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THE SHARP MARKOV PROPERTY OF LEVY SHEETS

By RoBERT C. DaLANG! AND JouN B. WALSH

Tufts University and University of British Columbia

This paper examines the question of when a two-parameter process X
of independent increments will have Lévy’s sharp Markov property relative
to a given domain D. This property states intuitively that the values of the
process inside D and outside D are conditionally independent given the
values of the process on the boundary of D. Under mild assumptions, X is
the sum of a continuous Gaussian process and an independent jump
process. We show that if X satisfies Lévy’s sharp Markov property, so do
both the Gaussian and the jump process. The Gaussian case has been
studied in a previous paper by the same authors. Here, we examine the case
where X is a jump process. The presence of discontinuities requires a new
formulation of the sharp Markov property. The main result is that a jump
process satisfies the sharp Markov property for all bounded open sets. This
proves a generalization of a conjecture of Carnal and Walsh concerning the
Poisson sheet.

1. Introduction. Lévy’s sharp Markov property is one of the most ap-
pealing of the many analogues of the Markov property proposed for random
fields: A continuous process X = {X(¢), t € R?} satisfies Lévy’s sharp Markov
property relative to a set D in R? if #°%D) and #°(D°) are conditionally
independent given the boundary field #%@D), where #°(D) = o{X(2), t €
Dj}. In spite of its attractiveness, it is satisfied less often than one might expect.
The Brownian sheet, for instance—intuitively a Markov process—fails to
satisfy it for most nice regions D (see [10, 11, 24]), and Constantinescu and
Thalheimer [9] have shown that if d > 2 and if X is ergodic and invariant
under Euclidean transformations, then X cannot satisfy the sharp Markov
property for all open sets. Euclidean-invariant processes which do satisfy it,
such as the free field [20], have values which are generalized functions.

The boundary field #°(9D) is too small in these cases to be a splitting field
for #°(D) and #°(D°), where D° denotes the complement of the closure of
D. (A field ” is a splitting field for two fields &7 and &Z if &/ and & are
conditionally independent given ..) The germ field £(D) = N #°(0), where
the intersection is over all open sets O DD, is larger, and one says that X
satisfies Lévy’s Markov property (without the ‘“sharp’’)—or the germ-field
Markov property—relative to D if £(dD) is a splitting field for ##°(D) and
#%D°). This is the most-studied version. However, in some applications,
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592 R. C. DALANG AND J. B. WALSH

such as in Nelson’s construction of quantum fields from Markov random fields
[20], it is vital to have the sharp, rather than the germ field, Markov property.

Let us make one observation before we proceed: For a general open set D,
the boundaries of D and D¢ need not be equal, so that the Markov property
we described above is not symmetric in the two open sets. In fact, what one
usually wants to look at is the common boundary of the two, but even then, we
can often confine ourselves to an even smaller set. Thus we will use the phrase
“Lévy’s sharp Markov property” rather informally to refer to the conditional
independence relative to a field generated by the restriction of X to some
subset of the boundary. When we state theorems, we will be careful to specify
the splitting fields explicitly.

This paper is a study of Lévy’s sharp Markov property for two-parameter
processes of independent increments, often called Lévy sheets when the
process is continuous in probability. This class of processes appears naturally
in the solution of Cabafa’s vibrating string problem [4]. Consider a guitar left
outdoors in a desert during a sandstorm. Many small grains of sand will be
blown against the strings of the guitar, and they will begin to vibrate. We
might ask “What tune will the guitar play?”’” That depends on the way the
sand blows. Two reasonable assumptions about this are:

1. The number of grains of sand that hit the string in disjoint intervals of
space or time are independent.

2. Each individual grain of sand only makes a very small contribution to the
motion of the string.

The cumulative effect of the impacts will be Gaussian, and the motion of the
string will be continuous. After a recentering and limiting argument, we can
see that the displacement u(¢, x) of point x at time ¢ > 0 is a solution of the
stochastic wave equation

a2 92

a_ﬁu(t’ x) — ax—zu(t, x) = W(dt,dx),

where W(dt, dx) is a space-time white noise representing the impact of the
sand grains. If we assume for convenience that the string is infinite, we can
solve the equation explicitly (see [23], Chapter 3, pages 392-394; several
properties of the stochastic wave equation are given in [6, 7]). For ¢ > |x|, the
solution can be written in terms of a Brownian sheet:

u(t,x) =Bt —x) + B3t +x) + W(t —x,t + x),

where B!, B2 and W are independent, B' and B? are (one-parameter)
deterministic time changes of Brownian motions and {W(t,, ¢,), (¢;, ;) € R%}
is a Brownian sheet. (We could write the solution in terms of a Brownian sheet
which was not 0 on the axes and avoid B! and B?; they simply allow us to
reduce to a standard Brownian sheet, which vanishes on the axes.)

A variation on this problem leads to the class of processes of independent
increments. Assume that in addition to the sand, small rocks arrive from time
to time. The rocks cause a significant displacement of the string. This shows
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up in the mathematical model in the form of discontinuities of the solution.
Under minor hypotheses, if the arrival of the rocks satisfies the same indepen-
dence relations as the arrival of the sand grains, the motion of the string is a
solution of

02 62
(1) at—zu(t,x) — ax—zu(t,x) =Y(dt,dx),
where Y is an infinitely divisible random measure. The solution for ¢ > |x| can
be expressed as

u(t,x) =X (t—x) + X%t +x) + X(¢t —x,t +x),

where X!, X2 and X are processes of independent increments. As above, X'
and X? are well-understood processes, and the most interesting part of the
solution comes from the sheet {X(¢,,%,), (¢,,¢,) € R%}.

To see where Lévy’s sharp Markov property enters, suppose one observes
the solution of the equation in some interval, an interval which might change
with time. This means that one observes the solution in some domain D in
space-time. One could then try to estimate the behavior of the string outside
the interval of observation.

It is natural to ask whether we really need to observe the solution in the
entire interval, or if we could not get just as good an estimate by observing
the process, say, at the end points of the interval, or by observing the process
on the boundary of the space-time domain D. This is exactly the case if Lévy’s
sharp Markov property holds.

The principal question addressed in this paper is, ‘“ For a process of indepen-
dent increments, when is the sharp field of D a splitting field for #°(D) and
#°%(D°)?” [Some care is necessary in the formalization of this statement. For
continuous processes, #°(dD) is the right notion for the boundary field but
this is not the case in general, as we will see in Example 2.4. In Section 3.1 we
will replace it by a related field which we call the uniform sharp field #(3D).
In this context, “sharp field” refers to &#(3D) rather than to #°%@4D).]

Under mild assumptions, a process of independent increments is the sum of
a continuous Gaussian process and an independent jump process. We will see
(Theorem 3.4) that these two parts can be examined separately. The canonical
examples of Gaussian and jump processes of independent increments are the
Brownian sheet and the Poisson sheet respectively.

It was thought for some time that the only sets for which the Brownian
sheet satisfied the sharp Markov property were finite unions of rectangles.
This is true for regions with piecewise-smooth boundaries [24], but Dalang and
Russo [10] presented a different class of domains with respect to which the
Brownian sheet did satisfy the sharp Markov property, and it was shown in
[11] that in fact, most domains have this property. The situation is different
for sheets with no Gaussian part. It was shown by Carnal and Walsh [8] that
the Poisson sheet satisfies the sharp Markov property relative to bounded
relatively convex domains, and it was conjectured that this should be true for
all bounded domains. That conjecture is true, and in fact holds in much
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greater generality. We will show in this paper that sheets of independent
increments with no Gaussian part satisfy Lévy’s sharp Markov property
relative to all bounded domains.

The key observation in [8] is that the discontinuities of the Poisson sheet
propagate along lines, and that one can get a lot of information by observing
them as they cross the boundary. The techniques, however, were restricted to
domains with a simple boundary. We use the same ideas here. We are able to
extend the results of [8] to all bounded open sets because we can use the
characterization of the minimal splitting field given in [11], Theorem 3.3.

The theorem comes in two forms. If we consider only processes with positive
jumps, such as the Poisson sheet, we can show the following theorem (see
Section 3.1).

THEOREM 1.1. Let {X(¢), t € R%} be a Lévy sheet which has no Gaussian
part and which satisfies Assumption B. If all jumps of X are positive, then for

every open set D which is bounded or has bounded complement, # °@D) is a
splitting field for #°(D) and #°(D°).

Assumption B is given in Section 2.4 and says roughly that X is continuous
in probability and the distribution of jump points of X is absolutely continu-
ous. We give counterexamples in Section 2.1 to show that the sharp Markov
property may not hold without these restrictions.

Merzbach and Nualart [19] have proved a special case of Theorem 1.1, in
which the region D satisfies certain regularity conditions and X has a locally
finite number of jumps; they do this by showing that the germ and sharp fields
are equal under their assumptions. This approach cannot lead to Theorem 1.1
since in general, the germ field is strictly larger than the sharp field (see
Example 2.3).

Somewhat unexpectedly, Theorem 1.1 fails for Lévy sheets with both posi-
tive and negative jumps (see Example 2.4), though it is clearly valid if X has
only negative jumps. The reason for this is that the boundary field #%4D)
turns out to be smaller than expected. This leads us to define the uniform
sharp field ##(A) (see Section 3.1), which is determined by the values of the
process on the set A, but is in general strictly larger than -#°(A). Neverthe-
less, the equality ##(A) = #°(A) holds if X is continuous, or if X is right
continuous with only positive jumps, or if A is open (see Proposition 3.3).
From now on, when we say X satisfies Lévy’s sharp Markov property relative
to a set D, we will mean that &#(D) and s#(D°) are conditionally independent
given #(3D). Then we have the following result, which is contained in
Theorem 3.9.

THEOREM 1.2. Let {X(¢), t € R2)} be a right continuous Lévy sheet which
has no Gaussian part and which satisfies Assumption B. Then X satisfies
Lévy’s sharp Markov property relative to all open sets D which are bounded or

have bounded complement, in the sense that #°(3D) is a splitting field for
H(D) and #(D°).
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Since #(0D) = # °(4D) for right continuous processes with positive jumps,
Theorems 1.1 and 1.2 say exactly the same thing for the Poisson sheet. Note
that Theorem 1.1 holds for any version of the process—indeed, for any set A,
the (completed) fields 5#°(A) are the same for any version of the process—
while Theorem 1.2 requires a right continuous version.

In a way, it is rather surprising that there is so little difference in the
theorems for the two types of processes, since processes with only positive
jumps behave much more simply than the others. Indeed, if we return to our
physical analogy of the string, we see that observing the string at time 1
corresponds to observing the process of independent increments on the line
sy + 8, =1, and conversely, observing the process on the boundary of the
triangle corresponds to observing the string at time 1, that is, taking a picture
of that segment at time 1. Thus the Markov property of the sheet for the
triangle {s € R2: s, + s, < 1} corresponds to a Markov property of the string
at time 1, that is, the Markov property for the (one-parameter) process
t— u(t, ).

If X is the Poisson sheet, the impacts on the string are all positive, that is,
all the rocks hit the string from below, and each generates a square wave of
height +1 (we think of the string as stretchable enough to bend itself into a
square wave). Suppose that at time = = 1, the string looks like Figure 1.

