z, te€R.

ProposITION 2.3. (i) Let P € .#. Then P - T,gzl € # for each z € E.

() Let o = (w(®)),cg € E®. Then (n°T,}),cr is an entrance law for
(m,) i20, if and only if w(t) =e 'z for all t € R for some z € E. In this case
P, o TK is the corresponding element in 4 with entrance law (i Ty}, cg-

Proor. (i) (2.1) implies that for nonnegative #(E)-measurable u,
(2.9) 7z, u(-+20)) = (2 + e'zg,u), t>0;2,20€E.

Now (i) is obvious.
(i) We have for p, = p°T,;,t €R,andall /€ E' and t € R, s > 0,

jEexp(iE,a, 2)u)ers(d2) = explipl, o(t + 5))5 — HII%]

and by (2.9) and (2.5),
was(z,eXP(iE&l, )E))m(dz)
= exp[ig(l, e *0(t))5] [Ews(z,exp(iE,a, Ye))u(dz)

= exp[iE,<l, e o(t))E — %lll”%z]-



1068 M. ROCKNER

Defining z := w(0), we obtain the first part of (ii). The second part follows from
Proposition 2.1 and (). O

For the reader’s convenience the following folklore lemma is proved in the
Appendix.

LEmMMA 2.4. Let P €.#; then P € .#, if and only if P(F)=1 or 0 for
every F € &__, where

(2.10) Fw=NF.

teR
PropositioN 2.5. P(F)=1or 0 for Fe ¥_,.

Proor. By Remark 2.2 (iii) (first half) and because of the one-to-one
correspondence between entrance laws and elements in .#, it suffices to prove
that P, — as,,

Ep [exp(ip (L, X,5) 5]

(2.11)
= [ exp(ig<l, X)) dP, forallt€Q,!leD,.

So, let t € Q, I € D,. By the reverse martingale convergence theorem, it
follows since P, € .#, that P, — as,,

Ep [exp(ipl, X)) F_.]
= ’}i_I)T:OEP”[eXP(iE/U, X)eNF,]

(2.12) = lim exp(ie™“*"p (1, X_,)x — 3(1 — e X))

= exp( - 3llLl%)
= fexp(iErU, X)k) dp,,

where in step 2 we used (2.1) and in step 3 we used the fact that
lim, ,.,eX_,=0,P, —as.since P,o X; ' =y for all £ € R and hence

(2.13) Y f(e-"E,u, X_8)dP, = ¥ e ?lll} < . O
n=1 n=1

Below we shall make use of the following well-known lemma whose proof is
a simple application of some basic facts in functional analysis. For complete-
ness we also include this proof in the Appendix.

LEmMA 2.6. Let v be a (not necessarily mean zero) Gaussian measure on
(E, B(E)) and u € LP(E;v) for some p €]1,=[. Then there exists z, € E such
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that

(2.14) [E,<l, 2dpu(2)v(dz) =g {l,2,05 foralll €E'.

We now prove the characterization of .Z,.
THEOREM 2.7. 4, ={P,°Tg'lz € E}.

Proor. Let z € E. By Proposition 2.3() we know that P, o TK1 € .# and
since F ¢ %__ implies that F — 0 = {0 — w|low' € F} € %__, for ‘all w € Q,
we conclude that P, o TK is trivial on &, since so is P, (by Proposmon 2.5).
Hence the set on the rlght hand side is contalned in ,/ by Lemma 2.4. To
show the dual inclusion, let P € .#,. Fix t € R and let L, be a countable dense
subset of LL(R;ds) (= all complex valued Lebesgue 1ntegrable functions on
R). Since P is trivial on %__, and belongs to .#, the reverse martingale
convergence theorem and Fubini’s theorem imply that there exists w € ()
such that for all fe€ L, and I € D,

[£(s) [ exp(isp 1, X,)5) dPds
- lim B, [ f(s)exp(isp <1, X35 dol 5, ()

(2.15)

lim [ £(8)m.n(X_o(@), exp(isg (L, - )5)) ds

lim [f(s)exp(ise™**"p(l, X_,())z

—3s%(1 - e'z(“'”))lllll%{) ds.

By Lemma 2.8 below it follows that <!, X,)r is Gaussian under P with
variance ||I||% for all [ € D,. Hence (e.g., by [22], Lemma 1.5) the same holds
for all [ € E', that is, u, == P X; ! is Gaussian on E with the same covari-
ance as . Lemma 2.6 implies that its mean w(¢) belongs to E; thus u, =
po Tyt Since P € .#, (u,), g is an entrance law for (7Tt)t207 consequently by
Proposition 2.3(ii), P = P, o TK1 for some z € E. It remains to prove Lemma
2.8 (cf. [26], Proposition 8 2).

