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ISOPERIMETRIC INEQUALITIES AND TRANSIENT
RANDOM WALKS ON GRAPHS

By CARSTEN THOMASSEN

Technical University of Denmark

The two-dimensional grid Z2 and any graph of smaller growth rate is
recurrent. We show that any graph satisfying an isoperimetric inequality
only slightly stronger than that of Z2 is transient. More precisely, if f(k)
denotes the smallest number of vertices in the boundary of a connected
subgraph with & vertices, then the graph is transient if the infinite sum
¥ f(k)~? converges. This can be applied to parabolicity versus hyperbolicity
of surfaces.

1. Introduction. Let G be a connected graph which is locally finite, that
is, all vertices have finite degree. We consider a random walk starting at a
vertex v, say, such that at any vertex u, the walk proceeds to a neighbour with
probability 1/d(u), where d(u) is the degree (i.e., the number of neighbours)
of u. The graph G is recurrent if we revisit v with probability 1. Otherwise G
is transient. It is well known that the three-dimensional grid Z3 is transient
while Z? is recurrent. More generally, Nash-Williams [13] (see also [4, 10])
proved that any graph with smaller growth rate than Z?2 is recurrent. Lyons
[10] showed that certain subgraphs of grids are transient provided they grow
just a little faster than Z2. Other results, in terms of isoperimetric inequali-
ties, supporting the statement that Z2 is, in a sense, an “extreme” recurrent
graph, can be derived from work of Fernandez [5], Grigor’yan [7] and Varopou-
los [15]. (Varopoulos [16] used results of Gromov [8] to characterize completely
the recurrent Cayley graphs.)

We shall carry these results further. If V is a vertex set in G, then 9V will
denote the boundary of V, that is, the set of vertices of V having neighbours
outside of V. Let f be a nondecreasing positive real function defined on the
natural numbers. We say that G satisfies an f-isoperimetric inequality if there
exists a constant ¢ > 0 such that, for each finite vertex set V of G,

1oV > cf (IV1).

If this inequality holds for all finite vertex sets V which contain a fixed
vertex (root) v and induce connected subgraphs in G, we say that G satisfies a
rooted, connected f-isoperimetric inequality. The main result of this paper says
that G is transient if G has bounded degrees and satisfies a rooted, connected
f-isoperimetric inequality such that

f f(k) %< .
k=1

Received December 1990; revised June 1991.
AMS 1980 subject classifications. Primary, 60J15, 94C15.
Key words and phrases. Isoperimetric inequalities, transient trees.

1592

IS8 (¢
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%;%

The Annals of Probability. RINOIN

www.jstor.org



ISOPERIMETRIC INEQUALITIES 1593

This includes the above-mentioned transience results except that those of
Fernandez and Grigor’yan are for the continuous case as well. Using results of
Kanai [9], our results can be translated to the continuous case as well but only
for surfaces with a bound on the curvature which corresponds to our bound on
the degrees. As suggested by the referee, our result also implies a transience
result for graphs with no bounds on the degrees when the isoperimetric
inequality is formulated in terms of edge sets rather than vertex sets as in [3].

Our general result, which is hopefully of independent interest, is about trees
in graphs. It says that every graph of maximum degree 3 satisfying a rooted,
connected f-isoperimetric inequality [such that f(%2) — « as k2 — «] contains a
subdivision of the dyadic tree defined in the next section. If ©5_, f(k)™2 < o,
then that tree is transient.

Note that not every transient graph contains a transient tree; see, for
example, [12]. The proof involves Menger’s theorem on graphs, but no graph
theoretic knowledge will be assumed.