With just this snapshot at time 1, we can tell the entire history of the string.
Indeed, two rocks hit: one at x = 0.1 and time = = 0.8 (because waves travel at
speed 1), and the other at x = — 0.5 and time 7 = 0.9. No other rocks hit the
string (assuming that outside the interval —0.7 to 0.7 the string is at rest). So
clearly this snapshot at time 7 = 1 contains as much information as we would
have gotten by observing the string from times 7 = 0 to 7 = 1, and so, for the
purpose of estimating future behavior of the string, it is sufficient. Hence the
sharp Markov property of the Poisson sheet (for the triangle).

Now consider the case of the signed Poisson sheet, in which the impulses
can be either positive or negative. Suppose the snapshot is the same as above
(Figure 1). Then we do not have as much information as if we had observed
the string from times 0 to 1. Indeed, there are two possible histories:

History 1. Rocks hit from below at (x = 0.1, 7 = 0.8) and at (x = —0.5,
T =0.9). ,

-
-
-
-
——
-
-
-
-
e
-

-7 -6 -5 -4 -3 -2 -.1 0 1.2 .3 .4 .5 .6 .7 x

F16. 1. A snapshot of the vibrating string at time 1.
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F1G. 2. The string at time T = 1.1, assuming History 1.
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7 -6 =5 -4 =3 =2 —.1 0 .1 .2 .3 .4 .5 .6 .7 x

F1G. 3. The string at time 7 = 1.1, assuming History 2.

HisToRrYy 2. A rock hit from below at (x = —0.15, 7 = 0.55) and another
hit from above at (x = —0.25, 7 = 0.85).

In this case the snapshot gives us less information than we would get by
observing the string from times 0 to 1. We still have to ask, ‘““Does this make a
significant difference in estimating future behavior?”’ The answer is yes.
Indeed, with History 1, the string at time 7 = 1.1 will look like Figure 2,
whereas with History 2, it will look like Figure 3.

So clearly the snapshot is not sufficient to predict the future of the string,
and the Markov property will not hold.

This might appear to contradict Theorem 1.2. However, there is one impor-
tant bit of information present in the sheet which is absent in our string
analogy: Whereas the string stretches continuously, the sheet has genuine
discontinuities, and we can make use of its values at the points of discontinu-
ity. This, as we shall see, is vital (see Example 2.4).

2. Processes of independent increments.

2.1. Notation and examples. Let us denote the first quadrant in the plane
by R2; we will refer to the horizontal and vertical axes as the x-axis and the
y-axis respectively. We will use s and ¢ for elements of R2, and use s; and ¢;,
i = 1,2, for their coordinates; we will usually reserve v and v for real
variables, to use in place of s; and ¢; when the subscripts are too numerous.

The usual partial order in the plane is denoted by “ < *: s < t if s; < ¢, and
s, < ty. If s < t are in R2 , we will write (s, ¢] for the rectangle (s, £;] X (s, £,].
R, is the rectangle (0,¢]. (Unless we specifically say otherwise, “rectangle’”
means “rectangle with sides parallel to the axes.”) For any ¢ € R? and any set
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ACR?, put t+A={t+s: s€A) Let @, i=1,...,4, be the four right-
half-open quadrants of R%:

Q ={t:t,>20,t, >0}, Q,={¢t:¢,<0,¢, >0},
Qs ={t:4,<0,t,<0}, Q.= {t:¢,=>0,t, <0}

(“right-half-open” refers to the fact that the indicator function of the @, are
right continuous as defined below).

We say that a function f(¢,, t,) of two variables has quadrantal limits if for
each point ¢ = (¢, ¢,) the four limits

f@P)y = lim f(s), Jj=1,...,4,
s—t, sEL+Q;

all exist. We say that f is right continuous if f(¢) = f(t?V) for all ¢. We define
the jump of fat t to be

O f(8) = () = F(¢®) = F(tD) + f(2D).

Let {X(#), t € R2} be a (two-parameter) process defined on some probability
space (0, %, P), and let R = (s, t] be a rectangle in R%. The increment of X
over R is Ap X = X(¢,,¢,) — X(¢,, 85) — X(sq,25) + X(s4, 85). X is said to have
independent increments if for all finite sets of disjoint rectangles R',..., R",
the random variables Ap:1 X, ..., AR, X are independent. Notice that this says
nothing whatsoever about the values of X on the axes. Indeed, if X(u, v) =
X(u,v) — X(u,0) — X(0,v) + X(0,0), then X =0 on the axes, and AzX =
AR X for all rectangles R c R%2. Thus we can—and will—assume in what
follows that all processes of independent increments vanish on the axes.

For A c R%, we define the sharp field of A by #°(A) = o{X(2), t € A},
completed by adjoining all subsets of # of probability 0.

Before proceeding to detail our hypotheses, let us give four counterexamples
involving jump processes which show the need for some restrictions. Indeed,
though all processes of independent increments satisfy Lévy’s sharp Markov
property for finite unions of rectangles (this result is due to Russo [21],
Theorem 7.5; see also [11], Corollary 4.2), some restrictions on the process are
necessary if the Markov property is to hold for a larger class of sets.

ExampLE 2.1. Let D c R2 be the triangular domain with vertices at (0, 0),
(4,4) and (8,0) and let a = (1,2), b = (2,1), ¢ = (3,1) and d = (3, 2) be points
of R2. Let ¢,, &, £, and &, be i.i.d. random variables taking values 0, 1 and 2,
each with positive probability, and define a measure Y on R2 by Y = £,6, +
£,8, + £,6, + £,6,, where §, is the unit point mass at ¢. Set X(¢) = Y(R,). X
is a right-continuous process of independent increments. Notice that the event

= {¢&, =1} = {Y({b}) = 1} is in both #°(D) and #°(D°). Indeed, for any
point e = (2,v), where v > 2, we have Y({b}) = X(b) — X(b®) = X(e) —
X(e®). However, A is not in #°%0D). To see this, consider the events
Ay ={¢,=¢&=¢=1, £,=0) and A, ={£,=£,=0, £§ =2, £ =1). The
restriction of X to dD is the sameon A, and Ay, but A; c Awhile A, N A = .
Thus A cannot be in #%4D). All splitting fields contain #°(D) N H#°(D°)
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([18], Section 6), so #°(dD) is not a splitting field, and X does not satisfy
Lévy’s sharp Markov property on D.

This example and the ones below use the fact that if X has a jump at a
point £, then it has a jump discontinuity which goes horizontally off to « from
t, and a second one which goes vertically. The difficulty here arises because X
has jumps at fixed points, and the resulting discontinuities can cross on the
boundary or even coincide. This cannot happen (with a smooth boundary) if,
for instance, X is continuous in probability. We will actually assume slightly
more than this (see Assumption B in Section 2.4). In addition, if X is
continuous in probability, then #°%(D) = #°(D), which is a fact we will use
below without comment.

The next example is taken from [8] and shows that we cannot expect the
sharp Markov property to hold for smooth unbounded regions (though it will
hold for most unbounded regions with irregular boundary: see [11], Theorems
4.1 and 5.6)]). It involves the Poisson sheet, which we can define as follows. Let
points be randomly distributed in R2 such that with probability 1, there are
only a finite number of points in any bounded set; for any bounded Borel set
A c R%, the number of points in A, denoted II(A), is a Poisson random
variable with parameter equal to the area of A, and if A,,..., A, are disjoint,
II(A)),...,TI(A,) are independent. Then II is a Poisson point process [16],
and the Poisson sheet X(¢) is the process defined by X(¢) = II(R,). The sample
paths of the Poisson sheet are constant except on countably many lines where
there are jump discontinuities. In fact, there are countably many points
Z,,Z,,... such that X(¢) = zENI(Z <y In particular, O X(¢) # 0 implies
O X(¢) = 1 and ¢ = Z, for some i. Each point Z; creates a jump discontinuity
which propagates along the vertical and horlzontal half-lines starting at Z,.
This property of the sample paths is typical of jump processes.

The signed Poisson sheet X is closely related. Let §1, &, - .- beiid. random
variables, independent of the Z;, with P{¢; = 1} = P{¢, = —1} = 1/2. Then X
is defined by

X)) =Y §iliz, <y

ieN

ExampLE 2.2. Let D be the region below the diagonal of R2 and let X be
the Poisson sheet. If Z,, Z,,... is a sequence which enumerates the points
where O X(¢) = 1, note that if Z, = ¢t = (¢, ¢,) for some i, then for all v > ¢,,
X(t,,v) — X((¢,,v)®) = 1. This is because each point Z; gives rise to a jump
discontinuity of size 1 along the vertical line starting at ¢. Let us write R,
instead of R, ;). The random variable N = X(D N Rl) is clearly in #°(D),
since it equals #{t € D: O0X(¢) = 1}, and it is also in #°(D¢); indeed, it is
equal to #{¢t € D N R,: X(¢) — X(¢®) = 1}, which is measurable with respect
to #°(D°). By symmetry, sois N = X(D)* N R,). Let X be the reflection of
X about the diagonal: X(u,v) = X(v, u). Note that X and X coincide on 4D
and that N = X(D N R,). Thus if we only look at X on the diagonal, we
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cannot distinguish the event {N = 1, N = 0} from {N =0, N = 1}, so they
are clearly not # %(0D)-measurable. Thus the sharp field fails to contain
#°(D) N #°D°), and the sharp Markov property does not hold.

Notice that the germ field (D) is strictly larger than s#°(dD): One can
distinguish the two events by looking at X in any neighborhood of the
boundary. The region D is unbounded, however. Here is an example of a
bounded region in which £(dD) is strictly larger than #°(@D).

ExampPLE 2.3. Let A be a Cantor set in [0,1] with positive Lebesgue
measure. Let I, I,, ... be the disjoint open intervals whose union is (0, 1) \ A.
Set D; = U, enI, X I,,. The boundary of D, is the union of the boundaries of
the I, X I, plus the set K = {(x, x): x € A}. There is positive probability that
a discontinuity of X will intersect K. Just as in Example 2.2, one cannot tell
whether the discontinuity is propagating vertically or horizontally by observ-
ing the restriction of X to 4D, but one can tell it by observing X in any
neighborhood of dD.

It is easy to modify the boundary in this example (by roundmg off the
corners) so that it is the union of two C* monotone curves, and still have
A(D) + #%D).

The next example is more subtle. It shows that the boundary field #%(4D)
is not quite what we expect. Some events which one might think are in it may
not be.

ExampLE 2.4. Let D be the triangle bounded by the axes and the line

=1 —x and let X be the signed Poisson sheet. We claim that for the process

X and the set D, #°(D) and #°(D°) are not conditionally independent given
H°D).

Let F be the event “u — X(u,1 — u) jumps up one, then down one in the
interval (0, 3), and then does the same in the interval (,1).” Let U, < U, <
U; < U, be the x-coordinates of the four jumps.

Then F is clearly in #°(dD), as are the U;. In fact the trace of #’ %@D) on
F is just the completion of o{U,, j = ;4}. Indeed, let ¢ = (1,1 — u) € 4D.
Then X(t)=0 if u<(0,U,) U (U2, U3) UU,1) and X@#)=1 if ue€
(U, Uy) U (U,, Uy). We can take open intervals here because the probability
that one of the U; equals u is 0.