LEmMMA 2.8. Let p,, n €N, and p be probability measures on R and L, a

dense subset of LL(R; ds). Assume that for the corresponding Fourier trans-
forms p,, n €N, and P,

(2.16) lim [fp,ds = [fids foreachfe L.
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Then (p,,), <n converges weakly to p. If, in addition, all p, are Gaussian with
means m,, such that their variances (o,), cn converge to o, then p is Gauss-
ian with variance o and mean m = lim, _, ,m,,.

Proor. Since |3,|, || < 1 on R, (2.16) holds for all f € Lt(R;ds). Now the
proof of the first part is analogous to the converse of Levy s continuity
theorem (cf. [6], Proof of Theorem 48.7, for the version we have in mind). If
all p, are Gaussian and lim, _,, 0, = o, then by Lévy’s continuity theorem
p,(s) =, .p(s) and hence exp(ism,) = ,_.¢(s) locally uniformly in
s € R for some continuous function ¢ on R; consequently, the Dirac measures
(£,,,)n en Weakly converge. It follows that m = lim, ,,m, exists in R and
hence p(s) = exp(ism — 1s%02). O

REMARK 2.9. In the case where E is a conuclear space instead of a Banach
space there is a result by Dynkin (cf. [13], Theorem 5.1) related to Theorem 2.7
above, but instead of .# only a subclass .#' is considered. It consists of all
P € .# having the property that for t € R, | = [p{l,X,)rdP, | € E/,
weak*-continuous. However, in the conuclear case, [13] also treats the tlme-
inhomogeneous case.

Now, we shall prove the integral representation mentioned above. We
emphasize that [10], Theorems 3.1 and 2.1, or [12], Theorem 9.1, are not
directly applicable since in those references (= C(R, E)) is replaced by E®.
With some work, it is of course possible to reduce our situation to those
general theorems. We prefer to give a direct proof which uses the Gaussian
nature of our case to obtain additional specific information on how to obtain
the representing measure corresponding to a given P € /.

THEOREM 2.10. There exists an .,/ $measurable map M: Q — Q with
M(Q) = {K,|z € E} [cf. (2.8)] such that for every P € 4,

(2.17) P(F) = fEP#(F - K,)mp(dz), FeF,

where mp is the probability measure on (E, #(E)) defined by
(2.18) mp(B) = P{w € Q|M(w)(0) € B}, Be #(E).

Moreover, (2.17) establishes a one-to-one correspondence between probability
measures on (E, #(E)) and elements in 4.

Proor. Define the linear space
(2.19) Q= {w € Qlz(w) = lim 5 (I, e "w(—n))x exists for each I € Do}.

Clearly, Q, € &_,, and for v € Q, the map ! — z,(w) is Q-linear on D,. Now
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we define the linear space
Q, = {w € Qglthere exists a(w) € E such that
z{w) =g{l,a(w))g forall I € Dy}.

Note that a(w) defined in (2.20) is unique. It is shown in the Appendix that
O, € #_,. Define M(w): R - E, w € Q, by

(2.20)

e~'a(w), fweq,,

(2.21) M(w)(t) = 0, foe\Q,.

Then M(w) € O [= C(R, E)] and the map M: w » M(w), w € Q, is ¥_,./ F
measurable. Furthermore, we see that

(2.22)  Mlg, islinear, K, € Q, and M(K,) = K, forall z € E.

[Hence, M(Q) c O, and M2 = M by (2.21).]
Now we define a probability kernel IT: Q) X % — [0, 1] by

M(w,F) = P(F - M(w)), we€Q,FeZF

Clearly, w —» Il(w, F), w € Q, is &%__ -measurable for every F € & by (the
first half of) Fubini’s theorem. Furthermore, we know by (2.21) and Theorem
2.7 that Il(w, - ) € #, for all w € Q.

Let P € .#. Let IIP: O X % — [0, 1] be a regular conditional probability of
P given %__ such that [1?(w, - ) € # for each w € Q [cf. Remark 2.2 (iii)].
Let L, be a countable dense subset of LL(R;ds). By the reverse martingale
convergence theorem, there exists a set (), € & with P(Q,) = 1 such that for
every w € (),

[£(s) [ exp(isg (1, X('))e)1" (0, dw) ds

(2.23) = lim ff(s)fexp(ise~(t+n)E,<l, X _(0))E

— 1s%(1 - e~2* M) 1]%) ds

forall feL,, |l €D, and t € Q [cf. (2.15)]. Fix w € Q,. By Lemma 2.8 and
[22], Lemma 1.5, it follows that I1P(w, - )o X; ! is Gaussian on E with the
same covariance as u for every ¢ € R. Lemma 2.6 implies that its mean
S(w)Xt) belongs to E. Thus

P(w, )e X;'=peTslyy, tER.

