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MULTIPLE POINTS OF SAMPLE PATHS
OF MARKOV PROCESSES!

By NARN-RUEIH SHIEH

National Taiwan University

We show that certain d-dimensional Markov processes X(t), ¢ > 0, have
the property that if E is a closed subset of R, with sufficiently large
Hausdorff' dimension, then X(E) has k-multiple points. This is applied
directly to diffusions driven by stochastic differential equations and Lévy
processes with positive lower indices, solving problems posed by J. P.
Kahane and S. J. Taylor.

1. Introduction. Let X(¢) be a d-dimensional Brownian motion and let
E c R, be a closed set. For which E does X(E) £ {X(¢): ¢t € E} have k-multi-
ple points, that is, does there exist x such that x = X(¢,) = -+ = X(¢,) for at
least % different ¢; € E? This problem was posed by Kahane [7] and Taylor
[15]. In [7], Kahane treated symmetric stable Lévy processes and obtained
some zero-probability and positive-probability results. The probability-1 result
in the case £ = 2 was then proved by Testard [16]. In this paper, we study this
problem (both positive-probability and probability-1) for two large classes of
Markov processes, namely, diffusions driven by stochastic differential equa-
tions and Lévy processes with positive lower indices. We first prove, in
Theorem 2.1, a result for a general time-homogeneous Markov process with
the transition density functions satisfying certain explicit conditions. The
existence of the k-multiple points of X(E) is then ensured by the positivity of
H%(E), the Hausdorff 6,-measure of E, where 0 <0 <6, <1 and 0 is a
certain suitable number. Theorem 2.1 is then applied directly to obtain
Theorems 3.1 and 3.2, which are, respectively, for diffusions and Lévy pro-
cesses. Finally, Theorem 3.3 is concerned with processes with stable compo-
nents.

The novelty of our results is to extend the known cases when the E’s are
intervals (i.e., we may take 0, = 1) to the cases when the E’s are certain
“fractals.” (See the remarks following Theorems 2.1 and 3.1-3.3.) The basic
idea of our study is to consider the k-parameter random field

(1.1) Z(ty, ... 1) 2 (X(t) — X(t1),- .., X(8) — X(t,-1))

and to consider the construction of a certain nonzero positive measure sup-
ported on supp o N Z~Y(0) = {t € supp o|Z(t) = 0}, where ¢t = (¢,...,t,),0 =
(0,...,0) € R¥*~D and ¢ is a certain Borel measure. For E an interval and o
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554 N.-R. SHIEH

Lebesgue measure, this idea has already appeared in the work of Wolpert [17],
Geman, Horowitz and Rosen [4], Rosen [13], Le Gall, Rosen and Shieh [9] and
others. However, the calculations and methods involved in this paper are quite
different from those in the previously mentioned literature.

In the case where E is an interval, Rogers [12] proved a certain positive-
probability result for general Markov processes in a complete metric space; the
probability-1 result was then considered by Shieh [14].

2. Multiple points of general Markov processes. In this section, X(#)
will be a time-homogeneous Markov process in R¢, of which the sample paths
X(, w) are right-continuous and have left limits everywhere (the ‘‘cadlag”
paths). We assume the existence of transition density functions p(¢,x,y),
t>0and x,y € R%

THEOREM 2.1. Assume that the following hold:
(2.1) p(t, x,y) is jointly measurable in (¢, x,y);
(2.2) p(t,x,y) is positive and continuous in (x,y) foreacht > 0;

there exists some 0,0 < 0 < 1, such that

1/k
sup(&dpk(t,x,y)dy) =0(@™),

(2.3)
1/k
sup(f p*(t,x,) dx) =0(t™");
y \'R?
(2.4) M, = sup supp(t,x,y) <®, forall >0,
t>8 x,y
and
(2.5) B(t) £ infp(¢,x,x) >0, forallt> 0.

Let E Cc R, be a compact set such that
H%(E) >0, forsome9,:0<6,<1,

where H%(E) denotes the Hausdorff 6,-measure of E (see, e.g., [8], Chapter
10). Then the following hold:

(i) P{X(E) has k-multiple points} > 0;
(ii)) P{X(E’) has k-multiple points} = 1, where

E'= J(E+7n), diamE<7<oo,
n=0
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REMARK. In the case where E is an interval and X(¢) has continuous
sample paths, a version of Theorem 2.1 is considered by Shieh [14] in which
(2.3) is weakened.