2. Basic concepts: Graphs, Menger’s theorem, flows, transience
and trees. A graph G is a set V(G) of elements called vertices and a set
E(G) of unordered pairs xy of vertices called edges. We say that the edge xy is
incident with x and y and that x and y are neighbours. The number of
neighbours of x is called the degree of x and is denoted d(x). All graphs in
this paper are locally finite, which means that all degrees are finite. A path
XXy - - is the graph with distinct vertices x;, x,, ... and edges x,x,, X5%3, ... .
A cycle x,x, --- x,x, is defined analogously. A graph is connected if any two
vertices are connected by a path. A component is a maximal connected
subgraph. The union of finite (respectively, infinite) components is called the
finite (respectively, infinite) part of G. If S c V(G) U E(Q), then G — S is
obtained from G by deleting S and all edges incident with vertices in S. If
S ¢ V(G), then G — (V(G) \ S) is the subgraph induced by S.

We shall use the following version of Menger’s theorem, which can be
derived from the max-flow-min-cut theorem [6] and which is proved in almost
all books on graph theory.

THEOREM 2.1. Let k be a natural number and A, B vertex sets each of
cardinality k in a graph G. Assume that, for each vertex set S with fewer than
k vertices, G — S has a path from A to B. Then G has k pairwise disjoint paths
from A to B.

A flow g in a graph G is obtained from G by assigning a direction and a
nonnegative real number g(e) to every edge, such that Kirchhoff’s current law
is satisfied, that is, for each vertex x in G, the sum of flow values in edges
entering x equals the sum of flow values in edges leaving x. If Kirchhoff’s
current law is satisfied for all vertices except one, say v,, we say that g is a
flow of value I from v, to (or from) infinity if I is the difference between the
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two sums above at the vertex v,. The energy W(g) of a flow g is defined as the
square sum Y g(e)? taken over all edges.

We shall use the following combinatorial criterion for transience (see, e.g.,
[4, 10D.

THEOREM 2.2. A connected, locally finite graph is transient if and only if,
for some (and hence each) positive number I and for some (and hence each)
vertex v, G has a flow of value I and of finite energy from v to infinity.

A tree is a connected graph with no cycle. The dyadic tree T, is the tree
whose vertex set is the disjoint union S, U S; U S, U -+, where |S,| = 2*
for £ = 0,1,..., and each vertex in S, has two neighbours in S,,; and one
neighbour in S,_; for &k = 1,2,... . A partial dyadic tree is any subtree of T,
induced by S, U S; U --- U S, and a subset of S, ;. A subdivision of a graph
is obtained by inserting new vertices of degree 2 on the edges. (Any edge may
be subdivided any number of times and it may not be subdivided at all.)

3. The main result and its consequences.

THEOREM 3.1. Let G be a connected graph of maximum degree 3 and with
at least one vertex of degree less than 3 such that G satisfies a rooted,
connected f-isoperimetric inequality. Assume that f(k) - »© as k - . Then G
contains a subdivision H of the dyadic tree T, and for each k = 1,2, ..., a set
E, of 2* edges, such that E, intersects each of the 2% paths in H from S, _, to
S, and such that the finite part of H — E, belongs to the finite part of G — E,.

We prove Theorem 3.1 in the next section. First we describe its applications
to graph transience.

THEOREM 3.2. Let G be a graph as in Theorem 3.1. If, in addition,
X f(k) 7 <o,
k=1
then G contains a transient tree.

Proor. Let H be as in Theorem 3.1. We shall prove that H is transient.
We define a flow g of value 1 in H from the vertex v, in S, to infinity by
sending the flow 27* in the paths from S,_; to S,, k > 1. Let a, denote the
number of edges in H with flow 27%, £ > 0.

For each %k > 1, the finite component of H — E, belongs to a finite compo-
nent G, of G — E,. By the rooted, connected f-isoperimetric inequality
(assuming the constant c is 1),

2H4 1 > D(V(Gyy D) = F(IV(Gyi1)) = fay +ag + -+ +ay).
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Hence the energy W(g) of the flow g satisfies

W(g)= ) a,27%*<4) a,f(a;+ay+ - +ak)_2
. k=1
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THEOREM 3.3. Let G be a graph as in Theorem 3.2 except that now G has
maximum degree d, 3 < d < «. Then G is transient.

