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BROWNIAN EXIT DISTRIBUTIONS FROM NORMAL BALLS
IN S3 x H3

By H. R. HUGHES

Southern Illinois University at Carbondale

Let X, be Brownian motion on a Riemannian manifold M started at m
and let T be the first time X, exits a normal ball about m. The first exit
time T for M = S3 X H3 has the same distribution as the first exit time
for M = RS. For M = S X H3, T and X, are independent random vari-
ables.

1. Introduction. Let M be a Riemannian manifold. Let B, (¢) denote
the image under the exponential map of the ball of radius & about the origin in
the tangent space T,, M. We say that B,(¢) is a normal ball if ¢ is small
enough so that the exponential map is a diffeomorphism of the ball of radius &.
Let X be Brownian motion on M started at m. We examine the joint
distribution of the first exit time from B, (),

T, = inf{t > 0: d(m, X,) = ¢},

and the first exit place, X(T.). Here d(m, p) denotes the geodesic distance
between m and p. For simplicity, we will often write T for T,. The joint
distribution of T and X, has been studied through asymptotic expansions of
E[T*f(X ) as € — 0.

For M = R", the mean exit time E[T.] = ¢2/n. In Gray and Pinsky (1983)
it is proved that if for all m € M, E, [T.] = ¢2/n and dim M = n < 6, then M
is flat. They also provided a class of nonflat manifolds, including the product of
S3(k?) (constant curvature k2) and H3(—%2) (constant curvature —k2), for
which the mean exit time agrees with that of R® up to O(¢'°). This result was
extended to O(&'?) for S® X H® in Hughes (1988). We will prove that this
agreement is exact. For convenience, we consider only the case £ = 1:

PrOPOSITION 1. For & <, the first exit times T, for S® X H® and RS
have the same distribution.

For M = R", T and X, are independent random variables. It is shown in
Liao (1988a) and Kozaki and Ogura (1988) that if for all m € M and small &,
T and X, are independent, then M has constant scalar curvature. In Hughes
(1988) and Kozaki and Ogura (1988), additional curvature conditions are
derived. It is shown in Liao (1988b) and Kozaki and Ogura (1988) that T and
X, are independent for normal balls in any harmonic space. We will show that
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S3 x H? is an example of a manifold which has this independence property
but is not an Einstein manifold and thus is not harmonic:

ProPOSITION 2. For M = S® X H? and ¢ < w, T and X are independent
random variables.

2. Brownian motion on S3 X H3. Let X be Brownian motion on S3 X
H3. Fix m = (m!, m?) € S® X H3 The Laplace-Beltrami operator for S® X
H? can be expressed in terms of geodesic polar coordinates for each of S3
and H3:

92 d 92

1 th—2 1
5 + 2cotr ;1-+sm rAg +

(orh) (9r?)*

a
+ 2 coth rzt—?ﬁ + sinh ™2 r2A e,

where r! is the geodesic distance from m! in S3, r? is the geodesic distance
from m? in H® and A, and A,: are two-dimensional spherical Laplacians,
expressed only in terms of angular coordinates for S® and H?3, respectively.

Define a pair of processes by (R}, R?) = (r'(X,),r%X,)). Then R' is a
radial process on S centered at m!, R? is a radial process on H? centered at
m2. We also have the angular processes ®' and ®2 which are independent
Brownian motions on 82 run with clocks [{sin™2? RY(s)ds and
/Esinh~2 R%(s)ds, respectively. The pair (R!, R?) is a diffusion on R% =
{(x', x2): x%, x2 > 0} with diffusion measures {P,} generated by

A= %[(al)2 + (02)2] + cot x19; + coth 229,
with domain
D(A) = (f e C}(R2): 4, flui_o = 0 = 5 flea=o}.
Let T be the first time the Brownian motion X, on S3 x H? exits B, (¢).

Then T is also the first time (R}, R2) exits B(e).

3. Transformation of drift. Let AA be the infinitesimal generator of a
pair of Bessel processes of index 3 (2(A) = 2(A)). Let {py} be the associated
diffusion measures. Then the operators A and A differ by a drift vector field:

A-A= (cot x! - F)al + (coth x? - F)az.

We expect that the method of transformation of drift can be used to express P
in terms of P. . . .