Proor or THEOREM 2.1. Let [a;,b;] be £ compact intervals in R, such
that 0 <a; <b;<a;,, <b;,;. We cons1der the random field Z(t) defined by
(1.1), where t —(tl,.. )e It \la;,b;]. Note that Z is Rd‘k D.dimen-
sional. Let o(t) be a ﬁnlte p0s1t1ve Borel measure on [1% - da;, b;]. Assuming

that

Vi

do(s)do(t)
1|t - S |0

(2.6) o) = [[q s

we shall construct a.s. a positive measure u%(:, w) which can be expressed
formally by

ui(A) = [ 8(Z(1) do(t)

(2.7) k
= [ L TTou(X(e) dedote, -+ 1),

It is intuitive that w9 should be the limit of

(2.8) 15, (A) = fA b.(Z(t)) do(t),

where ¢, is a certain approximation to the identity on R%*~1 and supp ¢, €
{lx| < &}. Marcus [10] explicitly uses (2.7) and (2.8), with o being Lebesgue
measure, to study the level sets of real stochastic processes, and his idea can be
traced back to the early work of Kahane [8]. We shall prove below that some
key displays in [10] (Theorem 1 and its proof) are indeed valid in our present
case and hence we can use Marcus’ construction (adapted to our case). We
denote the density of Z(t) at x by q(t;x), x = (x,...,%,_;) € R¥*~D and we
also denote the bivariate density of (Z(s), Z(t)) at (x,y) by r(s, t;x,y). Using
the Markov property, we see that the explicit expressmns for q and r are given
as follows (cf. (2.1) and (2.2) in [14]): Let X(0) = xo, Z/_1x; = u;, Loy, = v},
T, 20.Fort=_(¢,...,t,) and x = (x;,...,%,_,), we have

(2.9) q(t;x) = f { (¢1, %9, 2) np(t b, 2t Uj_g,2+ uj_l)} dz.

Fors = (sy,...,s,)andy = (y;,...,¥,_), assuming s; <¢; forall j: 1 <j <!
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while ¢; <s; for all j: I <j < k, we have

r(s,t;x,y) = j{;@d'[Rd{P(sl» Xg,21)P(t — 81,21, 22)

X H [P(s ti 1,29+ Vj_9,2; + uj—l)

Xp(t; —sj,2; tuj_q,2, + vj_l)]
(2.10) Xp(t; 1 —t;,29 +U;_1,25 + V)

><p(-'31+1 —tp1,22 T U, 2 Uy

X I_[ [p(t Sj_1,21 T Uj_g,25 +U;_)
Jj=l+2

Xp(s; —tj,zg + V1,2, + uj_l)]}dz1 dz,.

Note that we have expressions similar to (2.10) when s and t have other

ordering relations.

By (2.1) and (2.2), ¢ and r are continuous in the spatial variables and
q(t; x) > 0 everywhere. We prove that r(s, t; x,y) is uniformly dominated by a
function g(s,t) which is integrable with respect to do(s)do(t). Let & =
min(a;,, — b;) and let M; be defined by (2.4). By (2. 6) do(s) do(t) carries
no mass on each hyperplane t; = s;. We split (s, t) into 2* cases. On any one of
these, say s; <¢; for all 1 <J <l Whllet <s;forall Il <j <k, by (2.10) we

have
r(s,t;x,y)
l
k-1
(211) Ms /'[Rdxu‘«d{p(sl’xo’zl) l:[lp(tj —S8j21tUj_1,2; T Uy
X IZLP(S 22t Ui_1,2 F uj_l)} dz, dz,.
J
Since

fdp(sl,xo,zl) dz; =1, foralls, >0,
R
we may apply the generalized Holder inequality:

1 k
/Rd.l_[pf(tf_sf’zl + 1,25+ ) l_[ pi(s;j —tjyzg + 1,2, + *)dzy
j=1 j=l+1

k

l
<II SUP”Pj(tj — S X, ')"L"(Rd) I1 SuP||Pj(3j —tj, ,y)"Lk(Rd),
Jj=1 «x JSIH1 oy
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and then we conclude, by (2.3) and (2.11), that

(2.12) supr(s,t;x,y) < g(s,t) 2 Const. l—[ l¢; — s;17°.
x,y

By (2.6), g(s, t) is integrable with respect to do(s) do(t). Let
k k
H = {J c Tl [a;,b;]: J = Il [¢;»d;], c; and d; are rationals}.
Jj=1 Jj=1