Write D = D, U D, U D3, where Dy = R 51,5 and D; and Dj are the
triangles above and to the right, respectively, of D,. Note that on the event F,
exactly two of the Poisson points Z; are in D, since each Z; in D gives rise to
a pair of discontinuities which intersect oD, and there are evidently four such.
(The distribution of the Z, is absolutely continuous, and it is easy to see that
no two of these points fall on the same line, so that discontinuities from
different Z; give rise to jumps at different places on dD. See Corollary 2.8.)
Moreover, a moment’s reflection shows that there are two different ways F
can happen. Either there is a point in D, at (U, 1 — U,) and a point in Dy at
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(Us,1 — U,), both having mass + 1, or else there are two points in D,, a point
of mass +1 at (U, 1 — U,) and a point of mass —1 at (U,, 1 — Uy). Thus
F = F, U F,, where F, is the first of these possibilities and F2 is the second.
F, and F, are clearly in #°%D), and in #%D°) as well, since F, =Fn
{X(Uy,1 - U)®) = 1), and F, = F n {X(U,, 1 — U,)®) = 0}.

We claim that if B € ;%O(aD), P(B) > 0 and B C F, then P{B N F;} > 0.
Let us accept this claim for the moment. It implies that F, & #°(D), for if it
were, we could take B = F, and we would have 0 = P{J} = P(BN F,} > 0, a
contradiction. Since F, € # % D) N #%D"), it follows that # %4D) is not a
splitting field, and the sharp Markov property does not hold.

To establish our claim, note that given F;, the vector U = (U;,...,U,)
has a strictly positive conditional joint density f,—which could easily
be computed—on the set A = {u € R*: u; <u, < u; < u,}. Similarly, given
F,, U has a strictly positive joint density f,. Then by Bayes’ theorem,

PUFU) = P(F}) f{(U) o
P{F}f((U) + P{Fy}f5(U)

If B € #°0D) and B C F, then B is o(U)-measurable, and so

P{(BNF,) = fBIFI dp = fBP{FllU} dP > 0,
which verifies the claim.

Notice that the problem in Example 2.4 comes from the fact that X(Uz,
1 - U,) is not »#°(@D)-measurable [if it were, F, and F, would also be in
#°9D)). Now if V,,V,,... enumerate the jumps of u — X(u,1 — u), then
H# (D) = #°0D) Vv of{X(V;,1 = V)): j=1,2,...} is indeed a splitting field.
It is a sharp boundary ﬁeld for it is generated by the restriction of X to the
boundary. This is really the field we would like to have. The problem is simply
that #°(0D) is too small. The situation is somewhat analogous to the problem
of defining fields for the process {x(u), u > 0}, where y is the indicator
function of the set of jumps of a standard Poisson process. The field o{x(u),
u > 0} is trivial since for each u, P{y(u«) = 0} = 1. The solution is to take the
fields generated, not by y, but by the Poisson process itself. In the same vein,
we will define a “uniform sharp boundary field”’ in Section 3.1 to circumvent
this problem. In Example 2.4, the uniform sharp field is in fact #(dD).

2.2. Background. Let {X(t), t € R2} be a process of independent incre-
ments which vanishes on the coordinate axes. We will make the following
assumption in order to rule out the pathology of Example 2.1.

AssSUMPTION A. The map t — X(t) is continuous in probability.

A process of independent increments satisfying Assumption A is called a
Lévy sheet (or Lévy process in the terminology of [14, 1]). This imposes a
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structure on X, which we will detail in this section. Since these results are
essential to us but for the most part are not new, we only give an outline of the
proofs for convenience of the reader. For more details, the reader is referred
to [1].

Since the increments of X are independent, Assumption A is equivalent to
a.s. continuity of X at each fixed ¢t € R2. In particular, X(¢) has an infinitely
divisible distribution for each ¢ € R2. The same is true for any increment of
X: Let R c R2 be a rectangle. Then A, X is infinitely divisible. Set ¢5(u) =
E{e’*2rX} and yp(u) = log ¢z(u). By the Lévy-Khintchine representation
([14], Theorem 3.4.1), there exist constants y(R) and o2(R), and a nonnega-
tive measure up(dx) on R, called the Lévy measure of AgX, such that

1
vp(u) =iy(R)u — E(rz(R)u2 + " }(e”“‘ — 1 —iux)up(dx)
x[<1

+[ (e = 1)ug(dr).
{lx|>1}

(2)

The Lévy measure uj satisfies

pr{x:lxl > 1} <o,  ugp{0} =0 and fl - x2up(dx) <
x
(recall that any measure satisfying these properties is the Lévy measure of an
1nﬁn1tely d1v1$1ble distribution). In the case R = R,, Ap X = X(¢), and we set
=vy(R,), 02 = 0% R, and u, = KR,

Note that if R/, j=1,...,m, are disjoint rectangles, then the X, are
independent, and consequently © ; X, has log characteristic function ¥ ;{p,.
This implies that y(R), c%(R) and uj are additive in R. It follows that they
can be extended to become additive functions on the class of finite unions of
rectangles.

By Assumption A, ¢, —» ¢t implies ¢, (x) - ¢(u) and t//,(u) - ¢ (u), V
n € N. By [1], Theorem 3 1, it follows that ¢ — y, and ¢ — ¢,2 are continuous,
t = u,((x,y] is continuous at ¢ when either 0 <x <y < wor —» <x <y <0.

The map ¢ — y, may not have bounded variation. However, if we replace
X(t) by X'(t) = X(¢) — v,, we have an a.s. continuous process of independent
increments for which vy, = 0. In addition, replacing X by X’ will not affect
o-fields defined using X. So we assume without loss of generality that:

et — vy, is continuous and is the distribution function of a finite signed
measure y on R2.

Turning to o2, note that Ao = 0%(R) > 0, so ¢ — o2 has positive planar
increments, which implies that it is the distribution function of a measure.
Thus o2 can be extended to a measure A — o%(A) on the Borel sets of R .

In the case of u, note that if 0 < x <y and R is a rectangle, if we define
(R X (x,yD) = pp((x,y]D = 0, then v is additive in R for fixed x and y and
additive in the interval (x, y] for fixed R, so it is in fact additive in the sets
R X (x,y]. The same is true if we take x <y < 0. Moreover, if ¢, |t and
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¥, 4y > x> 0, then
W(R, X (x,y,]) — v(R, X (x,y])
<v(R, X (y,¥5.]) + v((R,n \R,) x (x,yl])

< ut((y, y,,]) + |Mt,,((x’ yl]) - ""t((xs yl])l
-0

as n — «. It follows that for any x > 0, (¢,y) = v(R, X (x,y]) is the distribu-
tion function of a measure on RZ X R. The same argument holds if x <y < 0,
and we see that v extends to a o-finite measure on the Borel subsets of
R2 X R, such that »(R2 x {0}) = 0.

Let (U, %) be a measurable space and let v be a o-finite measure on U X R
such that:

o (U x {0}) = 0;
ethere exists A, € % such that U ,A,, = U, for which v(A, X {x: x| > 1}) <
wand [, <yx°v(A4, X dx) < o.

That is, for each A, v(A,, - ) is a Lévy measure. We may assume without loss
of generality that the A, are increasing. We will call such measures gen-
eralized Lévy measures. The above considerations show that » defined by
([0, t] X [x,%)) = u,(x,®)) is a generalized Lévy measure for U = R%. (When
U = R2, we shall always assume that A, =[0,n] X [0,n].)

If R is a rectangle, we define Y(R) = A, X. By additivity, Y extends to an
additive measure on all finite unions of rectangles. [Y(-, w) may not be a
measure for each w, but it becomes a measure if we consider it as a set
function with values in L°, the space of random variables with the topology of
convergence in probability. This will be evident from the representation below.]
Note that Y(A) and Y(B) are independent if A and B are disjoint.

Let & = o{X(s), s <t} be the filtration generated by the process X,
completed by adjoining all subsets of sets of probability 0 in &. Since X is
continuous in probability, it is not difficult to show that the completed
filtration is right continuous. Note that if A is a bounded finite union of
rectangles on R2 which does not intersect R,, then by the independence
property of Y, Y(A) is independent of %,.

ProrosiTiON 2.1. (i) With probability 1, X has quadrantal limits along the
rationals.

(ii) There exists a version of X which is almost surely right continuous and
has quadrantal limits.

ProoF. In the one-parameter case, this is proved in [14], Theorem 8.7.2,
and the idea for generalizing this martingale proof to more than one parame-
ter is explained in [1], (1.17). O
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If the Lévy measure v has compact support, then [px?v(R, X dx) < », so
that we can write ¢, in the form

1 )
(3) d(u) = iv(R)u - So*(R)u* + [ (e** = 1 - iux)v(R, X dx)
R
for a possibly different measure vy.

PROPOSITION 2.2. Suppose that the Lévy measure v has support in R2 X
[-N, N1 for some N and the log characteristic function of X(t) is given by (3)
for all t. Then:

(i) for each t € R2, X(¢) has moments of all orders;
(i) X is a two-parameter martingale if and only if y = 0;
(iii) if v =0, then for all p > 1 there is a constant C, such that for all
t € RZ,

(4) E{ suplX(s)l”} < C,E{X(¢)P}.

s<t

ProoF. This short proof is included for the convenience of the reader.

() Let p > 1 be an integer, fix ¢ € R2 and let «,(dx) = x2v(R, X dx).
Then «, is a finite measure of compact support, and if we set g(u,x)=
(e’** — 1 — jux)x~2, then g is analytic in both u and x, and hence the
integral in (8) is infinitely differentiable. The other two terms are also differ-
entiable, so it follows that ¢, (and hence ¢,) is p times differentiable. If p is
even, this implies that the pth moment exists and

P
7ar $10) <.

(ii) Take p =1 and note that iE{X(¢)} = (8/0u)$,(0) = iy(R,). Since
X(0) = 0, X cannot be a martingale unless y(R,) = 0 for all ¢, which implies
that y = 0. Conversely, if y =0 and s <¢, let A=R,\ R,. Then X(¢) -
X(s) = Y(A), and, since X has independent increments, Y(A) is independent
of &, so E{X(t) — X(s)|.F,} = E{Y(A)} = i(8/0u)p4(0) = 0.

(iii) This follows from Cairoli’s two-parameter martingale maximal inequal-
ity [5]. O

E{(X(t)"} = (-1)”

Under Assumption A, the exponent function i, is the sum of two terms:
iy,u — 202u? and

5 ei* — 1 — jux dx) + el** — 1)u,(dx),
® [ ) + [ Ye(dz)
so the characteristic function ¢, is the product of two corresponding factors.
Each of these factors separately defines a process of independent increments,
X&(t) and X/(¢). The first is Gaussian, and the second is a “‘jump process.”’ It
is possible to construct the sample paths of these processes directly from the
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sample paths of X(¢) (see [1], Theorem 4.6), thus defining all three processes
on the same probability space as X(¢), in such a way that X(¢) = X2(¢) + X/(¢).
This yields the two-parameter analogue of the classical Lévy decomposition of
single-parameter processes of independent increments. Since this decomposi-
tion is important for our results, we will give a simple proof of it below.

2.3. Representations. One key element in our study of the sharp Markov
property of jump processes is the fact that the sample paths of these processes
are entirely determined by their jumps, via a representation using a Poisson
random measure. This representation is briefly recalled here.

Let w be a finite measure on a subset U c R2 X R. A Poisson random
measure II, is a mapping from the Borel subsets of U to L° with the
following properties:

o for each Borel set A c U, I1 (A) is a Poisson random variable with parame-
ter u(A);
eif A;,..., A, are disjoint, I1,(A,),...,II (A,) are independent.

Since II,, only takes on integer values, it is a sum of unit point masses. (If we
concentrate on the points rather than the point masses, we would speak of a
Poisson point process rather than a Poisson measure.)