Since I1P(w, - ) € #, Proposition 2.3(ii) implies that S(w) € Q, S(wXt) =
e ‘S(wX0), t €R, and that I1"(w, ) =P,oTgi, Since by Lemma 2.8,
2{l, S(wX0))g = lim, _, p{l,e " X_ (w)g for all | € D,, it follows that w €
Q, and that S(w) = M(w). Hence we have shown that

NP(w,") =P,°Ty, forP—ae o€;
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in particular, for each F € &,
[FdP = [Ep[FI#_.] dP

= [P(F - M(w))P(dw)
(2.24)

= [PF ~ Kyguxe)) P(d)
= [P(F - K,)mp(dz),

where m , is defined by (2.18), and the first half of the assertion is proved. To
prove uniqueness, we note that (2.13) clearly implies that P,(Q,) = 1 and that

(2.25) M(w)=0 forP, —ae w<.

Hence if / is another probability measure on (E, #(E)) such that (2.17)
holds, it follows by (2.22) that for each B € #(E), if F := {w € QIM(w)X0) €
B},

mp(B) = P(F) = [ [15(w + K,) P,(dw)h(dz)

= [ [15(M(©)(0) + 2) B,(dw)m(dz)
=m(B).
Furthermore, let m be any probability measure on (E, Z(E)) and define

P(F) = [P(F-K,)m(dz), Fe &

To prove that P& .#, let ¢t >s and let f be a bounded, #-measurable
function on Q. Then for each bounded %(E )-measurable function « on E,

ffu(X,) dpP = fff(a) + K,)u(X,(0) + e~%2) P,(dw) m(dz)
= [[f(o + K)m,_ (X () + e *2,u)P(dw) m(dz)

= [fm (X, u)dP,

where in the second step we used that f(-+ K,) is also % -measurable and
(2.9). Hence P € .# and the proof is complete. O

As an immediate consequence of Theorem 2.10 and Proposition 2.1, we
obtain a corresponding statement for the convex set of entrance laws.
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CoroLLARY 2.11. Let (u,), g be an entrance law for (w,),. . Then there
exists a unique probability measure m on (E, #(E)) such that

(2.26) w, = f o T hm(dz), teR.

In particular, (u,), g is extreme if and only if u, = u°T,-1,, t € R, for some
z€E.

REMARK 2.12. (i) Theorems 2.7 and 2.10 say that E itself is the entrance
space for (1,),. , in the sense of [9], [10] and [12].

(ii) Obviously, each probability measure m on (E, #(E)) defines an en-
trance law for (7,), . o by (2.26). Corollary 2.11 implies, in particular, that u is
the unique invariant measure for (1), . ,.

(iii) For simplicity, here we have only presented the case where (m,),. , is
given by (2.1). The same methods work for transition semigroups of more
general Ornstein—Uhlenbeck processes on E (e.g., those where the drifts are
given by bounded symmetric linear operators A rather than the identity). We
refer in particular to [28] and [29] where the case of A=V— A+ 1 was
solved. This case is much more difficult since A is not bounded and does not
have discrete spectrum.

3. Representation of positive parabolic functions. In this section we
will apply Theorem 2.10 to obtain a representation of a class of positive
parabolic functions on E in terms of extreme ones using Dynkin’s method.
However, as explained in Section 1, those final results in [9]-[12] and [19],
which concern the representation of parabolic functions, are not applicable
here. We need some preparations.

We denote the usual inner product in (real) L*(E;u) by (,),. We have for
every m,, t > 0, as in (2.1) that

(3.1) fuqrt(',v) du=f77't(-,u)vdp,
for all bounded #(E)-measurable u,v: E — R. Hence for each ¢ > 0,
(3.2) T =m(",u), u #( E)-measurable, bounded,

defines an operator on L2%(E;u) which extends uniquely to a symmetric
contraction T, on L2%(E;u) (cf. [16], Section 1.4) such that (T,),., is a
semigroup of Markovian operators on L%(E;u) (ie., 0 < T,u <1, p-ae. if
0<ux<1,pu-ae) (T),,, is analytic on L¥(E;u) for all 1 < p < = (cf, e.g.,
[25], Theorem X.55) and hypercontractive (cf. [25], Theorem X.61). Let L be
the associated generator. L is the well-known Ornstein—Uhlenbeck operator
on Wiener space (cf. [20] and [37]). Set