We can then apply the arguments in Marcus ([10], page 281), with Lebesgue
measure there now being replaced by do, to conclude that there exists a.s. a
measure u%, suggested by (2.7), such that, for all J € %,

(2.13) pi(d, 0) = lim u% , (J,0),

where u3, , is defined by (2.8) and ¢, = ¢,(w) is a certain sequence decreasing
to zero and independent of /. Provided we assume the path-continuity of
X(-, w), then it is immediate that u$ is supported on supp o N Z~X(0) (cf. [10],
page 282, line 5). However, in our case this assertion is not obviously true
since our Z(-) may have discontinuities, arising from those of X(-). Provided
that

do(s)do(t
(2.14) U (SI: — i |2,2 < o,

for some 6,: 6 < 6,, then we can use the following arguments, similar to those
in Le Gall, Rosen and Shieh ([9], page 507), to show that uf is indeed
supported on supp o € Z~%0). We observe that, in the case of (2.14),

g(s, t) do(s) do(t)

Thus, in view of the arguments in [10], [(2.6)-(2.8)], we have
[f dug(s) dui(t)

6,—0
Ij-alt; = 5,7

(2.15)

a.s.

Now we show that, for each ¢, > 0,
A,, 4 {t: 1Z(t) > 80}

is of u%-measure zero, from which w9 is indeed supported on supp o N Z~1(0).
Since X(-, w) is cadlag, we may express A, = S; U S,, where S, is contained
in a countable union of hyperpla.nes resulting from the discontinuities X(¢;) #
X(t;-) and S, is open in R%. We have u%(S;) = 0, because from (2.15) dpuj
carries no mass on each hyperplane {t: t; = t, for some j and some #,}. The set
S,, being open, itself can be expressed as a countable union of members ¢/ in
#. On each such J, |Z(t)| is bounded away from zero at least by ¢,. Thus, by

(2.13) and the fact that supp ¢, C {lx| < &}, u3(J) = 0 and hence u%(S,) =0
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Now we complete the proof of Theorem 2.1 as follows. Since H*(E) > 0,
by Frostman’s lemma in [8] (page 130), there exists a probability measure »
supported on E such that v[a,a + x] < Cx®, where C is independent of a
and x. Choose E,,..., E, to be k disjoint compact subsets of E such that
v(E;) > 0 and that E; C[a;, b;] with 0 <a; <b; <a;,; <b;,;. Let o be the
restriction of ®* v to E; X -+ X E,. Whenever 6 < 0, < 6, it is easy to see
that both (2.6) and (2.14) hold. We have then:

P{X(E) has k-multiple points}

>P{3t=(t,...,t,) such that t; € E; and that X(¢,) = -+ = X(¢t,)}
=P{3t € suppo N Z71(0)}
> P{p,’f, > 0}

(a0 da(t))’
= Jfr(s,t;0,0) da(s) do(t)

For the last inequality, see (2.10) in [10]. Now, in view of (2.5), (2.6), (2.9) and
(2.12), we have

P{X(E) has k-multiple points}

(/- JTZiB(t s — tj)d"(tj))z
= ff . ffl_[;’=1d"(sj) dv(tj)/ltj - sjlo
A p> 0;

this proves the first assertion of Theorem 2.1. Next, E c[0,7] whenever
7 > diam E. By the Markov property, we have for all n = 0,1,2,...,

P{X(E + tn) has k-multiple points|o( X(%);0 < u < 7n)}
= PXm){ X( E) has k-multiple points},

where P? denotes the same probability measure as that corresponding to X
but with X(0) = 2. We observe that (2.16) is independent of the choice of the
starting point of X. Thus, by the conditional Borel-Cantelli lemma, see for
example Breiman ([2], page 96), we have

P{X(E + rn) has k-multiple pointsi.o.} = 1;

this proves the second assertion of Theorem 2.1. O

(2.16)

3. Multiple points of diffusions and Lévy processes. In this section,
we first assume that X(¢) is a d-dimensional diffusion driven by a stochastic
differential equation

dX(t) = o( X(t)) dB(t) + b( X(t)) dt,

where o and b are bounded, uniformly Holder continuous of certain order,
and o2 is uniformly elliptic.
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THEOREM 3.1. Let X(t) be a diffusion in R as given previously. Let

E c R, be a compact set. Let
d(k-1)

3.1 = —

(3.1) o= =,

and assume that
H®(E) >0, forsome6;:0<6<86,<1.
Then the conclusions of Theorem 2.1 hold for X(E) and X(E').