I1, is a sum of unit masses, so it is countably additive for each w € Q. If f
is a positive Borel function on R% X R then [f(¢, x)II (dt X dx) is a compound

Poisson random variable, with characteristic function

(6) E{exp[iuff(t,x)l’[#(dt X dx)]} = exp[f(ei"f("x) — Dpu(dt X dx)|.

[To see this, note that if f = I, is the indicator function of a set, the equality
follows from the fact that I1 (A) is Poisson with parameter u(A), and this
extends to simple functions by the independence properties of II,. Then (6)
follows in the limit.]

If u is o-finite, there exist disjoint sets U, whose union is R2 X R such that
def
[T = rly, is finite. Let (II, ) be a sequence of 1ndependent Poisson random

measures corresponding to "the K,, and let II, n=1ll, . Then II, is a
o-finite measure which is a sum of unit masses and it 1s agaln a POlSSOIl
random measure. Moreover, (6) remains true in the sense that if one side
exists, so does the other and they are equal.

Let v be a generalized Lévy measure on RZ X R, and let [I =1, be a
corresponding Poisson random measure. Set y = 02 = 0 for the moment, and
let ,(u) be the log characteristic function associated with v as in (2):

() = [ ("= 1u(R, x dx)
(7)
+ x 1)( e'* — 1 — iux)v(R, X dx).
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THEOREM 2.3. The integral [p . <1y*(Il(ds X dx) — v(ds X dx)) exists as
the limit as € 10 of [« <|x|<1)x(H(ds X dx) — v(ds X dx)). The convergence

is almost surely umform for t in compact sets. The process {X(¢), t € R2}
defined by

X(t) = I(ds X dx) + TI(ds X dx) — v(ds X dx
“ '[RtX(lxlzl)x (ds x dx) jR,X(Ix|<1}x( (ds X dx) = v(ds X dx))

is a right continuous process of independent increments with characteristic
function ¢(u) = %™,

Proor. Define a process X(¢) = Jr,xqx=1y%11(ds X dx), and, for 0 < ¢ < 1,
set

Xt = x(TI(ds X dx) — v(ds X dx)).
R, x{e<|xI<1}
Since v(R, X {|x| > 1}) is finite, so is [I(R, X {lx| > 1}), which means that with
probablhty 1, the restriction of II to R, X {|x| > 1} is the sum of finitely many
point masses, hence Xl(t) is well deﬁned The independence property of II
implies that {X 1(t) t € R2} is a process of independent increments. It is clearly
right continuous in ¢. By (6), its log characteristic function is

(8) H(u) = log E{e*®) = [ (e™* — 1)y(R, X dx).
{xI=1}

Both v and II are finite on R, X {¢ < |x| < 1}. Let r = 1 /¢ and note that
(X, A8, (¢, r) e R2 X [1,)} is a right-continuous process of independent,
mean zero 1ncrements Thus it is a three-parameter martingale. (The reason
for taking 1/¢ instead of ¢ as a parameter was simply to get the partial order
right.) The process X1 ,r is independent of X and, as it is a compound
Poisson process plus a drift, we can apply (6) again to see that its log
characteristic function is

(9)  wi(u) = log E{e™*®) = [ (e'** — 1 — iux)v(R, X dx).
{e <lxl<1)

By (8) and (9), ¢ — X,(-) + X.(*) converges in law to a process with charac-
teristic function ¢ .(u). Since this process has independent increments, it
follows that for each ¢, ¢ — Xl(t) + X'e(t) also converges a.s. and in L2 The
uniform convergence now follows from Proposition 2.2(iii). O

Let 0% be a o-additive nonnegative measure on R2 and let y be a o-
additive signed measure on R%? such that t —» 0*(R,) and ¢— y(R,) are
continuous and vanish on the coordinate axes. A Brownian sheet based on o>
is a real-valued Gaussian process W = {W(¢), t € R%} with mean 0 and covari-
ance E{W(s)W(¢)} = 0%(R, N R,). W has a right-continuous version by Propo-
sition 2.1, but in fact the sample paths of W have additional regularity.
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ProproSITION 2.4. W has a version with continuous sample paths.

Proor. This is proved in [1], Theorem 3.2, but the following proof is
simpler. Assume that W is the right continuous version whcse existence is
guaranteed by Proposition 2.1. We will prove continuity in R y y, for an
arbitrary N, which is sufficient. For each point s with rational coordinates,
v — W(s,,v) is a Gaussian square-integrable martingale, so it has a version
which is a deterministic time change of a Brownian motion. Since its quadratic
variation is continuous, the time change is continuous. Thus v —» W(s,, v) has
a continuous version, which must equal the original process a.s. for all (s, v)
since W is right continuous. It follows that for a.e. w, v = W(s;, v) is continu-
ous for all rationals s;, and similarly, u —» W(u, s,) is continuous for all
rational s,. With probability 1, then, W is continuous on all vertical or
horizontal lines with one rational coordinate. Since the sample paths of W are
right continuous with quadrantal limits by Proposition 2.1, Lemma 3.1 below
implies that W has continuous sample paths. O

An immediate consequence of Theorem 2.3 is the following.

COROLLARY 2.5. Let W be a Brownian sheet based on o> and let 11, be a
Poisson random measure which is independent of W. The process

X&) =W() +y(R) + [ | *(IL(R, x dx) = v(R, x dx))
(10)
+ xII, (R, X dx)
{lx1=21}

is a right continuous process of independent increments with log characteristic
function given by (2).

Note that IT = II, can be recovered from the sample paths of X. Indeed, II
has a mass at (¢, x) if and only if O X(¢) is nonzero and O X(¢) = x. It is thus
possible to reconstruct IT from X. To be explicit, define a function ~ on the
space D of right continuous functions on R? with quadrantal limits by

hp(x) = X Ox(8) 5=y
{(t,y)eB)

One easily checks that this function is Borel (for the Skorokhod topology, see
Section 3.1) and that II(B, w) = h z(X(+, w)).

Once II is known, the integral in (10) can be calculated, added to y(R,) and
subtracted from X(¢) to obtain W. Thus all the quantities in the decomposition
(10) can be obtained from the paths of X.

The above analysis assumes we start with the Poisson random measure II.
If we start with a process X of independent increments with generalized Lévy
measure v, we do not know in advance that there is a Poisson measure defined
on the same probability space as X, but we do know that if the process
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satisfies Assumption A, there there is another probability space on which there
is a Poisson measure II,, a Brownian sheet W and a process X defined via (10)
which has the same law as X. We can construct a measure 11, from X using
the map & defined above. If we compare this with what happens with the
process X of the same law, we see that II, must have the same law as II, and
is thus a Poisson random measure [clearly, »(R, X B) is the expected number
of jumps of X with size in B that will occur in R,]. Armed with thls, we can
construct a jump process X/ as an integral, and the process X — X/ is
necessarily Gaussian and independent of X/. We now have the following.

THEOREM 2.6. Let {X(¢), t € R2} be a right-continuous Lévy sheet with log
characteristic function given by (2) Then there exist processes X& and X’ and
a Poisson random measure H all measurable with respect to o{X(t), t € R%},
such that

X(t) =X/(¢t) + X&(t), VteR?,a.s.,

where X is Gaussian, independent of XJ and has log characteristic function
iyu — 302u? and X/(¢t) = Y/(R,), where Y’ is an L°-valued measure with
the Poisson representation

(11) Yi(A) = f(lleI)xfI(A X dx) + [(|x|<nx(ﬂ(A X dx) — v(A X dx)).

Note that it follows from the representation above that the set function
Y(A) which we defined on finite unions of rectangles in Section 2.2 does indeed
extend to an L%-valued measure. Indeed, we can write Y = Y€ + Y/ + Y,
where Y/ and Yj are given by the first and second integrals, respectlvely, on
the rlght-hand 51de of (11). Then the Gaussian part Y# takes values in L% and
is o-2-continuous ([13], Definition 1.2.3), so it extends to an L2-valued measure
([13], Theorem 1.5.2), and hence is an L°-valued measure. The same is true of
Y4, while Y/ is a sum of point masses, finite on each compact set and is hence
a signed measure for a.e. w. Thus the sum of the three is an L%valued
measure.

2.4. A closer look at the jumps. Let o2 be a Radon measure on R2 and let
y be a signed Radon measure on R%. Let » be a generalized Lévy measure on
R2 X R. For the rest of this article we will make the following hypothesis.

AssumPTION B. The two measures y and o? are absolutely continuous with
respect to Lebesgue measure on R2, and for each set C which is relatively
compact in R \ {0}, v(dt X C) is absolutely continuous with respect to Lebesgue
measure on R2.

The corresponding process X of independent increments then satisfies
Assumption A and can be written X = X#& + X/, where X2(¢) = W(¢) + y(R,)
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is Gaussian, and X/ is the uniform limit of the X, = X, + X, defined in the
proof of Theorem 2.3. Because of the absolute continuity of the measures, the
sample paths of X# are continuous by Proposition 2.4. By Theorem 2.3 we can
represent X, in terms of the Poisson random measure II, as

X.(t) = [ xIL (R, X dx) + [ xI1,(R, X dx)
{lx|=1} {e<|x|<1}
- xv(R, X dx).
{e<|xl<1}

Now ¢ = v(R, X dx) is continuous in the weak topology, and II, is a sum of
point masses, so that X (¢) — [, <, <1*¥(R, X dx) is a finite sum of terms of
the form f, () = xI}; (¢) for |x| > ¢, where [s,) = [s,%) X [s,, ).

Note that f, , has discontinuities of two kinds. At s, O f, ,(s) = x. Along
the horizontal and vertical half-lines emanating from s, f,, also has a
discontinuity of size x, but O f; , = 0 there. And f, , is continuous elsewhere.
We use the term jump of a function g to refer to a discontinuity at which
O g # 0. We will say that the discontinuity propagates along the two half-lines.

The jumps of X, correspond to the masses of II: If II, puts a mass at
(¢, x), then X_ has a jump of size x at ¢. This jump gives rise to a discontinuity
of size x which propagates along the horizontal and vertical half-lines which
emanate from s. As we shall see below [Corollary 2.8(i)], under our assump-
tions, there cannot be more than one jump on any horizontal or vertical line,
so that this propagating discontinuity will not change size or be cancelled by
another. It follows that with probability 1 the sample paths of X, satisfy:

(1) O X_(¢) = 0 except for a countable set of points (¢");
(1) if O X (¢") = x, then

X (t5,0) - X,((12,0)?) =x, vz,

Xe(u,tg)—Xe((u,té‘)(4))=x, u =ty

(iii) other than those discontinuities, X, is continuous;
(iv) X, = 0 on dRZ.

Since X, converges uniformly to X’/ and X¢ is continuous, the sample paths
of X have the same four properties [note, however, that the set of ¢ where
O X,(¢) = 0 is discrete whereas this need not be true for X].

Let (T™) be a sequence of random variables with values in R2 U {«} which
exhausts the jumps of X, that is, X jumps at each T'" and all the jumps of X
are contained in the set {T'", n =1,2,...}. By setting T" = » on the set
{3j <n: T" =T}, we can have the T" represent distinct jumps. Then let
® =1 ;¢p and let @, =X 15 xrsy>07rs; P is a random measure which
marks the jumps of X, and ®, marks the jumps of modulus greater than ¢. As
remarked in Section 2.2, they are both Poisson random measures. Set ¥ =
Lj.p0ps X e andlet W, = X, . Ly xroy > e, 1o X1y > 010 X 7+. Notice that
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V=0X®- X85 X8pj, and ¥, is the same for the jumps of modulus
greater than ¢. Here is one consequence of Assumption B.