FC>:={u:E->Rlu=f(,,...,1,) forsome m €N,

(3.3)
feC*(R™)andl,,...,1, €E')
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and define FCy (resp. Pol) as those subsets of #C> for which f [in (3.3)] and
all its partial derivatives are bounded (resp. f is a polynomial in m variables).
For u € ¥C” and k € E we define

3.4 ou d k E
. —(2) =— €E.
(34) o (P = ggulztsk) Lo 2

Then for z € E we define Vu(z) to be the unique element in H representing
the continuous linear map %k — (du/dkXz), k € H. It is well known that
FCy U Pol c D(L) and that if w =f(,...,1,) € FC; U Pol and
ki, ...,ky € E' form an orthonormal system in H having [,,...,[,, in their
linear span, then

2 u
ok, | ok,

du
ok,

N N
(3.5) Lu= % = L p{kn, )k
n=1 n=1

Furthermore, both #C; and Pol are (operator) cores for L; hence L is
uniquely determined by (3.5) (cf., e.g., [3], Section 7, Part I, resp. [37], for
details). The quadratic form (&, D(&)) associated to L on L*(E;pu) lie.,
&(u,v) = (V= Lu,V~- Lv), with domain D(¢&) := D(¥— L)] is the closure of

é(u,v) = f(Vu,Vv)H du, u,ve FCy

(cf. [3], Section 7, Fart I); it is therefore a classical Dirichlet form in the sense
of [1-5]. Below we also denote the closure of the operator V: #C; — LA E —
H; u) by V and hence

(3.6) &E(u,v) = f(Vu,Vv)Hd,u, for all u,v € D(&).

DEFINITION 3.1. Let p := (p(¢, - )),<r be a family of functions on E. p is
called L-parabolic (on E) if p(t,-) € D(L) for each t € R, t — p(t, ) is
differentiable as a map from R to L*(E;u) and

d
(37 Lp(t,) = Zp(t),  teR

REMARK 3.2. In [9] a positive function p on R X E is called P,-harmonic if
(p(t, X,), &, P,); g is a martingale. There is clearly a one-to-one correspon-
dence between P,-harmonic functions such that [p(¢, 2)u(dz) =1 for all
t € R, and Radon-Nikodym derivatives du,/du =: p(t, - ), t € R, of entrance
laws (u,), <g for (m,),, o. By the following proposition it follows that (up to a
constant) our L-parabolic functions are exactly those P,-harmonic functions of
Dynkin which are in L2(E; u) for each fixed ¢ € R.
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ProposITION 3.3. Let p == (p(t, * ), g be a family of positive functions on
E. Then the following are equivalent:

(i) p is L-parabolic.
(ii) There exists a constant ¢, > 0 such that

(3.8) wo=cy'p(t,u,  tER,

is an entrance law for (,),. o, and there exists arbitrarily small t € R such
that p(t, - ) € LY(E; 1) for one (resp. all) 1 < q < o,

In this case [p(¢, 2)u(dzX= c,) is independent of t € R.

ProorF. Assume (i). By the product rule we have for all s € R, ¢ > 0,

d d
EZ(Ttp(s -1, )) = Tt(Lp(s -, )) + Tt(&;(p(s -t ))) = 0.

Since T, is the identity on L%(E; ), it follows that T,p(s — ¢, - ) = p(s, - ) for
all s €R, ¢t > 0. Hence by hypercontractivity p(s, :) € L(E;u) for all 1 <
g < «. By (3.2) and symmetry, (ii) now follows with c, = [p(¢, 2)u(dz), which
is independent of ¢ since T,1 =1, ¢ > 0.

Assume (ii) for some g > 1. Then by (3.2), T,p(s, ) =p(s + ¢, ) for all
s € R, t > 0; thus by hypercontractivity p(¢, - ) € L E; u) for all ¢ € R. Since
(T,), . is analytic, hence T,u € D(L) for all u € LXE;u), t > 0, it follows
that p(¢, - ) € D(L), that ¢ — p(¢, - ) is differentiable and that (d/dt)p(t, - ) =
Lp(t,-), teR. O

DEFINITION 3.4. A positive L-parabolic function p = (p(¢, - ), < is called
normalized if [p(t,2)u(dz) =1 for all ¢ € R (cf. Proposition 3.3). Let &
denote the convex set of all normalized positive L-parabolic functions on E.

