BROWNIAN EXIT DISTRIBUTIONS FROM NORMAL BALLS IN $S^3 \times H^3$

By H. R. Hughes

Southern Illinois University at Carbondale

Let X_t be Brownian motion on a Riemannian manifold M started at m and let T be the first time X_t exits a normal ball about m. The first exit time T for $M = S^3 \times H^3$ has the same distribution as the first exit time for $M = \mathbf{R}^6$. For $M = S^3 \times H^3$, T and X_T are independent random variables

1. Introduction. Let M be a Riemannian manifold. Let $B_m(\varepsilon)$ denote the image under the exponential map of the ball of radius ε about the origin in the tangent space $T_m M$. We say that $B_m(\varepsilon)$ is a normal ball if ε is small enough so that the exponential map is a diffeomorphism of the ball of radius ε . Let X be Brownian motion on M started at m. We examine the joint distribution of the first exit time from $B_m(\varepsilon)$,

$$T_{\varepsilon} = \inf\{t > 0 \colon d(m, X_t) = \varepsilon\},$$

and the first exit place, $X(T_{\varepsilon})$. Here d(m,p) denotes the geodesic distance between m and p. For simplicity, we will often write T for T_{ε} . The joint distribution of T and X_T has been studied through asymptotic expansions of $E[T^k f(X_T)]$ as $\varepsilon \to 0$.

For $M=\mathbf{R}^n$, the mean exit time $E[T_\varepsilon]=\varepsilon^2/n$. In Gray and Pinsky (1983) it is proved that if for all $m\in M$, $E_m[T_\varepsilon]=\varepsilon^2/n$ and dim M=n<6, then M is flat. They also provided a class of nonflat manifolds, including the product of $S^3(k^2)$ (constant curvature k^2) and $H^3(-k^2)$ (constant curvature $-k^2$), for which the mean exit time agrees with that of \mathbf{R}^6 up to $O(\varepsilon^{10})$. This result was extended to $O(\varepsilon^{12})$ for $S^3\times H^3$ in Hughes (1988). We will prove that this agreement is exact. For convenience, we consider only the case k=1:

PROPOSITION 1. For $\varepsilon < \pi$, the first exit times T_{ε} for $S^3 \times H^3$ and \mathbf{R}^6 have the same distribution.

For $M=\mathbf{R}^n$, T and X_T are independent random variables. It is shown in Liao (1988a) and Kozaki and Ogura (1988) that if for all $m\in M$ and small ε , T and X_T are independent, then M has constant scalar curvature. In Hughes (1988) and Kozaki and Ogura (1988), additional curvature conditions are derived. It is shown in Liao (1988b) and Kozaki and Ogura (1988) that T and X_T are independent for normal balls in any harmonic space. We will show that

Received November 1990; revised April 1991.

AMS 1980 subject classifications. Primary 58G32; secondary 60J65, 53B20.

Key words and phrases. Brownian motion, diffusions on manifolds, exit time and place, transformation of drift.

 $S^3 \times H^3$ is an example of a manifold which has this independence property but is not an Einstein manifold and thus is not harmonic:

PROPOSITION 2. For $M = S^3 \times H^3$ and $\varepsilon < \pi$, T and X_T are independent random variables.

2. Brownian motion on $S^3 \times H^3$ **.** Let X be Brownian motion on $S^3 \times H^3$. Fix $m = (m^1, m^2) \in S^3 \times H^3$. The Laplace-Beltrami operator for $S^3 \times H^3$ can be expressed in terms of geodesic polar coordinates for each of S^3 and H^3 :

$$egin{aligned} \Delta &= rac{\partial^2}{\left(\partial r^1
ight)^2} + 2\cot r^1rac{\partial}{\partial r^1} + \sin^{-2}r^1\!\Delta_{ heta^1} + rac{\partial^2}{\left(\partial r^2
ight)^2} \ &+ 2\coth r^2rac{\partial}{\partial r^2} + \sinh^{-2}r^2\!\Delta_{ heta^2}, \end{aligned}$$

where r^1 is the geodesic distance from m^1 in S^3 , r^2 is the geodesic distance from m^2 in H^3 and Δ_{θ^1} and Δ_{θ^2} are two-dimensional spherical Laplacians, expressed only in terms of angular coordinates for S^3 and H^3 , respectively.