LeEmma 2.7. Let A c R2 X R2 be a set of Lebesgue measure 0. Then
P{¥(A) =0} =1.

Proor. We first remark that because of the Poisson distribution of the
jumps, given that ®(R,) = k&, the distribution of the points where the jumps
occur is the same as that of % ii.d. random variables with values in R,,
each having a distribution p given by p(B) = v((B N R,) X {lx| > &}/
v(R, X {|x| > ¢}). The only thing we have to know about p is that it is
absolutely continuous with respect to Lebesgue measure on R,, which follows
from Assumption B. Since p X p is absolutely continuous on R, X R,, any pair
(S;, S;) with i # j and the joint distribution p X p satisfies P((S;, S ) € A} =
0, and it follows that P{¥.(A N R,) = 0|V, (R,) = k} = 1. This is true for all
and all t € R2, so P{¥,(A)=0}=1. Now let ¢ >0 and the conclusion
follows. O

There are several consequences of this lemma which we will use repeatedly
below. Each discontinuity of X propagates both horizontally and vertically
from a jump of X, along two half-lines to ». We can extend these half-lines to
full lines, which we will call extended discontinuities.

CoroLLARY 2.8. (i) P{two jumps fall on the same horizontal or vertical
line} = 0.
(i) Let B c R2 be a set of Lebesgue measure 0. Then

P{two extended discontinuities cross in B} = 0.

(iii) Let ¢(u) and y(u) be Borel functions on R, with values in R2:
¢ = (¢1,¢5) and ¢ = (Y, ¥,). Suppose that the four curves {(y(w), ¥;(w)):
u >0}, i, j=1,2, have Lebesgue measure 0 in R2. Then

P{3 u € R*: ¢(u) and ¢(u) are on different extended discontinuities} = 0.

Proor. (i) Take A = {(s,t): s; = t; or s, = ¢,} in Lemma 2.7.

(ii) Take A = {(s, ¢): (sy,¢;) € B}. To see that A is a null set, note that if B
is a rectangle in R,, the (four-dimensional) Lebesgue measure of A N (R, X R,)
is bounded by ¢,¢, times the (two-dimensional) Lebesgue measure of B. This
also holds for unions of rectangles, and it follows that for any ¢ € R2 and any
Borel set B, |A N (R, X R,)| < t,t,|B N R,|, which vanishes if [B| = 0.

(iii) Apply Lemma 2.7 with

A= U (({s(0)} xR7) U (R*X{$(2)}))
X (({oy(u)} X R*) U (R*X {dhy(u)})).

This is a union of four sets. U ,(({¢(x)} X R*) X (R* X{y,(x)})) has measure
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0. Indeed, let B = {(5(u), $,()): u > 0}. This has two-dimensional measure 0
by hypothesis, so apply (ii). The second set is a reflection of the first:
U (o (w)} X R*) X ({y;(»)} X R*)) maps into a set of the first type—which
therefore has measure O—under the measure-preserving isomorphism
(81, 89, t1, t5) = (81, Sg, ty, t1). The remaining two sets are handled in similar
fashion, so we conclude that A has measure 0. O

3. The sharp field is a splitting field.

3.1. The uniform sharp field. We saw in Example 2.4 that the definition of
the sharp field is delicate when the processes involved have discontinuities. We
are now going to define what we call the uniform sharp field.

Let 2(R2) (or just 9 for short) be the space of functions on R% which
vanish on the axes, are right continuous and have quadrantal limits at every
point. Equip Z with a Skorokhod metric p, defined as follows. On the index
set T = [0, 112, set

p(f,8) = }gﬁmaX(llf— g o All IIAll,

where |[f— goAll = sup,c7lf(#) — g(A(®))| and [[All = sup, plA(#) — ¢|. The
space A is the group of all transformations A: T — T of the form A(¢;,¢,) =
(A4(2)), A5(t5)), where A;: [0,1] — [0, 1] is continuous, strictly increasing and
leaves 0 and 1 fixed. We can extend the metric to all of R2 in the usual
manner. Then 9 becomes a complete metric space ([2], and [22] page 205).

The discontinuity set of a function f € 9 is far from arbitrary. A disconti-
nuity occurs at ¢t € R% if and only if one of the following four inequalities
holds: f(¢) # f(t®), f(t®) # ftD), f(t) # fFt®) or Ft®) # f(t®). If either
of the first two inequalities hold, ¢ is termed a vertical discontinuity, and in
the last two cases a horizontal discontinuity. It can be shown that all vertical
discontinuities fall on a countable collection of vertical lines and that all
horizontal discontinuities fall on a countable collection of horizontal lines (see
[17], Théoréme 2-1, and [22], page 205). Discontinuities are not isolated: A
vertical discontinuity will propagate for a positive distance along a vertical line,
and a horizontal discontinuity will propagate along a horizontal line.

LemmA 3.1. Suppose that f€ 9 has the following property: There is a
countable set of horizontal lines with dense y-coordinates and a countable set of
vertical lines with dense x-coordinates on which the restriction of f is continu-
ous. Then f is continuous.

Proor. If ¢ is a point of discontinuity of f, at least one of the four above
types of discontinuities occurs at ¢. Suppose, for example, that f(¢) # f(¢®).
There exists a sequence of horizontal lines of continuity of f whose y-coordi-
nates, which we denote v", decrease to ¢,. Since f(-,v") is continuous at
(¢4, v™), there are u” <t¢; such that u” - ¢, and f(u",v"*) — f(¢;,0") = 0.
But f(u",v™) - f(t®) and f(t,,v") > f(¢), which is a contradiction. Similar
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arguments eliminate the possibility of the other types of discontinuity, so f is
continuous at . O

Let #(2) denote the Borel o-field on 9. This o-field coincides with the
smallest o-field for which all the coordinate mappings f — f(¢) are measurable
([22], page 205).

The process X can be defined canonically on the space 2. Let X be the
canonical process on Z: X, =1, f € 2. Then there is a probability
measure P on (2, #(2)) such that under P, X has the same distribution as
X. Note that P lives on the subspace 9, of all f € 9 which satisfy (1)-(iv) of
Section 2.4. Equivalently, 9, is the closure in 9 of functions of the form

F(6) =80 + X ()

where g is continuous and vanishes on the boundary, the x/’s are real
numbers and the s/’s are elements of R2 whose first coordinates are distinct
and whose second coordinates are also distinct, and f,; ,./(¢) = x/I;,, ..(2).
[Though one might find it surprising that all elements in the closure of this set
of functions satisfy (1)-(iv) of Section 2.4, the proof of this fact is straightfor-
ward from the definition of the Skorokhod metric and is left to the reader.]
Note that 9, is a measurable subset of Z, since it is closed, so (2, #(9,)) is
again a Blackwell space. (This is almost immediate from Blackwell’s original
definition of what he called Lusin spaces [3].) Discontinuities of elements of 2,
have a very specific form. Indeed, f € 2, has a discontinuity at ¢ if and only if
f@) # fE®) or f(t) #+ fF™).

The theorem that follows is the key to our definition of the uniform sharp

field. Let K be a o-compact subset of R2, and let “ X be the equivalence
relation on 9 defined by

fRgef(t)=g(t), VteK.

THEOREM 3.2. There is a unique separable sub-o-field #(K) of #(2)
whose atoms are the equivalence classes of ““ ~ .

ProOF. Since & is a complete separable metric space, (2, #(92)) is a
Blackwell space. By Blackwell’s theorem ([3] and [12], Theorem 3.26), a
separable sub-o-field of Z(2) is determined by its atoms. Thus there can be at
most one separable sub-o-field of #(Z) whose atoms are the equivalence

classes of “ £ . This means that we need only prove existence. We will do this
by exhibiting a countable family of random variables which generate a o-field
& with the appropriate atoms.

Let us first assume K is compact. For convenience, we shall assume that
the index set is [0, 1]? instead of R2 . Let (¢*) be a countable dense subset of K.
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Even in simple cases (see Example 2.4), the values of the f(¢") do not
determine the restriction of f to K. We need to include the values of f at
points of K which are also discontinuities of f. We begin by finding the
countable set of vertical and horizontal lines which contain the discontinuities
of a given f € Z (this set depends of course on f). Set

Z(f)= sup (f(s) —f(s®) = sup (f(s)—f(s®)).

0<sy<1 s,€[0,1]NQ

It is easy to see that the map (f,s;) = Z,(f) is jointly measurable from
I X R to R, and since f € 9, there are only countably many s; for which
Z,(f) # 0; these are the x-coordinates of the lines containing the vertical
discontinuities of f. We can thus enumerate them by a sequence of #(9)-
measurable functions T}, TZ, ... on 2 (these need not always be distinct). The
T} enumerate the x-coordinates of the countable set of vertical lines on which
the vertical discontinuities of f fall. Similarly, we can find T, TZ,... which
enumerate the y-coordinates of the horizontal discontinuities of f.

For any s = (s,, s,) € RZ and a > 0, let V(s;a) be the point in R2 whose
first coordinate is s, and whose second coordinate is sup{v: s, <v <a,
(s, v) € K}. Similarly, let U(s; a) be the point in R?2 whose second coordinate
is s, and whose first coordinate is sup{u: s; < u < a, (u, s,) € K}. We make
the convention that the sup of the empty set is 0, so that U(s;a) and V(s; a)
are either in K or in the boundary of R2 . Since K is compact, both U and V
are Borel functions of the pair (s, a).

Let (r™) be an enumeration of the rationals in [0, 1]. Let & be the o-field
generated by the coordinate mappings f~ f(t*), n = 1,2,... [where the (")
are the points dense in K] together with the mappings f+— f(U(r™, Tg); r?))
and the mappings f - f(V(T, r™);r?)), m,n,p=1,2,....

These are all #(2)-measurable. Thus & c #(2). It remains to show that

the atoms of ¢ are the equivalence classes of “ X . To see this, it is enough to
show that f|x = 0 if and only if all the random variables generating o vanish.
This is clear in one direction: If f|x = 0, then, as U(s;a) and V(s;a) are all in
K U dR2, all the variables generating  vanish. For the converse, suppose
that supg f > 0. Then there is a point s € K such that f(s) > 0. If s is an
isolated point of K, it is one of the ¢*, so sup,, f(¢*) > 0. If not, there are two
possibilities: If s is a point of continuity of f, it is a limit of ¢" and
f(s) =1lim f(¢") > 0, so one of the f(¢") is again strictly positive. If s is a
point of discontinuity, then s must be a horizontal or vertical discontinuity.
Suppose it is vertical. Then s, = T/*(f) for some n €N, so if r>s,,
the second coordinate of V((T[*(f), sy,); r) is greater than or equal
to s, and it decreases to s, as r decreases to s,. By right continuity,
fOVA(T(f), s9); 1)) = f(s) > 0, hence f(VA(T(f),r™);r?)) > 0 for some m,
n and p. Note that this is true even if V((T*(f), s5);r) = s. 3

If, now, K is only o-compact, say K = U ,K,, put #(K) = V ,#(K,).
This is a separable sub-o-field of #(2), and its atoms are clearly the equiva-

K
lence classes of “ ~ . O
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DeFINITION. Let X be a process with sample paths in & a.s. and let
K c R? be a o-compact set. Consider X as a random variable with values in
2. Then the uniform sharp field #(K) is the o-field X~ (#(K)), completed
by adjoining all null sets of &.