Examples of normalized positive L-parabolic functions are given by the
Cameron~Martin densities defined for ¢t € R, h € H by

d(peT,h,)
du

(cf. Lemma A.2). Here X,():=lim,_ . z<{k,, g in L*E;u) for any se-
quence (k,), .y in E’ converging to k& in H.

(3.9) p(t,2) = (2) = exp(e'X,(2) — 3¢ ¥IRl%), z<€E

LeEmMA 8.5. p":=(p*(t, )),cg € & for each h € H.

ProOF. Note that p”(t,-) € LE; u) for all ¢t € R. Using (2.1), we have
that for each ¢t € R, T(exp X;,) = exp(e~* X, )exp[2(1 — e~ 2)||hl%]. Now ¢ —
exp(e'X,) € L%(E; ) is differentiable and

d/dtexp(e™'X,) = —e ‘X, exp(e~'X,,).
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Consequently, p”(t, - ) € D(L) and

Lp"(t,-) = (e IIhll} — e~*X,)p"(2, ") = —ph(t ), teR. O

REMARK 3.6. (i) Note that by [11], Lemma 4.1, for ¢ € R we can choose
w-versions of p”(¢, - ), hence of X, so that (k, z) = p”(¢, z) and hence (h, 2)
— X,(2) is #(H) ® #(E)-measurable. Here #(H) denotes the Borel o-alge-
bra on H. We will always use these particular versions below without further
notice.

(ii) Let k € H. Since the entrance law u” = p*(t, - )u, t € R, given by p*
according to Proposition 3.3, is extreme by Corollary 2.11, p”* is extreme in Z.

(iii) It is well known that u o T, !, z € E, is absolutely continuous w.r.t. u if
and only if z€ H (cf. Lemma A.2 below). Therefore, the entrance laws
peT;-1,, z € E \ H, do not have densities w.r.t. u and hence do not give rise
to extreme L-parabolic functions.

We now prove the following representation theorem for a subclass of &.

THEOREM 3.7. Letp = (p(t, - ));cg € & and let m, be the unique probabil-
ity measure on (E, #(E)) representing the corresponding entrance law p, :=
p(t, - u, t € R. Suppose that m ,(H) = 1, then

(3.10) p(t,2) = prh(t,z)mP(dh), teR, foru-a.e.z€E.

(p"(t, - ),cr, h € H, are exactly the extreme functions of the convex set P,
consisting of all p € £ with m (H) = 1.

Proor. By Corollary 2.11 and (3.9),

p(t,2)u(dz) = [p"(t,2)u(dz)m,(dh);

hence by Remark 3.6 (i) and Fubini’s theorem, (3.10) follows The rest of the
assertion is obvious. O

ReEMARK 3.8. (i) Note that &, is a so-called face of &.

(i) If dim E < «, that is, E = R¢, then E = H; hence m,(H) =m,(E)=1
and (3.10) holds for each p € &. Thus we have reproved the finite-dimen-
sional case (cf. [30] and [8]). Here, in particular, by (2.26) and Remark 3.6 (iii),
each entrance law for (m,),,, is absolutely continuous w.r.t. u. Hence by
Proposition 3.3 the corresponding family of densities is in & if they are in
L9(E; u) for some q > 1.

One can also use (3.10) to construct L-parabolic functions since we have the
following proposition.
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PRoOPOSITION 3.9. Let m be a probability measure on (E, #(E)) such that
m(H) = 1 and let p :== (p(¢, - ));cr be defined by

(3.11) p(t,2) = [p"(t,z)m(dk), tER,z€E.

Then the following assertions are equivalent:

(i) p is L-parabolic.
Gi) [5 /[y exple 2, W Yg)m(dh)m(dh) < © for all t € R.

ProoF. Since each (p"(¢, - )u),cr, b € H, is an entrance law, it follows by
Remark 3.6(i) and Fubini’s theorem that (p(¢, - )u); < is an entrance law for
(7,), - o- Hence by Proposition 3.3, (i) is equivalent with p(¢, - ) € L%(E; ) for
all ¢t € R. But

[p(t.2)’u(dz) = [ [ [p"(t,2)p" (¢, 2)u(dz)m(dh) m(dk')

= [ [ exp(e~*(h, )u)m(dh) m(dK),

where again we used Fubini’s theorem and the formula for the Laplace
transform of a Gaussian measure on R. Hence the equivalence of (i) and (ii)
follows. O

Unfortunately, the assumption m ,(H) = 1 in Theorem 3.7, which is crucial
for the representation (3.10), is not always fulfilled for any p € &. We shall
construct a function p € & such that even m (H) = 0. In the case of the
classical Wiener space an example of an entrance law u, == p(t, - Ju, t € R,
such that m ,(H) = 0 has also been constructed by Follmer using a slightly
different technique based on a theorem by Kakutani (cf. [15]). We believe that
also in Follmer’s example (p(¢, - )), < is in fact L-parabolic.