Proor. If v is a vertex in G of degree d(v) =%k > 3, then we let
ey, ey, ...,e, denote the edges incident with v. We blow v up to a path as
follows: We delete v but none of e, ey, ..., e,. Then we add a path v,v, --- v,
and let e; be incident with v; in the new graph. We perform this operation for
each vertex v of degree greater than 3. The resulting graph G’ satisfies a
connected rooted f’-isoperimetric inequality [where f'(n) = f(|n/d])] and is
therefore transient by Theorem 3.2. If g’ is a flow in G’ of value I > 0 and
finite energy from a vertex towards infinity, then we let g denote the restric-
tion of g’ to E(G). Since G is obtained from G’ by contracting edges, g is also
a flow of value I. Moreover, W(g) < W(g’). Hence G is transient. O

Let us define an e-isoperimetric inequality as an f-isoperimetric inequality
for f(k) = k/2*¢, where ¢ > 0. A rooted, connected &-isoperimetric inequality
is defined analogously. Results of Grigor’yan [7] and Varopoulos [15] imply that
a connected graph of finite maximum degree satisfying an e-isoperimetric
inequality for some ¢ > 0 is transient. (This is not the case for ¢ = 0 because
of the grid Z2. For ¢ = 1/2, it was proved by Dodziuk [2].) Theorem 3.3
implies the following stronger result:

THEOREM 3.4. Each connected graph of finite maximum degree satisfying a
rooted, connected e-isoperimetric inequality for some ¢ > 0 is transient.

We conclude this section with a transience result for graphs with no bounds
on the degrees. In this result our graphs are allowed to have multiple edges. If
V is a finite vertex set in a locally finite graph G, then we let 4,V denote the set
of edges from V to V(G) \ V and we let d(V') denote the sum of degrees of the
vertices in V. Thus

d(V) = V] + 2lE(G(V))!.

Let f be a nondecreasing positive real function defined on the positive real
numbers. We say that G satisfies a rooted, connected f-isoperimetric edge-
inequality if there is a vertex v in G and a positive constant ¢ such that, for
each finite vertex set in G which induces a connected subgraph containing v,
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we have
6.V1 > cf(d(V)).

THEOREM 3.5. Let G be a connected, locally finite graph satisfying a
rooted, connected f-isoperimetric edge-inequality. If

Y f(k) 7 <o,
k=1
then G is transient.

Proor. There exists a positive constant a such that, for each natural
number n > 4, there exists a graph H, with n vertices such that all vertices
of H, have degree 3 (except possibly one which has degree 2) and such that,
for any partition V(H,) = A U B, there are at least « min(|A|,|B|} edges
between A and B; see [1]. Now we form a new graph G’ as follows. Let « be a
vertex of G. If d(u) > 4, then we replace u by H* = H,, where n = d(u).
The edges in G which are incident with « in G will be incident with distinct
vertices in H,. Then G’ has maximum degree less than or equal to 4. We claim
that G’ satisfies a rooted, connected f’-isoperimetric inequality where

f'(n) = min{ f(n/2),n}.
To see this, we let V' denote any finite vertex set of G'. We shall prove that
either [9V'| > (a/6)|V'| or
0V’ = (4 + 3/a) " F((1/2)IV']).

Assume that |0V’| < (a/6)|V’|. Now let V be the set of those vertices u in G
such that

IV(H*) N V'| > (1/2)IV(H"*)I.
If
[V(H*) N V'| < (1/2)IV(H*),
then
[V(H*) NnoV'| = (a/3)IV(H*) N V|
by the partition property of H,. Hence
(3.1) V| <d(V) + (8/a)ldV’'| <d(V) + 1/2|V'|.