REMARK 3.1. Let (B, &) be a Blackwell space, let A € & and let & be a
separable subfield of &. If A is a union of atoms of &7, then A € 7.

To see this, let &7’ be the o-field obtained by adjoining A to &7. &' is a
separable sub-o-field of &, and it has the same atoms as &, hence it equals &7
by Blackwell’s theorem.

This remark makes it easy to verify measurability. For instance, let us
compare S#(K) with the uncompleted sharp field #XK) = o{ f(¢): t € K}
(note that there is no measure involved in this definition), and the uniform
sharp field #(K) with the sharp field #°(K).

PropositioN 3.8. () If J C K, then #(J) ¢ #(K) and #(J) c #(K).

(i) #UK) c %(K) and Jfo(K) c #(K) forall K.

(iii) If D is open, #(D) = #D) and #(D) = #°(D).

(iv) Let K be closed and consider the subset 9 C 9, of functions f such
that O f(¢) = 0 for all t. Assume P(2*) = 1. Then there is a Borel subset D5
of 9 with P{2%} = 1 such that the traces of #(K) and #YK) coincide on
9% (in particular, the two fields are equal on the subset of continuous
functions in 9). Consequently, if X has only positive jumps, #(K) = #°(K).

Proor. It is only necessary to prove the statements for the o-fields on 9,
since the others are just their (completed) images. To see (i), note that H(J)
and H#(K) are separable subfields on #(2). Two functions which agree on K
must agree on J, so every set in J#(J) is a union of atoms of #(K). Now
apply Remark 3.1.

For (ii), note that if ¢ € K, then for any x, {f € 9: f(¢) < x} is a union of
atoms of #(K), so f— f(¢)is #(K )-measurable

Statement (iii) follows upon noting that the first pair of o-fields are separa-
ble and are generated by f+— f(¢*) for any dense subset (¢*) c D, while the
second pair are completions of the first two.

The last statement requires more effort. For s € R2 | set

(K,s]={teR%:t<sand[¢t,s]NK =0}

=R,N U R,
teKNR,

and let I'y ; denote the monotone decreasing curve which is the lower left
boundary of (K, s] (this is the last exit line of K N R,). Let

1 _
K'= U TIg,.
reQ?\K
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Then K! is contained in a countable union of monotone curves and has
Lebesgue measure 0. Let

%= {f € 2": no extended discontinuities of f crossin K'}.

% is easily seen to be a Borel subset of 2, and by Corollary 2.8 we have
P{Z} = 1. We are going to show that the traces &/ and & of H#YK) and
H#(K) on 9}}, respectively, are equal. This will complete the proof.

Since 9% is a Borel subset of 2, it is again a Blackwell space, so it is
sufficient to show that &/ is separable, and that & and & have the same
atoms. A countable generating family of random variables is obtained as
follows. Since K N I’y , is compact, we let @; be a countable dense subset of
this set. @, is obtained from @, by adding in all extremities of vertical or
horizontal segments of Iy , which belong to K. There are only countably
many such extremities, so @, is countable. Let @ be a countable dense subset
of K, and set @ = Qx U (UQ,), where the second union is over s & K with
rational coordinates. This set is countable and dense in K, and its restriction
to each curve Ik ; is dense in K N I, ..

Now observe that for f e D, we have

(12) f(t) = limsup f(s), VteKk.

s—t, sEQ

Indeed, this is clear if ¢ is an isolated point of K or an accumulation point of
K N [t,[. Otherwise, there is s € Q% \ K such that ¢ € Iy ,. There are two
cases. First, if ¢ does not lie on a vertical or horizontal segment, there is a
sequence of points ¢* converging to ¢ such that no ¢* is comparable to ¢ in the
partial order <. By the definition of Dy, we have f(¢) = limsup f(¢").
Second, if ¢ is on a vertical or horizontal segment of I ,, say a vertical
segment, then, if ¢ is an extremity, ¢ is already in @, and there is no problem.
Otherwise, there are again two cases. If K N I’y , N [¢,©) has ¢ as an accumu-
lation point, then (12) holds by right continuity. If # is not an accumulation
point of this set, then there is a rational point s’ such that ¢ is an extremity of
a vertical segment of K NIy ., and we are reduced to a previous case. It
follows that & is generated by the countable family of coordinate maps
f— f(s), s € @, and these maps determine f|x. Thus the o-fields & and &
are equal, and the proof is complete. O

REMARK 3.2. The sharp field and the uniform sharp field coincide for the
open sets D and D° by (iii) above. The sharp boundary field and uniform
sharp boundary field coincide if the process is continuous, such as the Brown-
ian sheet, or has only positive jumps, such as the Poisson sheet. The only case
when the two do not coincide is that in which the process has both positive and
negative jumps. The germ field is generally strictly larger than the uniform
sharp field. See Examples 2.2 and 2.3.

Proor oF THEOREM 1.1. From Proposition 3.3(iv), it follows that Theorem
1.1 is a consequence of Theorem 1.2, which we will prove in the next section
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(see Theorem 3.9). Notice that Theorem 1.2 is stated only for the right
continuous version of the process, whereas Theorem 1.1 is stated for an
arbitrary version. However, it is easy to see that the right continuity is not
necessary in Theorem 1.1. Indeed, suppose that X is a right continuous
version and that X, is any other version. Let ##°(A) = o{X(?), ¢t € A} and
H2(A) = o{X,(t), t € A}, where both o-fields are completed by adjoining all
null sets of #. Then #°%(A) = #2(A). Indeed, if t € A, X(t) = X,(¢) a.s., so
a set of the form {X,(¢) € C} differs from {X(¢) € C} by a null set, and is
hence in #°(A). As these sets generate their respective o-fields, we have
H2A) c #°(A) and #°(A) c #2(A). Since the statement of Theorem 1.1
depends only on the o-fields s#°°, it must hold for any version of X. O

3.2. The sharp Markov property for jump processes. Let X ={X({®), t
R2} be a right continuous Lévy process satisfying Assumption B. As we have
seen in Section 2.1, X may or may not satisfy the sharp Markov property with
respect to a given open set D. In the case that X is a Brownian sheet based on
Lebesgue measure, necessary and sufficient conditions on the boundary of a
Jordan domain were given in [11]. Here we consider the case where D is
bounded or has bounded complement. We are first going to show that X can
have the sharp Markov property only if both its Gaussian and jump parts do
too. We then study in detail the sharp Markov property of the jump part of X,
or equivalently, we will assume that X has no Gaussian part.

Let D, be an arbitrary bounded open set, and let D, be the complement of
its closure. Let D, be the interior of the closure of D,, i = 1,2, and set
I =9D, = 3D, (D, contains D, and may be different from D,, but D, = D,;
and T' may be smaller than 4D,).

THEOREM 3.4. Suppose X is a Lévy sheet which satisfies Assumption B and
has the sharp Markov property with respect to D, in the sense that for some
dense subset A of T, H#(A) is a splitting field for #(D,) and H#(D,). Then
both its Gaussian part X and its jump part X’ (given in Theorem 2.6) satisfy
the same sharp Markov property.

Before proving this, we need some of the notation introduced in [11] and
three lemmas. For F c R%, let SY and S be respectively the vertical and
horizontal shadows of F:

(183)  SY(F) ={(#,t,) € RZ:3 (51, 5,) € F with s; = ¢;, 5, > ,},
(14) SH(F) = {(t,,t;) € R%Z:3 (5, 8,) € F with s, = t,, 5, > £}

_ Fix attention on the vertical shadows and define the vertical shadows of the
D, on each other by

8;=D,n8Y(Dy), 8,=D,n8Y(D).
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If G c R2, define a “hitting time” T; by
To(t) - {inf{vzt2: (t,v) €G}, if{}+a,
(t) =

+ o, otherwise,
and define maps p and = with domain S; U S, by
Tp(t), iftesS,,
p(t) =1\ ,
p(t), iftesS,.
Finally, set 7(¢) = (¢,, p(¢)). Note that p never takes the value + and that =
projects S; U S, onto I'. Let 'V be this projection. Had we fixed attention on
the horizontal rather than the vertical shadows, this procedure would have led

to the subset I'” of T. A subset of I' which will be important in the proof of
our results is

r°=rvur¥,
A point ¢ € R% has four half-neighborhoods:
Bi(t,e) ={s:s; <ty,ls —tl <e}, Bg(t,e) ={s:s; >t |s—tl <e},
Bu(t,e) ={s:8,> ty, s —tl <e},  Bp(t,e) = {s:s, <ty |s —tl <e}.

Let A c R2. We say that a point ¢ € A is left-isolated in A if there exists
€ > 0 such that A N B,(¢,¢) = &, and, similarly, ¢ is right-isolated (respec-
tively isolated from above, isolated from below) in A if there exists ¢ > 0 such
that A N By(¢, &) = O [respectively, A N By(t, &) = &, A N Bg(t, &) = ).

Lemma 3.5. (i) I'° is dense in T.

(ii) The vertical projection F, on the x-axis of the set F, of points of T
which are left-isolated or right-isolated in T is countable.

(iii) The horizontal projection F, on the y-axis of the set Fy, of points of T
which are isolated from below or from above in T is also countable.

[(i) and (iii) are true for any subset of R2.]

Proor. (i) Let ¢t € T. Then there exist sequences (¢") c D, and (s*) c D,
which each converge to ¢. Suppose that ¢ is not in the closure of I'°. Then
there is ¢ > 0 such that

A, ={(u,v):lu—t] <2 lv—t,)] <2} NT°=@.
We claim that for all large enough n,
(15) {7} X [t3 — e, + €] € D,.
Indeed, D, is open, so for large n there is a 8, > 0 such that
[¢r = 8,,¢7 +8,] x {t3} <Dy N ([t, — e, t; + e] X [¢, — &,ty + €]).
But then
(16)  C(n,e) = ([t} = 8,,t7 +8,] X [ty — e, tf +€]) N D,y = @.
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For otherwise, if (z, v) € C(n, ¢) there must be a point ¢” € I'" which lies on
the segment connecting (u, v) and (u, ¢}): Either v < ¢}, in which case we can
take ¢" = 7(u,v), or v >t3, in which case we take ¢" = 7(u,t}). Since
q" € A_, this is a contradiction. So (16) holds, and since 4D, =T, (16) implies
({t7y x [t2 —¢,t3 +e) NT = . Property (15) follows.

Now consider the sequence (s") C D,. If we apply the same argument as
above with the role of first and second coordinates interchanged—in particu-
lar, if we interchange horizontal and vertical projections and use I'’? in place of
I'Y—we see that there exists ¢ > 0 such that for all large enough n,

(17) (sP—¢,st+¢') X {s}} cD,.

But for large n the segments in (17) intersect those in (15), which is impossi-
ble. Thus (i) follows by contradiction.