ExampLE 3.10. Suppose that E (or equivalently H) is infinite dimensional.
Let A, €]0,%[, n € N, such that % _;A, = +©and £%_;A% <. Let {k,|n €
N} € E’ be an orthonormal basis of H and define an operator A on H by

Ah =Y ALk, h)pk,, heH.

n=1
A is a compact, self-adjoint and nonnegative definite. By the converse of Gross’
fundamental theorem (cf. [17] and [7]), E is the completion of H w.r.t. some
p-measurable norm on H. Since A is a bounded operator on H, it follows by
[18], Lemma 4.3, and [38], Theorems 3.1 and 4.1, that there exists a unique
probability measure m on (E, #(E)) such that

/exp(iE,(k,z)E)m(dz) = exp(—%(k, Ak)H), ke E.

Since m is Gaussian and A is not nuclear, it follows by the Minlos—Sazonov
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theorem that m(H) = 0. Define for ¢ € R the measure u, on (E, Z(E)) by
= [,u oTrhm(dz), teR.
Then by Remark 2.12(ii), (u,), < is an entrance law for (,),, , and
fexp(iE,(k, 2)g)p(dz)

= exp[ - LIk} + e %Ck, AkYy)|, Rk eE,teR.

Hence u, is the unique mean zero Gaussian measure on (E, Z(E)) with
covariance operator B,:=Idy +e %A, t€R. But B, —Id, is Hilbert-
Schmidt; hence by [32] u, is absolutely continuous w.r.t. u (cf. also [33],
Theorem 1.23). Indeed, let us fix ¢ € R and define

Con=(1+e7,)7,  neN,
fo=VCrr exp(=3(C,n = Dk, 28),  neEN,

and

N
FN:= ]_-_-_[lfn, NEN.

Then as a consequence of a lemma by Segal (cf. [31] and also [33], Lemma 1.24)
t,:) = lim F,
p(t) NN

exists as a limit in L*(E; 1) and in fact p(¢, - ) € L%(E; ). It is easy to check
that for all 2 € E’, '

fexp(iE,(k, 2)g)p(t, z2)u(dz) = exp[—%(llkll% + e %k, Ak)H)].

Hence u, = p(¢, - )u. It follows by Proposition 3.3 that p = (p(¢, - ), € &L.
But m _ (defined as in Theorem 3.7) is the Gaussian measure m constructed
above; hence m ,(H) = m(H) = 0.

A natural problem that arises now is to find necessary and sufficient
conditions for a p € & to have the property m ,(H) = 1. Theorems 3.11 and
3.14 below give rather mild sufficient conditions for this to hold. Let || ||,
denote the usual norm on LY(E;u), ¢ > 1.

THEOREM 3.11. Letp = (p(t,  )),cp € & and let m, be as in Theorem 3.7.
Let {k,Iln € N} C E’ be an orthonormal basis of H separating the points of E.

Assume that for somet € R, ¢ > 1,

(3‘12) Z "(Vp(t, ')’ kn>H"q < .
n=1
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Then m,(H) = 1. In particular, p has the unique representation

(3.13) p(t,2) = fHexp(e_tXh(z) - %e'mllhll%)mp(dh) forp-a.e.z<€E.

For the proof of Theorem 3.11 we need the following lemma.

LEmMMmA 3.12. Let p,m, be as in Theorem 3.11. Let t €R and let
ki,...,ky € E' form an orthonormal system of H. Let u(z) :=
G (kl, z)E, ..., g{ky,2)E), 2 € E, for some f € CJ(R™) or f a polynomial in
m variables. Then

fELu(z)p(t,z)u(dz)
(3.14)
- - Z [E,<k,,,e z>Ef ~(z + e )u(de)m(d2).