REMARK. Since 6; < 1, Theorem 3.1 is applicable in the case d = 3 to
k = 2 and in the case d = 2 to any k& > 2. For three-dimensional Brownian
motion with & = 2, we have 0 = 2, which agrees with the result of Testard
[16].

Proor or THEOREM 3.1. It is well known that X(¢) has continuous sample
paths and that the transition density functions p(#, x, y) are jointly measur-
able in (¢, x, ¥), are continuous in (x, y) for each ¢ > 0 and satisfy the following
bound:
a1|y - x|2

azb’ - x|2
t s

Mt=2/2 exp(— p

) _ Mzt—(d/2)+)\ exp(

a3|y - x|2 )

<p(tx,y) 5M3t_d/2exp( -

where M, M,, M, A, a,, a,, ag are some positive constants; see Dynkin ([3],
Appendix, Section 6, Theorem 0.5). Therefore,

suplip(t, x, *)llLrwey = O(¢°%)
x

and

supIIp(t, : 7y)”Lk(Rd) = O(t—a)’
y
where 0 is given by (3.1). Thus, Theorem 2.1 is directly applicable. O

Next, we assume that X(¢) is a d-dimensional Lévy process. Recall that the
Blumenthal-Getoor [1] lower index of X is defined to be

B’ = sup{a = 0: [yl " Re ¢(y) — = as |y| = «},
where
Eeiy X)) = o—t4()

Note that 0 < 8” < 2 and that, in the case 8" > 0, the density function p(¢, x)
of each X(¢), t > 0, exists and is bounded and continuous in x.
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THEOREM 3.2. Let X(t) be a Lévy process in R? as given previously.
Assume moreover that p(t,x) > 0, for all t and x. Let E C R, be a compact
set. Let

d(k -1
and assume that
H®(E) >0, forsome6,:0<6,<1.
Then the conclusions of Theorem 2.1 hold for X(E) and X(E').

REMARK. Since 6, < 1, we have

o d(k-1)
B> =

In the case where E is an interval, Theorem 3.2 was conjectured by Orey [11]
and was proved by Le Gall, Rosen and Shieh ([9], Theorem 2).

Proor or THEOREM 3.2. Choose a such that

=M<0 éii_gt_l)_

(32) B”k 0 ak

<6, <1.
Since a < B’, there exists some K > 0 such that [Re ¢(y)| > |y|% for all y:
lyl > K. Observe that, by the Fourier inversion formula,

pk(t’x) = pk_l(t,x)p(t,x)

k-1
< {fRdeXP(-tRe v(¥)) dy} p(t,x).

Hence,

([ P4 dx)l/k = o(t™™),

where 6, is given in (3.2), and therefore Theorem 2.1 is again directly
applicable with 6 there now replaced by 6,. O

Finally, we mention a Lévy case which is not covered by Theorem 3.2. Let
X=(Xy,...,X,;) be a d-dimensional Lévy process such that the X, are
independent and each X is strictly stable in R!. Such an X is called a process
with stable components. Let «; be the index of X; and p;(¢,x;), ¢ > 0 and
x; € R, be the density function of X (2). Since the density function of X(¢) is
the product of p;(¢, - ), we may use the same arguments as those in the proof
of Theorem 3.2 to assert the following.
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THEOREM 3.3. Let X be a process in R® with stable components as given
previously. Assume that p;(t,x) > 0 for all j, t and x. Then, the conclusions of
Theorem 3.2 hold, with

d 1\k-1
0 = — - -

j=1%

ReEMARK 1. Note that the lower index of X is min; a;. Thus, Theorem 3.3

is not contained in Theorem 3.2 unless a; = « for all j, in which case X itself
is a stable process of index a.

REMARK 2. Since 0 < a; < 2, Theorem 3.3 is applicable in the case d = 3
to k& = 2 and in the case d = 2 to any & such that k(a; + a; — aja,) < a; + a,.
In the case where E is an interval, these results were proved by Hendricks
[5, 6].

Acknowledgment. I am indebted for discussions with Professor J. P.
Kahane in which was suggested the possibility of developing and applying the
various ideas in [8] (Chapters 16 and 18 in particular), [10] and [14] to the
problem studied here.

Note added in proof. After this paper had been submitted and accepted,
the author received a thesis from F. Testard (June, 1987, Orsay) who consid-
ered our problem for certain Gaussian random fields.
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