(ii) and (iii) Let A be any subset of R2. It is sufficient to prove (ii) and (iii)
for A N R,, for all ¢+ € R%, so we can assume that A is bounded. By symmetry,
it is enough to prove that the vertical projection of the set of left-isolated
points is countable. For these, it is enough to prove that for any ¢ > 0, the set
A, of t € A for which B,(t,e) N A = & has a finite vertical projection on the
x-axis. Suppose not. Since A is bounded, there would be a point ¢ = (¢, ¢,) and
a sequence (") € A of left-isolated points converging to ¢ whose first coordi-
nates ¢7 are distinct. For each pair m < n, either {7 <t or ¢t > ¢*. If the
former, then ¢ ¢ B;(¢™, ¢), which implies that [¢™ — ¢*| > e. The same would
be true if we had the latter inequality. This is a contradiction since the
sequence (¢") converges. O

Let @;, i = 1,...,4, be the four right-half-open quadrants of R? defined in
Section 2.1.

LemMa 3.6. () #°T) = #°T°% c #T° c #T)c #(D,), and the
three inclusions may be strict.

() #(I'°) c #(D,) N H(D,).

(iii) If #(T°) is a splitting field for #(D,) and #(D,), so is #(I"); and if
H(T) is a splitting field, so is H#(3D,).

ProoF. (i) Lemma 3.5(1) and the continuity in probability of X imply the
inclusion # %) ¢ #°(T'°). The reverse inclusion is obvious and the next two
inclusions follow from Proposition 3.3(ii) and (i), respectively. The first inclu-
sion is strict in Example 2.4. To see that the second inclusion can be strict,
consider the signed Poisson sheet X of Example 2.4 on the following domain.
Let A c [0, 1] be a Cantor set of positive Lebesgue measure, and let I, I, ...
be the disjoint open intervals whose union is (0,1) \ A. Set G, = {(u,v):
uel,,1-vel)}andlet D, = U,G,. Then I'° is the union of the bound-
aries of the G,, minus their vertlces, whlle I is T'° plus the set K = {(x,1 — x):
x € A). There is positive probability that a discontinuity of X will intersect K.
Just as in Example 2.4, one cannot tell whether the discontinuity is propagat-
ing vertically or horizontally from #(I'°). Indeed, let F be the event “u —
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X(u,1 — u) jumps up one, then down one in the interval (0, 1), and then does
the same in the interval (3, 1), all four jumps occur for u € A, and the first
two are due to vertically propagating discontinuities.” One can determine
whether or not w € F from the values of X(¢t, w), t € T [indeed, » belongs to
F if and only if X((v, 1-v),0)= X((v,1 — v)®, w) at each of the first two
discontinuities of u — X((z,1 — u), ®)], but by arguments similar to those in
Examople 2.4, one cannot determine this by looking only at the values of X(w),
terl®

Though the last inclusion can clearly be strict, the fact that it occurs at all is
delicate [#(T') is not always included in #(D;) for instance, as in the
example above]. To prove it, we assume, as we can, that X is canonically
defined on 9,,. We are going to use Blackwell’s theorem and Remark 3.1, so we
need only check that there is a Borel subset 9 of 9, with P(9) = 1, such
that for t €T and f€ 9, f(¢) can be determined from the restriction of
f to D,.

Let F,, ', F, and F, be as in Lemma 3.5. For each point r € Q2 \ T, set

(T,r]1={teR2:¢t<rand(t,r] NI =0},

let C, be the monotone decreasing curve which is the lower left boundary of
(T, r] and set C = U ,C,. This set is a countable union of monotone decreasing
curves and has Lebesgue measure 0. Now let 9 be the subset of f € 2, such
that:

(a) no extended discontinuities of f cross in C;
(b) if ¢, € F, then f(t) — f(t®) =
(c) if t, € F,, then f(t) — ft®) =

By Corollary 2.8(ii) and Lemma 3.5, P(Z) = 1, and 9 is easily seen to be a
Borel subset of 9, [if (T"(f) enumerates the jumps of f, then (a)-(c) are
easily expressed by requiring that these jumps lie in some Borel set].

Fix t €T and fe€ 9. Assume first that ¢ ¢ C. Then there is a sequence
(s™) converging to ¢t with s € " and s > ¢,,i = 1,2, for all n. But each s™ is
a limit point of D,, so there is also a sequence (r") of elements of D,
converging to ¢ with r* > ¢, i = 1,2, for all n. By right continuity, f(¢) =
lim, . f(r™) and so the value of f(¢) can be determined from the restriction
of f to D,.

Now assume ¢t € C, N T, for some r € Q%2 \ T. If (¢, r] C D,, then again by
right continuity, f (t) can be determined from flp,. So we assume that
(tr]lc D1 Since I' = 4D, there is a sequence s” — ¢ with s” € D,, for all n.

If t is isolated from above in I, then we can choose these (s™) such that
s} 1ty Now either t is also isolated from the right in I, in which case ¢ is a
point of continuity of f by (b) and (¢), so f(¢) =1lim, . f(s"), or t is not
isolated from the right in T, in which case we can choose these (s") so that in
addition, s? | ¢,, s} > ¢;. By (¢), we get f(¢) = lim,, . f(s™).

A similar argument applies if ¢ is isolated from the right. So we now assume
that ¢ is neither isolated from above nor from the right in I'. In this case, there
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are two sequences (s") and (w") of elements of D,, both converging to ¢, with
the properties s” € t + @,, w™ € t + @, for all n. Thus f(t®) = lim , _,_ f(s™)
and f(t®) =1lim, . f(w™). If these two limits are equal, then by (a), the
common limit is f(2). If they are distinct, f(¢) is one of these two limits, again
by (a). To determine which, we use the fact that D, is bounded and D, is
unbounded. For sufficiently large u > t¢;, (u,t,) is an element of D,. If
fu,ty) = f((u,ty,)™), then the discontinuity passing through ¢ is propagating
vertically, so f(¢) = lim,, _,, f(w"), and otherwise, f(¢) = lim, . f(s™). In all
cases, we have determined f(¢) from flp,, concluding the proof of (i).

(i) By (i), we only need to show that S#(I'°) c #(D,). This proof follows
the last part of the proof of (i). Let C, C,, F,, F,, F, and F), be defined with I'°
replacing I': C = U ,C,, where C, is the lower left boundary of

(I%r]={teR2:¢t<rand(t,r]nI°=g},

and then define 9 as before. After exchanging the roles of D, and D, above,
the proof remains the same up to the case when ¢t € C, N I, is neither isolated
from the right nor from above in I'°, (¢, 7] c D,, and :

f(t®) = lim f(s*) # lim f(w") = f(t®).

Since D, is bounded, we cannot argue as above and need to use the fact that
t € '° =TV UTH Assume that ¢ € I'Y, since the other case is similar. In this
case, there is s € §; U S, such that s, = ¢, s, < ¢, and ¢ = 7(s). Since ¢ € C,
and (¢,r] c Dy, it follows from the definition of r that for some ¢ > 0,
{t;} X (ty,ty + €] € D,, and that s € D,. There are now two possibilities.

Case 1. There is a sequence u, 1t, with u, > s, and (¢, u,) € D,. If for all
n, f(t,u,)=Ff(t,u,)®), then the discontinuity through ¢ is propagating
horizontally and f(¢) = lim, _,, f(s"). Otherwise, it is propagating vertically
and f(t) = lim,, ., f(w™).

Case 2. For some n > 0, G = {t,;} X [t, — n,t,] c . If G N F, # &, then by
(b), no vertical discontinuity passes through this set, and thus the discontinu-
ity at ¢ must be propagating horizontally, so f(¢) = lim, . f(s"). Now if
G N F, = @, then in particular no point of G is left-isolated in I'?, so there is a
sequence of elements of I'° N (¢ + @,) which converges to ¢. This implies that
there is a sequence (z") of elements of D, converging to ¢ with the properties
2" €t + @, for all n. We now compare lim, _, . f(2") and lim, _, , f(w™). If the
two limits are equal, then the discontinuity through ¢ is propagating horizon-
tally and f(¢) = lim, _,,f(s"). Otherwise, it is propagating vertically and
f@®) =1lim,_,f(w™). In all four cases, we have determined the values of f(¢)
from flp,, completing the proof of (ii).

(iii) Recall the following fact ([15], and [18], Section 6): If . is a splitting
field for & and & and if .’ is another o-field such that ' C &/ or
' € &, then Vv ' is also a splitting field for &/ and #.

If #(I'°) is a splitting field for #(D,) and #(D,), it then follows from the
last inclusion in (i) that S#(I') is also a splitting field. If #(I') is a splitting
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field for #(D;) and #(D,), then since #(3D,) = #(T) vV #(dD; \ T) and
oD, \T c D,, #(dD,) is also a splitting field. O

For any subset B of R, and d > 0, we set B> = B X {d} and, if B c S,
i=1,2, welet

V(B@) = {(t,,t,) €R%2:t, € B,0 <t, <p(t;,d))}.

We will usually use this when B is an interval, in which case V(B®) is
essentially a vertical strip bounded above by a piece of the boundary I'. Let

#(D,) = o{Y(V(B®D)): BDcS;, B=[a,b],
a<b,d>0,i=1,2}v#),

where Y is the L°-valued measure associated with X defined in Section 2.2.
The following result is a slight modification of [11], Theorem 3.3.

THEOREM 3.7. Let X be a Lévy sheet satisfying Assumption B. Then
#(D,) = #(D;) N H(D,)
and this is the minimal splitting field for #(D,) and H#(D,).

Proor. This theorem was proved in [11] under slightly stronger assump-
tions. More precisely, X was assumed square integrable with mean 0, and the
measure F — E(X(F)?) was assumed absolutely continuous with respect to
Lebesgue measure. It is however straightforward to check that in the proof of
[11], Theorem 3.3, L2-convergence can be replaced by convergence in probabil-
ity, and so the result remains valid under Assumption B. O

It follows from Theorem 3.7 that in order to prove that a sub-o-field &7 of
#(D,) which contains #°(T') is a splitting field, it is sufficient to show that
the random variables Y(V(B®)) are .“measurable. This can be reduced
further: By the following lemma, it is enough to show this for the sum of the
jumps of X which are in V(B®) and have magnitude greater than & > 0.
Write Y = Y4 + Y/, where Y2(R) = A, X€ and Y/(R) = Az X’ for any rect-
angle R € R2.

LemMMA 8.8. Let A be a bounded Borel subset of R2. Then Y’/(A) is
measurable with respect to the completion of the o-field generated by {II(A X
dx), x € R}.

Proor. Define

Y/(A) = [ xM(Axdx) - [ xv(A X dx),
{e<|x|<1}

{lx|> €}
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so that by (11),

Y/(A) - YI(A) = [{lxlse)x(n(A X dx) — v(A X dx)).

The measure v is deterministic, so that Y/ is measurable with respect to the
given o-field. If we replace R, by A in Theorem 2.3—as we can—we see that
Y/(A) - Y/(A)as e » 0. O

Proor oF THEOREM 3.4. By hypothesis, &#(A) is a splitting field for #(D,)
and #(D,), so .#(D,) c #(A). In particular, the variables Y(V(B®)) are all
H#(A)-measurable, where B c S,, B =[a,bl,a <b,d >0,i=1,2.

In order to show that X¢ and X’ have the sharp Markov property with
respect to D,, we let Y& and Y/ denote the L°-valued measures associated
with X¢ and X’ and we use #4(A) and #/(A) to denote the uniform sharp
fields associated with X# and X/, respectively. Since #7(A) c #/(I') C
#7(D,) by Lemma 3.6(1), #/(A) will be a splitting field for #/(D,) and
H#J(D,) if we show that .#7(D,;) c H/(A). Since A is dense in T, we have
(H#HUT) ¢ #9(A). So it will be sufficient to show that Y/(V(B@)) € #7(A),
forall B® S, B=1[a,bl,a<b,d>0,i=12

Set Z, = Y(V(a,ul®). Then Z={Z,, a <u <b} is a one-parameter
process of independent increments which is continuous in probability (since X
satisfies Assumption B) and which is &#(A)-measurable by hypothesis. We can
thus decompose Z into its independent Gaussian and jump parts Z¢ and Z/,
so that Z = Z& + ZJ. Both of these processes are #(A)-measurable by Theo-
rem 2.6.