Proor. It follows by the first part of Theorem 3.7, (2.26) and Fubini’s
theorem that for all v: E —» R, #(E)-measurable, bounded,

fv(z)p(t,z)u(dz) -/ [u(z + e~ u(dz)m ,(d2').
E E'E
Consequently, since u € D(L) and by (3.5) we obtain

[ Lu(2)p(t, 2)u(de)
= fE/ELu(z + e 2 ) u(dz)m ,(d2')
=/fL(u(~ + etz '))(z)p,(dz)mp(dz)

[[ Ak, et )E——(z+e 2 )u(dz)m,(dz').

nlE

But for all v € D(L) we have that [Lvdu = [Llvdu = 0, since L1 = 0.
Hence the assertion follows. O

ProoF oF THEOREM 3.11. For N € Nlet u y(2) == LN_,(k,, 2)%, then by
Lemma 3.12,

fE<Vp(t, ), Vupndudu

= = [ Lunp(t,") du
E

N
2y [E,<k,,, e-tz'>E/ 5k, 2 +e 2 pu(dz)m,(dz2').
n=1"E E
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Hence
N N
Z f(Vp(t,z), kn>HE'<kn’z>El'L(dz) = e_2t Z /E'<kn’z'>2Emp(dzl)‘
n=1"E n=1"E

Since g<(k,,: )g is N(0, 1)-distributed, we have for 1 <q’' < » that
llz<k,, Jelly <c for all n €N for some constant ¢ depending only on gq'.
Hence by Hélder’s inequality,

N N
L [ gCkas 2Vemy(d2) < ce X IKVP(2, ), ko dalo:
n=1 n=1
Consequently, if ¢t € R, ¢ > 1, is as in (3.12), then
Y fE,(kn,z'ﬁgmp(dz') < o,
n=1"E

Hence ©%_,z<k,,2)% < © for m-a.e. z € E. But if this sum is finite for a
z€E, then h:==X%_,p<k,,2)pk, € H(CE) and p<{k,,h)g =k, h)u =
z{k,,2)g for all n € N. Since {k,|n € N} separates the points of E, it follows
that h = z. Therefore, we can now conclude that m p(H ) = 1. The rest of the
assertion follows from Theorem 3.7. O

ReMark 3.13. (i) By [3], Lemma 5.6, there always exist 2, € E', n € N,
separating the points of E which form an orthonormal basis of H. So, in order
to satisfy the condition in Theorem 3.11, one needs to find such a basis so that
in addition (3.12) holds for some ¢ € R.

(ii) Note that each p € & always satisfies

Y IKVp(2, +), b, ulls < o
n=1

for all ¢t € R and any orthonormal basis {k,/n € N} C E’ of H, since each
p(t, - ) € D(&) [cf. (3.6)].

(iii) Let p € & be such that for some ¢ € R, p(¢, - ) € FC; U Pol. Obvi-
ously, one can then choose an orthonormal basis {%,|n € N} € E’ of H in such
a way that the sum in (3.12) is in fact finite. Hence the representation (3.13)
for p holds in this case.

THEOREM 3.14. Letp = (p(t, - ));cp € & and let m, be as in Theorem 3.7.
If p(¢, - ) € L(E; ) for some t € R, then m ,(H) = 1 and (3.13) holds.

Proor. Let A €] — 1, and let {k,|ln € N} C E’ be an orthonormal basis
of H separating the points of E. By the first part of Theorem 3.7, (2.26) and
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Fubini’s theorém we have that for each N € N,

A N
fEexp[—§ Yy E/<kn,2>2E]p(t,z)lL(dz)

n=1
N

A
=fELexp[—§ Y E,(kn,z+e"z'>2E]p,(dz)mp(dz')

n=1

A N
f exp[——e-% > E,<k,,,z'>%]g(z')mp<dz'),
E 2 n=1
where

N A

g(z) =11 f exp[—E(E'<k,,,z>2E+2e“E,<k,,,z’>EE,<k,,,z>E)]M(dz)
n=1"E

2

= ()t + 1)_N/2 exp[m

N
=5 El<k,,,z'>z~], 2 ek,
n=1 .

Hence for all N € N,
Ae 2 N 9
j;zexp _mn.2=1E'<kn,z>E mp(dz)

(3.15)

n=1

N
< esssupp(t,) (A + )™ [ exp[—% z El<k,,,z>%]u(dz)
E

= esssup p(t, ).
If A €] — 1,0[, then —A /(A + 1) > 0; hence letting N — = in (3.15) we obtain

Yy fE,(kn,z'>2Emp(dz') < 0.
n=1"E

Consequently, m(H) =1 (cf. the proof of Theorem 3.11). The rest of the
assertion follows by Theorem 3.7. O

REMARK 3.15. (i) The proof of Theorem 38.14 shows that we can weaken the
assumption on p as follows. Instead of p(¢, - ) € L*(E; u) for some ¢ € R, it is
enough to assume that there exists an orthonormal basis {k,|ln € R} of H
contained in E' and separating the points of E, ¢ € R and A €] — 1,0[ such
that