Define a pair of processes by $(R_t^1, R_t^2) = (r^1(X_t), r^2(X_t))$. Then R^1 is a radial process on S^3 centered at m^1 , R^2 is a radial process on H^3 centered at m^2 . We also have the angular processes Θ^1 and Θ^2 which are independent Brownian motions on S^2 run with clocks $\int_0^t \sin^{-2} R^1(s) \, ds$ and $\int_0^t \sinh^{-2} R^2(s) \, ds$, respectively. The pair (R^1, R^2) is a diffusion on $\mathbf{R}^2_+ = \{(x^1, x^2): x^1, x^2 \geq 0\}$ with diffusion measures $\{P_y\}$ generated by

$$A = \frac{1}{2} \left[\left(\partial_1 \right)^2 + \left(\partial_2 \right)^2 \right] + \cot x^1 \partial_1 + \coth x^2 \partial_2$$

with domain

$$\mathcal{D}(A) = \left\{ f \in C_b^2(\mathbf{R}_+^2) : \partial_1 f|_{x^1 = 0} = 0 = \partial_2 f|_{x^2 = 0} \right\}.$$

Let T be the first time the Brownian motion X_t on $S^3 \times H^3$ exits $B_m(\varepsilon)$. Then T is also the first time (R_t^1, R_t^2) exits $B_0(\varepsilon)$.

3. Transformation of drift. Let \hat{A} be the infinitesimal generator of a pair of Bessel processes of index 3 ($\mathcal{D}(\hat{A}) = \mathcal{D}(A)$). Let $\{\hat{P}_y\}$ be the associated diffusion measures. Then the operators A and \hat{A} differ by a drift vector field:

$$A - \hat{A} = \left(\cot x^1 - \frac{1}{x^1}\right)\partial_1 + \left(\coth x^2 - \frac{1}{x^2}\right)\partial_2.$$

We expect that the method of transformation of drift can be used to express P in terms of \hat{P} .

We examine a more general situation. Let $\hat{R} = (\hat{R}^1, \hat{R}^2, \dots, \hat{R}^k)$ be constructed from k independent Bessel processes with indices n_1, n_2, \dots, n_k , respectively. Let $\mathbf{R}_+^k = \{x \in \mathbf{R}^k \colon x^1, x^2, \dots, x^k \geq 0\}$. Then \hat{R} is a diffusion on

 \mathbf{R}_{+}^{k} with diffusion measures $\{\hat{P}_{y}\}$ generated by

$$\hat{A} = \frac{1}{2} \left[\Delta + \sum_{i=1}^{k} \frac{n_i - 1}{x^i} \partial_i \right].$$

Let $h \in \mathcal{D}(\hat{A})$ and let $\{P_{\nu}\}$ be the diffusion measures generated by

$$A = \hat{A} + \sum_{i=1}^{k} (\partial_i h) \partial_i.$$

Then we have:

Proposition 3. Suppose $\hat{A}h + \frac{1}{2}\|\nabla h\|^2 = c$, where c is a constant. Let \hat{A} , \hat{A} , \hat{P}_y and P_y be defined as above. Let $M_t = \exp\{h(\hat{R}_t) - h(y) - ct\}$. Then M_t is an exponential martingale and P_y has density M with respect to \hat{P}_y (i.e., $P_y = M \cdot \hat{P}_y$).

PROOF. Define $g(t,x)=\exp\{h(x)-h(y)-ct\}$. It is easy to verify that $(\hat{A}+\partial/\partial t)g=0$. It follows that $M_t=g(t,\hat{R}_t)$ is a martingale.