The key observation is now that Y&(V(a, u]l?)) = Z& as. and
Y/(V(a, u]l?) = ZJ since Z, = Yé(V(a, u]?)) + Y/(V(a,u]®)) is also a
decomposition of Z. It follows that Y/(V(B®)) and Y&(V(B®)) are #(A)-
measurable.

Note that H#(A) € #4(A) vV #7(A), and that the last two o-fields are
independent. Since o{Y/(V(B®))} v #7(A) is independent of #4(A), we
have

Y/(V(B@)) = E(Y/(V(B@))#(A))
= E(Y/(V(B@))|#5(A) v #7(A))
= E(Y/(V(B@))l#7(A)),

so Y/(V(B®)) is #7(A)-measurable. The proof that #2(A) is a splitting field
for #4(D,) and ##(D,) is similar and so is omitted. The proof is complete.
O
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Having shown in Theorem 3.4 that the Markov property of the Gaussian
and jump parts of X can be examined separately, we are going to look more
closely at the case when X is a jump process, since the basic Gaussian case
was studied in [11]. We have seen in Example 2.2 that such a process X may
not satisfy Lévy’s sharp Markov property for unbounded sets. However, it does
satisfy it for bounded open sets. The following theorem is the main result of
the paper.

THEOREM 38.9. Let X ={X(¢), t € R%2} be a right-continuous Lévy sheet
satisfying Assumption B and having no Gaussian part. Then X has Lévy’s
sharp Markov property with respect to all open sets D which are bounded or
have bounded complement. More precisely, if D, is a bounded open set, then
H(T'°) is the minimal splitting field for #(D,) and #(D$), and both #(T)
and H#(dD,) are splitting fields.

For ¢ > 0 and t U RZ, set Qi(t,s) =(t+ Q) N{s: |s — ¢l <e}. These are
quarter-discs of radius & centered at ¢. Let us denote the subsets of I'° which
are limit points of I'° in one of the four quadrants by IT? ={t €T% I'n
Q(t e+ 3, ¥e>0Li=1,.

ProorF oF THEOREM 3.9. We will assume, as we can, that X is defined
canonically on the (Blackwell) subspace 9, of the space 9, provided with its
topological o-field #(Z). We are again going to use Blackwell’s theorem and
Remark 3.1, so we are going to restrict ourselves to a Borel subset 2, of
with full measure, which we now construct.

Let F,, F,, F, and F, be as in Lemma 3.5. Choose rational 0 < a < b and
d > 0 such that [a,b] X {d} € S;, i = 1 or 2, and consider V = V([a, b] X {d}).
Let 0V* be the graph of the function ¢ = ¢, , ; defined by ¢(u) = p(u, d),
a < u < b. It has measure 0, so by Corollary 2.8, for a.e. w, we have for all
rational a, b and d, and for all ¢ € dV* that:

(a) No extended discontinuities of X(:, w) cross at ¢, and, moreover, X(-, w)
has at most one jump on the pair of horizontal and vertical lines passing
through ¢.

It follows that either X(-, w) is continuous at ¢, or else ¢ lies on a single
propagating discontinuity. The discontinuity can propagate either vertically or
horizontally, and we have from property (ii) of Section 2.4 that:

) X(t, w) — X(itP, ) = XY, 0) — XD, w) = Y({¢,} X (0,¢,], ). If this
is nonzero, then X(t®¥, w) = X(¢, »).

(©) X, 0) — X9, w) = X(iP, 0) — XD, w) = Y((O t,] X {t;}, w). If this
is nonzero, then X(¢, w) = X(t?, w).

@) If t, € F), X(t, ) — XtP, w) =

(e If t, € F), X(t,0) — X(t¥, 0) =
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We will define functions ¢, ; ;, and nﬁa »,a below. It will be clear that they
satisfy the conditions of Corollary 2.8(iii), so that we can also require that:

(f) For each rational a, b and d, for each pair ¢ =, 4 4, ¥ = ¥, 4 and
for each pair ¢ =@, , 4, ¥ = l//a b,d» there is no u > 0 such that ¢(u) and
Y¥(u) are on different extended discontinuities.

Now let 2, be the space of functions f € 9, such that for all rational a, b
and d, and for all ¢ € dV*([a, b] X {d}):

(i) no extended d1scont1nu1t1es of f cross at ¢;
Gi) if t, € B, f(&) — ft®) =
(iii) if ¢, € F,, f(t) - f(®) =
(iv) for each pa.lr ¢ =044 4 :/r ¥, 54 and for each pair ¢ = ¢, 4 4,
g = xpa b, there is no u such that &(u) and ¥(u) are on different extended
discontinuities.

It is not difficult to show that 9, € #(9) [if (T"(f)) enumerates the
jumps of fe<€ 9, then (i)-(iv) are easily expressed by requiring that these
jumps lie in some Borel set], and hence (Z,, #(2,)) is a Blackwell space. By
(a)—(f) above, X can be canonically defined on Z,, and we can assume that
(a)-(f) hold for every w € 2,.

If #(I'° is a splitting field for #(D,) and #(D?), then Lemma 3.6
implies that both #(I") and #(dD,) are also. So by Theorem 3.7, we only
need to show that H#(I'°) =.#(D,).

Theorem 3.7 and Lemma 3.6(ii) give us the inclusion #(I'°) c.#(D,), so
we need only show the converse. By Theorem 3.7 and Lemma 3.6(i), we only
need to show that Y(V(B®)) is #(I'°)-measurable, for rational B = [a, b]
and d > 0 with B9 c §,,i=1,2.

Since the measure Y is just the sum of the jumps of X plus a continuous
part, Y({¢;} X (0, ¢,)) is the value of the jump (there can be at most one—see
Corollary 2.8) of X on the line segment {¢;} X (0, ¢,). It follows that for any
¢ > 0, with probability 1,

f“ . )xl'[(V([a ,b] x {d}) x dx)

= Y (X(2) = X)) Lyxiy-xa®y > o)
teoVt teFy

By Lemma 3.8, the proof will be finished once we show that on %, the
right-hand side is measurable with respect to the trace of F#(I'°) (recall that
this is the uncompleted uniform sharp field). By Blackwell’s theorem, it is
enough to show that the right-hand side is Borel measurable and that on 2,
it is a function of X|ro. The measurability is clear, since the right-hand side
just adds the vertically propagating discontinuities of the sheet of size greater
than ¢ which intersect the graph of the restriction of the function ¢ to the
Borel set [a, b] \ F'l. It is the fact that it is a function of X|ro which is delicate.
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In order to prove this, we only need to show that for each ¢ € V" \ F,, we can
determine the value of X(¢) — X(¢®) from X]|ro.

Let us first remark that if r € I'?, then X(¢®) is a function of X|ro, for one
can compute the limit in the ith quadrant since ¢ is an accumulation point
%N Q,t,¢) for any .

Let ¢t € 9V*\ F, c T Since ¢ is not left-isolated in I'°, then ¢ € I'y U I'Y.
We claim that:

1. the magnitude of any vertical discontinuity propagating through ¢ is a
function of X|ro; indeed, it equals

X(¢) - X(:)], if¢eTy,
IX(t) — X(t®)|, ifteT\T;
2.if t eTQ UTL UTY, then X(¢) — X(t®) is a function of X]ro.

Indeed, if ¢ € TY, then X(¢) — X(¢t®) is a function of Xlro. If ¢ & Iy, then
t €T; if in fact t € T N T2, then X(¢®) and X(¢®) are functions of X|ro,
hence so is X(¢) — X(¢®) = X(¢®) — X(t®) [by ()]. If ¢t € T\ (I'YUTY),
then X(¢) — X(t®) is a function of X|ro. If it is 0, X is continuous at ¢. If not,
X has a jump on either the horizontal or the vertical line passing through ¢ of
magnitude |X(#) — X(¢®)|. This puts us in the case where ¢ € T'Y \ (I'f U T)
and X(t) — X(¢®) # 0. An inspection of (b) and (c) shows that in this case
there is either a jump of X of size X(¢) — X(¢t®) below ¢ or to the left of ¢. We
need the direction of propagation of the discontinuity to determine X(¢) —
X(t®), which will be 0 if the direction is horizontal, and will be equal to
X(t) — X(t®) otherwise.

There are two cases. The segment [a, b] X {d} is either in Dl or in D
Suppose first that it is in D,. Then ¢ € 7(S,), so that there are points of D1
above ¢, and consequently there are points of 'V c I'° above ¢ (because D, is
bounded). Define a function ¢ = ¢, , ; on [a, b] as follows. Let (r,) be an
ordering of the positive rationals, and, for each u € [a, b], let r(u) be the
rational of smallest index for which r, > qS(u) and (u,r,) € D,. Then let
Y(u) = p((u, r(w))) (this is well deﬁned since D, is bounded) The point
¢ = (t,, ¥(2,)) lies above ¢ = (¢;, ¢(¢,)). Now ¢, & F,, so as above, { € T U TY.
Thus by claim 1, the magnitude of the discontinuity (if any) propagating
through ¢ isa function of X]|ro. If it is nonzero, there is a discontinuity passing
through ¢ = ¢(¢,) as well as a discontinuity passing through ¢; by (), they
must be the same, and hence the discontinuity passing through ¢ must be
vertical.

Now suppose [a, b] X {d} c D,. If ¢, € F,, there is no discontinuity propa-
gating horizontally through ¢ by (e), so the discontinuity must be vertical,
and we are done. Thus suppose ¢, & F Define ¢ = (/fa »,a by setting (lr(tl) =
inf{u > t;: (u,ty) € Dz} Note that ¢ is bounded since the domain D, is
bounded. Moreover, §(t,) > ¢,. Indeed, if ¥(t,) = t,, there would be a sequence
of u’ decreasing to ¢, such that (u’,t,) € D,. As D, is open, {u’} X [t, — &,
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ty +glc D, for some 0 < g; < 1/j. Now if for some j the open rectangle
R; = (t;,u’) X (t5 — &j,t5)

were included in D,, then by the definition of 7, {¢,} X (¢, — t2] c T and the
points on this vertical segment would be right- isolated. ThlS is not possible
smce t, & F,. So, there is s/ € D, N R/, hence there is a point r/ = (r{, rj)

. N RJ. We can conclude that there exist pomts of T'° between (r{, r4) and
(uJ rzf ). For large enough j, such points are in @,(¢, ¢). This implies that
t € IY, a contradiction.

Consider the point o = ((t,), ¢,). It is not isolated from below, for ¢, & £,
so, modifying claim 1, the magnitude of a horizontal discontinuity at o is a
function of X|ro; if it is 0, the discontinuity at ¢ is vertical (if it were
horizontal, it would have to pass through ¢); if it is nonzero, there is a
discontinuity passing through o. According to (f), it must be the same disconti-
nuity as the one passing through ¢, which must therefore be horizontal. Thus
in all cases we can see if the discontinuity through ¢ is propagating horizon-
tally or vertically by looking at X|ro. This completes the proof. O
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