We examine a more general situation. Let R = (R, R%,..., R*) be con-
structed from % independent Bessel processes with indices n,n,,...,n,,
respectively. Let R* = {x € R%: x!,x%,...,x* > 0}. Then R is a diffusion on
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R’ with diffusion measures {P,} generated by
n 1 k n,— 1
A+ Z ]

A=
Let h € 2(A) and let {P,} be the diffusion measures generated by

k
A=A+ Y (4h);.
i=1
Then we have:

ProrosITION 3. Suppose Ah + 1IIVhII2 = ¢, where c is a constant. Let A,
A, P and P, be defined as above. Let M, = exp{h(R,) — h(y) — ct}. Then M, is
an exponentzal martingale and P, has density M with respect to P (L e.,
P,=M: P ).

Proor. Define g(¢,x) = exp{h(x) — h(y) — ct}. It is easy to verify that
(A +9/0t)g = 0. It follows that M, = g(¢, R,) is a martingale.
Let f€ 2(A) = 9(A). Then it is easy to check that

(A + —)(gf)(t x) = £(t, x)(Af)(x).
Let I, = [{(Af )(R )ds. Then by Itd’s formula,

M,f(R,) - MI,=M,f(R jM(Af) ds—[tISdMs
0

= (gf)(t, R,) - jO’(A + 5;)(gf)(s,1%s)ds - fotls dM,

is a martingale (with respect to 15y). Therefore M - 15y is the diffusion measure
generated by A. O

Let T be the first exit time of R from B,(¢). Note that each R’ can be
constructed from rn; independent one-dimensional Brownian motions by Ri=
(B, B2, ..., B™)|. ‘In this way, R can be constructed from Brownian motion
onR", Where n = X% n, The first exit times from By(¢) are identical for the
n-dimensional Brownian motion and for the process R derived from it. It also
follows that when R is started at the origin, T and R are independent since
the first exit times and places are independent for the n-dimensional Brownian
motion started at the origin.

Let R be the diffusion on R* started at the origin and generated by A given
as in Proposition 3 above and let T' be the first exit time of R from B(¢). We
have the following:

COROLLARY 1. Ifc = 0, T and T have the same distributions.
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ProoF. Letting E, and E stand for expectation with respect to P, and
PO, respectively, we have

Eo[eﬁaT] = EAo[e_aTMT] = E\'o[eNQT]EO[MT] = EAo[e_aT],
since My = exp{h(R;) — h(0)}, T and R; are independent and E [ M;] = 1.
O

COROLLARY 2. The exit time T and the exit place RT are independent
random variables.

Proor. We proceed in a way similar to the proof of Corollary 1. For
bounded functions ¢ and i,

Eo[¢(T)¥(Rr)] = Eo $(T)w(Rr) M)
= Bo[6(T)e~T| B[ u(Byp)exp{n(B1) - h(0))]
= E’O[¢(T)e~“‘]EO[MT]EO[(p(}%T)exp{h(}%T) - h(O)}]
= By[6(T) M) By w(Rp) Mp)
= Eo[6(T)] Eo[¢(Rr)].
Therefore T and R, are independent. O

4. Proofs of Propositions 1 and 2. We return to the specific case where
X is Brownian motion on S% X H3, started at the center of the geodesic ball
B,(¢), (R', R?) and (©%, ©) are given as before and A is the generator of R.
Let R =( I% , R?) be a pair of Bessel processes of index 3 with generator A,
started at the center of B(e). Then for

1

sin x
h(x?, x?) =log( o )+log

we have A =A + £2_9,;h)9; and Ah + L|VA|® = 0 inside By(r). Proposi-
tion 3 now applies if the processes are stopped before exiting B,(). Proposi-
tion 1 follows from Corollary 1.

By symmetry, @1 and @2 are each uniformly distributed on S2. Further-
more, T, R} and R% are invariant under rotations in the angular coordinates
for S3 or H?®. Therefore, (T, R%, R%) is independent of (0L, ®2). By Corollary
2, T and R; are independent. Therefore it follows that T and X, are
independent.

sinh x2 )
b

5. Remarks. The exit time property also holds more generally for prod-
ucts of S3, H® and R" such that the product has scalar curvature zero. For
example, the exit times for S3(k2%) x S3(—£2) and S3(1) x S3(1) X H3(-2)
have the same distribution as the exit times for R® and R?, respectively. Also
S3 x H? X R" has the same exit time distributions as R®*". Therefore exam-
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ples of manifolds with this property can be found for any dimension greater
than or equal to 6. The independence property holds for any product of S3, H3
and R" with arbitrary (constant) curvatures.

Corollary 2 is similar to a property of Brownian motion with drift on R":
The first exit time and place from B,(¢) for Brownian motion with drift Va,
started at x, are independent for every x € R and ¢ > 0 if and only if
Ah + ||VA||® = constant; see Hughes and Liao (1989).
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