N

A
(3.16) limsup (A + l)N/zf exp|—— 3, wlk,, 20 |p(t, 2)u(dz) < .
N-oow E 2 n=1

(ii) Observe that in both Theorems 3.11 and 3.14 we actually proved not
only that m p(H ) = 1, but moreover that | HIIhII% m p(dh) < o, which is only
implied by m ,(H) = 1 if m,, is Gaussian (cf. [34], Theorem (3.41)).
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APPENDIX

ProoF OF LEMMA 24. Let Pe.# and Fe % , with 0 <P(F) <1
Then P = P(F)P, + P(Q \ F)P,, where P, := 1,P(F)"'P and P, :=
1 rP(Q \ F)7'P. Clearly, P,, P, € .#, so if P is not trivial on %_,, then
P & #,. Conversely, if P is trivial on F_,, then by the reverse martingale
convergence theorem

(A1) P[X,eB]=P[X,eB|¥%.,] = limm, (X_,,B), Pas,

for all B € #(E). The set Qp of all w € Q for which (A.1) holds is in Z_,
and if P’ € .# is trivial on &_, then Qp N Qp # & implies P = P'. But, if
P=aP, + (1 - a)P,, a €10, 1], then P,, P, € .# and both are trivial on 7_...
Since they cannot be supported by disjoint sets in F__, it follows that P, = P,.

O

Proor or LEMMA 2.6. We have to show that the linear functional [ —
JI(2)u(2)v(dz), | € E', is continuous in the weak*-topology. By a consequence
of the Krein—-Smulian theorem (cf. eg., [24], 2.5.11, Corollary), it suffices to
prove that this functional restricted to the unit ball B} in (E',| ||z) is
weak *-continuous. Since the restriction of the weak™*-topology to B is metriz-
able, it suffices to prove sequential continuity. But if /,7, € B}, n € N, so that
1,(2) = ,_.l(2) for every z € E, it follows (since /,/, € N are jointly Gauss-
ian) by [22], Lemma 1.5, that [, = , .,/ in LY(E;v) for all g € [1,<[. Hence
the assertion is proved. O

LeEmMMA A.1. Let Q, be defined as in (2.20). Then Q, € F_,,.

Proor. The weak*-topology restricted to each ball B),, n € N, of radius n
in (E', || |lg) is defined by some metric d,. Define

1
D, , = {(k,k') €D, X D,|d, (k, k") < ;}
and

1
Q= N U N {‘0 € Qllz)(w) — z,(w)l < ‘-‘}~
Jj,neNmeN({,k)eD, , J
Then Q; € %, and for each w € Q3 themap ! — z,(w), I € D, extends to a
weak *-continuous map on (B, d,) for every n € N in a compatible way to
define a linear functional on E’. Using [24], 2.5.11, Corollary, again, this
functional is weak*-continuous; hence there exists a unique a(w) € E such
that z,(w) =g (I, a(w))g for all I € D,. Consequently, Q3 C ;. But obviously,
Q, € Q4 and the assertion follows. O

We have used the following well-known fact. Following the advice of the
referee, we enclose a proof here.
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LEMMA A.2. Let h € E. Then woT; ! is absolutely continuous w.r.t. u if
and only if h € H. In this case

duoT;?!

1
” (z)=exp[X,,(z)—§||hn%,], 2 K.

Proor. Assume h € H \ {0} and let [ € E’'(c H C E). Define
a = <l)h>H/<h, h>H~

Then {I! — ah, h )y = 0. Hence since u is Gaussian with covariance {, g,

/Eexp[iE,u,z>E]exp[Xh(z) — Ykl ] w(de)
- exp[—%llhll%;]fE exp[iX,_ .5 + (1 +ia)X,] du

- exp[—%thl%{]fEexp[in_ah] dy,fEexp[(l +ia)X,] du
= exp| — 2ll% + <L, h)u]

= [ explip (L, 28] (° Ty ') (dz).

Conversely, suppose w o T, ! = p, u for some nonnegative Borel-measurable p,
on E. In order to show that h € H we have to show that [ — (I, h)g,
l € E', is continuous w.r.t. || ||g. But if [, € E’, n € N, such that /, -, .0
wrt. || lg, then g{l,, )& = ,.,0 in L% E;p), in particular in u-
measure, hence in (p,u)-measure. Since p,u is Gaussian, it follows that
2l YE = .0 1in LY(E; p,u); hence

lim sup|z <, , kgl = lim sup fE/(ln,z)Eph(z)p,(dz) = 0. O

n-—o n—>o
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