Let $f \in \mathcal{D}(A) = \mathcal{D}(\hat{A})$. Then it is easy to check that

$$\left(\hat{A} + \frac{\partial}{\partial t}\right)(gf)(t,x) = g(t,x)(Af)(x).$$

Let $I_t = \int_0^t (Af)(\hat{R}_s) ds$. Then by Itô's formula,

$$\begin{split} M_t f(\hat{R}_t) - M_t I_t &= M_t f(\hat{R}_t) - \int_0^t M_s(Af)(\hat{R}_s) ds - \int_0^t I_s dM_s \\ &= (gf)(t, \hat{R}_t) - \int_0^t (\hat{A} + \frac{\partial}{\partial t})(gf)(s, \hat{R}_s) ds - \int_0^t I_s dM_s \end{split}$$

is a martingale (with respect to $\hat{P_y}$). Therefore $M\cdot\hat{P_y}$ is the diffusion measure generated by A. \square

Let \hat{T} be the first exit time of \hat{R} from $B_0(\varepsilon)$. Note that each \hat{R}^i can be constructed from n_i independent one-dimensional Brownian motions by $\hat{R}^i = \|(B^1, B^2, \ldots, B^{n_i})\|$. In this way, \hat{R} can be constructed from Brownian motion on \mathbf{R}^n , where $n = \sum_{i=1}^k n_i$. The first exit times from $B_0(\varepsilon)$ are identical for the n-dimensional Brownian motion and for the process \hat{R} derived from it. It also follows that when \hat{R} is started at the origin, \hat{T} and $\hat{R}_{\hat{T}}$ are independent since the first exit times and places are independent for the n-dimensional Brownian motion started at the origin.

Let R be the diffusion on \mathbf{R}_+^k started at the origin and generated by A given as in Proposition 3 above and let T be the first exit time of R from $B_0(\varepsilon)$. We have the following:

Corollary 1. If c = 0, T and \hat{T} have the same distributions.

PROOF. Letting E_0 and \hat{E}_0 stand for expectation with respect to P_0 and \hat{P}_0 , respectively, we have

$$E_0[e^{-\alpha T}] = \hat{E}_0[e^{-\alpha \hat{T}}M_{\hat{T}}] = \hat{E}_0[e^{-\alpha \hat{T}}]\hat{E}_0[M_{\hat{T}}] = \hat{E}_0[e^{-\alpha \hat{T}}],$$

since $M_{\hat{T}} = \exp\{h(\hat{R}_{\hat{T}}) - h(0)\}$, \hat{T} and $\hat{R}_{\hat{T}}$ are independent and $\hat{E}_0[M_{\hat{T}}] = 1$.

COROLLARY 2. The exit time T and the exit place R_T are independent random variables.

PROOF. We proceed in a way similar to the proof of Corollary 1. For bounded functions ϕ and ψ ,

$$\begin{split} E_0\big[\phi(T)\psi(R_T)\big] &= \hat{E}_0\Big[\phi(\hat{T})\psi\big(\hat{R}_{\hat{T}}\big)M_{\hat{T}}\Big] \\ &= \hat{E}_0\Big[\phi(\hat{T})e^{-c\hat{T}}\Big]\hat{E}_0\Big[\psi\big(\hat{R}_{\hat{T}}\big)\mathrm{exp}\Big\{h\big(\hat{R}_{\hat{T}}\big)-h(0)\Big\}\Big] \\ &= \hat{E}_0\Big[\phi(\hat{T})e^{-c\hat{T}}\Big]\hat{E}_0\big[M_{\hat{T}}\big]\hat{E}_0\Big[\psi\big(\hat{R}_{\hat{T}}\big)\mathrm{exp}\Big\{h\big(\hat{R}_{\hat{T}}\big)-h(0)\Big\}\Big] \\ &= \hat{E}_0\Big[\phi(\hat{T})M_{\hat{T}}\big]\hat{E}_0\Big[\psi\big(\hat{R}_{\hat{T}}\big)M_{\hat{T}}\Big] \\ &= E_0\Big[\phi(T)\big]E_0[\psi(R_T)\big]. \end{split}$$