If an edge in G belongs to 4,V but not to 4,V’, then the edge joins an H*
with an HY, where

[V(H*) nV'| = (1/2)IV(H")I
and
IV(H®) N V'| < (1/2)[V(H")I.
The number of such edges (for fixed u and w) is at most
[V(H*) \V'| + [V(H*) N V'| < (3/a)loV' N (V(H*) U V(H*))|.
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Hence
(3.2) VI < 10V'] + (3/a)ldV’] < 410V'| + (3/a)laV'].
By (3.1), (3.2) and the f-isoperimetric edge-inequality,
10V’ > (4 + 3/a) " 16,(V)| = (4 + 3/a) "' F(d(V))
> (4 +3/a)" f((1/2)IV']). =

4. Subdivisions of dyadic trees. We now prove Theorem 3.1. Let G be
a connected graph of maximum degree 3 satisfying an f-isoperimetric inequal-
ity, where f(k) — « as k — . We shall say that a finite subtree T in G is
good if it is a subdivision of a partial dyadic tree satisfying the following: Let
A denote the set of endvertices (i.e., vertices of degree at most 1)in T'. If B is a
vertex set of cardinality less than |A|, then some vertex of A \ B belongs to
the infinite part of G — B. Moreover, T — A is contained in the finite part of
G — A. In particular, a tree with only one vertex is good. The strategy of the
proof is to grow larger and larger good subtrees whose union will have the
desired properties. Consider therefore the above good tree T. Then T consists
of vertices S; U S; U --- US, UA, , (where |S;| =2, 0<i<k, and 0 <
|A,,,] < 2**1) and paths between consecutive sets in the sequence
Sgs-..5 Ap,1- Let H denote the infinite part of G — A.

Consider first the case where A U V(H) has a vertex set B of cardinality
|A| such that B # A and A \ B (and hence also T — B) is in the finite part of
G — B. Let G’ be the union of those paths which start in B, terminate in A
and have only the ends in common with A U B. Then G’ does not intersect
T — A nor the infinite part of G — B. In particular, G’ is finite. Moreover, G
satisfies the assumption of Menger’s theorem (Theorem 2.1). Hence G’ con-
tains |A| pairwise disjoint paths from A to B. Now we add these paths to T
and obtain a larger good tree in G.

Consider next the case where a set B as in the previous case does not exist.
If|A,, | = 21, welet E,,, denote the set of edges in T incident with A, ,,
and we let v be any vertex of A, ;. Otherwise we let v be any endvertex of T
in S,. Since T is good, v has at least one neighbour v, in H. Actually, v has
another neighbour v, in H since otherwise, B = (A \ {v}) U {v,} satisfies the
assumption in the previous case. As G has maximum degree 3, there is no
third neighbour of V in H. Now we obtain a good tree T’ by adding v,, v, and
the edges vv,, vv, to T.

We start with a good tree consisting of just one vertex v, of degree less than
or equal to 2. Then, successively we augment our good tree as in the first case
above, whenever possible. Otherwise we perform the extension in the second
case. (If our good tree has only one vertex and we perform the extension in the
first case, we shall not add a path but replace the vertex in the good tree by B.)
Since f(k) — ® as k — », we must perform the extension in the second case
infinitely often. Therefore the union of our good trees satisfies the conclusion
of Theorem 3.1. O
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5. Transient trees in grid graphs. It may be difficult to decide if a
given graph contains a subgraph which satisfies an isoperimetric inequality
that guarantees transience. We shall therefore mention a couple of less
elegant, but perhaps more applicable, consequences of Theorem 3.1. Instead of
finding, for a given graph G, an increasing real function f such that

(5.1) T f(R) <
k=1

and

(5.2) oV > f(IV1)

for each finite vertex set which contains the root r and which induces a
connected subgraph in G, it is sufficient to consider first any sequence V,, V,, . ..
of finite vertex sets such that

rev,cv,c -

and then to find an increasing function f satisfying (5.1) and (5.2) for
V=V,V,,.... Thus we may allow different functions f for different nested
sequences V,,V,, ... .