Therefore T and R_T are independent. \square

4. Proofs of Propositions 1 and 2. We return to the specific case where X is Brownian motion on $S^3 \times H^3$, started at the center of the geodesic ball $B_m(\varepsilon)$, (R^1, R^2) and (Θ^1, Θ^2) are given as before and A is the generator of R. Let $\hat{R} = (\hat{R}^1, \hat{R}^2)$ be a pair of Bessel processes of index 3 with generator \hat{A} , started at the center of $B_0(\varepsilon)$. Then for

$$h(x^1, x^2) = \log\left(\frac{\sin x^1}{x^1}\right) + \log\left(\frac{\sinh x^2}{x^2}\right),\,$$

we have $A = \hat{A} + \sum_{i=1}^{2} (\partial_i h) \partial_i$ and $\hat{A}h + \frac{1}{2} \|\nabla h\|^2 = 0$ inside $B_0(\pi)$. Proposition 3 now applies if the processes are stopped before exiting $B_0(\pi)$. Proposition 1 follows from Corollary 1.

By symmetry, Θ^1_T and $\Theta^{\tilde{2}}_T$ are each uniformly distributed on S^2 . Furthermore, T, R^1_T and R^2_T are invariant under rotations in the angular coordinates for S^3 or H^3 . Therefore, (T,R^1_T,R^2_T) is independent of (Θ^1_T,Θ^2_T) . By Corollary 2, T and R_T are independent. Therefore it follows that T and X_T are independent.

5. Remarks. The exit time property also holds more generally for products of S^3 , H^3 and \mathbf{R}^n such that the product has scalar curvature zero. For example, the exit times for $S^3(k^2) \times S^3(-k^2)$ and $S^3(1) \times S^3(1) \times H^3(-2)$ have the same distribution as the exit times for \mathbf{R}^6 and \mathbf{R}^9 , respectively. Also $S^3 \times H^3 \times \mathbf{R}^n$ has the same exit time distributions as \mathbf{R}^{6+n} . Therefore exam-

ples of manifolds with this property can be found for any dimension greater than or equal to 6. The independence property holds for any product of S^3 , H^3 and \mathbb{R}^n with arbitrary (constant) curvatures.

Corollary 2 is similar to a property of Brownian motion with drift on \mathbf{R}^n : The first exit time and place from $B_x(\varepsilon)$ for Brownian motion with drift ∇h , started at x, are independent for every $x \in \mathbf{R}^n$ and $\varepsilon > 0$ if and only if $\Delta h + \|\nabla h\|^2 = \text{constant}$; see Hughes and Liao (1989).

REFERENCES

- Gray, A. and Pinsky, M. (1983). The mean exit time from a small geodesic ball in a Riemannian manifold. *Bull. Sci. Math.* (2) **107** 345-370.
- Hughes, H. R. (1988). Hitting time and place to small geodesic spheres on Riemannian manifolds. Ph.D. dissertation, Northwestern Univ.
- HUGHES, H. R. and LIAO, M. (1989). The independence of hitting times and hitting positions to spheres for drifted Brownian motion. In Seminar on Stochastic Processes 1988. Progr. Probab. Statist. 17 185-192. Birkhäuser, Boston.
- IKEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam.
- Itô, K. and McKean, H. P., Jr. (1965). Diffusion processes and their sample paths. Grundlehren Math. Wiss. 125. Springer, Berlin.
- KOZAKI, M. and OGURA, Y. (1988). On the independence of exit time and exit position from small geodesic balls for Brownian motions on Riemannian manifolds. *Math. Z.* **197** 561–581.
- Liao, M. (1988a). Hitting distributions of small geodesic spheres. Ann. Probab. 16 1039-1050.
- LIAO, M. (1988b). An independence property of Riemannian Brownian motions. In Geometry of Random Motion. Contemp. Math. 73 197-201. Amer. Math. Soc., Providence, R.I.

DEPARTMENT OF MATHEMATICS SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, ILLINOIS 62901