A further simplification may arise by just considering one fixed sequence
V1, V,, ... such that

rev,cV,c -

and finding a constant ¢ > 0 and an increasing function f satisfying (5.1) and
(5.2) for V=V,,V,,... and then describing a subdivision H of the dyadic tree
T, such that

(5.3) So={r};
(5.4) S,cV,\V,_, fori=1,2,...;
the subgraph of G induced by V; contains all paths

(5.5) from S;_, to 8, for 1 <j < i;

the number of edges in G from V; to V(G) \ 'V,

(5.6) . .
is at most ¢2',i = 0,1,....

By the same argument as in the proof of Theorem 3.2, H is transient.

We shall illustrate this by the grid graphs considered by Lyons [10]. Let
x'(n) be a positive nondecreasing integer-valued function defined on the
nonnegative integers for i = 1,2,..., k. Assume further that x’(0) = 1 and
that x(n + 1) —x(n) <1 for n>0and i =1,2,...,%k. Let L be the sub-
graph of the grid Z**! induced by {(x;,%s,...,%;,n): 0 <x; <x'(n) for
i=1,2,...,k}. (Two vertices in a grid are neighbours if they differ by 1 in one
coordinate and agree in all other coordinates.) Lyons [10] proved that L is
transient if and only if

(5.7) (ﬁxi(m))_ < o,
o\i=1

H vk
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The “only if”’ part follows from Nash-Williams’ recurrence criterion (see
[10]. To see the ‘“if”’ part, define the function f such that

m k ] k )

£ M) - T1em)
n=0:t=1 i=1

and f is constant in the interval from Y7 JT1% ,xi(n) to -1 +

£ ™_oI1%_,x%(n). Then (5.7) is equivalent with 7 _, f(n)™? < =,

It is not difficult to find V;,V,,... and H such that (5.3)—(5.6) hold. Let us
indicate this for £ = 2. We shall describe H such that H uses an edge of L
from (x,, x5, k) to (xy, x5, B + 1) iff x; and x, are both divisible by 4. V, will
consist of all vertices of L of third coordinate less than or equal to g(%), where
g(k) is the smallest number such that L has greater than or equal to 2¢*!
edges of the form (x,, x,, g(k)) (x,, x5, g(k) + 1), where x; = x, = 0 (mod 4).
Suppose we have already defined V,,V,,...,V, and the subset of H in V,.
Assume without loss of generality that x(g(k) + 1) > x*(g(k) + 1). Let the
vertices of H of third coordinate g(k) + 1 be lexicographically ordered with
respect to the first and second coordinate. The conditions on H tell how many
vertices of L with third coordinate g(k) + 1 must be in S,,;. To decide
which, we take those which are smallest with respect to the above lexico-
graphic ordering. We continue like that for vertices of third coordinate
g(k) +&k)+3,.... If x%(g(k + 1)) > x'(g(k + 1)), we change the lexico-
graphic order. It is important that the vertices which have to be added to S, .,
in a given layer do not form a ‘“‘dense” set. This construction of H and
V., V,,... satisfies (5.3)-(5.6). Thus the grid graphs considered by Lyons are
transient iff they contain a transient tree.

Some of the transient graphs of Lyons may be considered as only slight
“fattenings” of a quadrant of the recurrent Z2. Another such fattening is the
graph M whose vertex set consists of all (x,y,z) in Z3 where two ver-
tices (x, y, z) and (x',y’, ') are neighbours if either x = x' = 0 and |y — y'| +
z—2|=1orz=2 and |x — x'| + |y —y'| = 1. In[11] it is shown that M is
transient. (This implies that Scherk’s surfaces are hyperbolic, a question
raised by Osserman [14].) We do not know if M has a transient tree.

Acknowledgment. Thanks are due to the referee for having supplied the
references [3, 5].
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