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LARGE DEVIATIONS FOR EXCHANGEABLE
RANDOM VECTORS

By I. H. DiNnwooDIE! AND S. L. ZABELL
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Say that a family {P): & € ©} of sequences of probability measures is
exponentially continuous if whenever 6, — 6, the sequence {Py'} satisfies a
large deviation principle with rate function A,. If © is compact and {Py'} is
exponentially continuous, then the mixture

P"(A) = [ P{(A)du(6)

satisfies a large deviation principle with rate function A(x) =: inf{A,(x):
6 € S(u)}, where S(u) is the support of the mixing measure p. If
X, X,,... is a sequence of ii.d. random vectors, {X,} the corresponding
sequence of sample means and P;* =: P,o X, !, then {P]"} is exponentially
continuous if the classical rate function A,(v) is jointly lower semicontinu-
ous and a uniform integrability condition introduced by de Acosta is
satisfied. These results are applied in Section 4 to derive a large deviation
theory for exchangeable random variables; the resulting rate functions are
typically nonconvex. If the parameter space © is not compact, then exam-
ples can be constructed where a full large deviation principle is not satisfied
because the upper bound fails for a noncompact set.

1. Introduction. Let {P": n > 1} be a sequence of probability measures
on the Borel o-algebra B of a topological space X and let A: X — [0, ] be a
nonnegative function on X. The sequence {P"} is said to satisfy a large
deviation principle with rate function \ [see, e.g., Varadhan, (1984); Ellis,
(1985); Deuschel and Stroock (1989)] if A is a lower semicontinuous function
having the property that

1
(1.1) lim inf -~ log P*(U) = —inf{A(x): x € U}
for every open set U c X; and

1
(1.2) lim sup - log P*(C) < —inf{A(x): x € C}

for every closed set C c X.

In this paper we will consider the case when the probability measures P"
may be represented as mixtures of simpler components. Thus, let ® be a first
countable topological space, let u be a probability measure on ©® and for every
0 € O, let {P}: n > 1} be a sequence of probability measures on X such that
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1148 I. H. DINWOODIE AND S. L. ZABELL

the map 6 — P;(A) is a (Borel) measurable function on ® for every integer n
and measurable set A. Finally, given O, u and {P;*}, let P denote the mixture

(1.3) P"(A) = [ P (A) du(6).

We will be interested in describing the large deviation behavior of the
sequence of mixtures {P"} in terms of the large deviation behavior of the
component sequences {PJ’}; and, in particular, to obtain an expression for a
rate function for { P"} in terms of rate functions A, for each {P;'}. For example,
it is not hard to show and it follows as a special case of the theory developed
here, that if the measure u is concentrated on a finite set, then the rate
function for the mixture reduces to the infimum of the rate functions for the
component measures. That is, if S(x) denotes the support of x and

(1.4) A(x) = inf{Ag(x): 0 € S(p)},

then A(x) is a rate function for the mixture sequence {P"} when S(u) is finite.

ExampLE 1.1. Let Y,Y,,... be an i.i.d. sequence of Bernoulli trials with
P[Y, = 1] = p and P[Y, = 0] = 1 — p. In this case the rate function A (x) for
the sequence P[Y, € A]is given by

x x
(1.5) Ay(x) =xlog;+(1—x)log1 , 0O=<x<1,

and A,(x) = « otherwise [see, e.g., Lanford (1973), pages 38-39; Azencott
(1980), page 17]. If X, X,,... is an infinite exchangeable sequence of 0’s and
I'sand S, = X, + X, + -+ +X,,, then by de Finetti’s theorem [see, e.g., de
Finetti (1937)], there exists a (unique) probability measure u on the unit
interval such that

(16) PIS, = k1 = (3) ['p*(1 = p)"* du(p);

that is, the general 0-1 valued exchangeable sequence may be represented as a
mixture of Bernoulli processes. If, for example, S(u) = {1/3,4/5}, then it
follows from (1.4), (1.5) and (1.6) that the rate function A for {S,/n}, the
sequence of sample proportions arising from the mixture, is the infimum of
A1ss and A4 5; see Figure 1 below. [Note that A does not depend on the values
of u(1/3) and w(4/5).] This example is discussed further in Example 4.1.

As soon as the support of the measure u contains a point which is not
isolated, it becomes necessary to impose some continuity condition on the
sequences {Py'}. A natural condition to impose is a stability property which we
will term exponential continuity:

Whenever 6, — 6, the sequence {Po’; } satisfies a

(1.7 large deviation principle with rate function A,.

If {P'} is exponentially continuous, then a complete theory for its mixtures
may be derived when O is compact. Such a theory 1s developed in Section 2.
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Fic. 1. Graph of the rate function A for the sequence of sample proportions arising from a
mixture of Bernoulli trials with probabilities 1/8 and 4/5.

In the case of large deviations of sums of i.i.d. random vectors, exponential
continuity was shown to hold in certain cases by Bolthausen (1984). In Section
3, Bolthausen’s theorem is extended to a much wider class (Theorem 3.1). An
important distinction arises between the lower bound for open sets and the
upper bound for compact and closed sets: while the lower bound holds in
complete generality, the upper bound holds for compact sets if and only if
Ao(x) is jointly lower semicontinuous and the upper bound for all closed sets
holds if a uniform integrability assumption introduced by de Acosta (1985a) is
satisfied. Example 3.1 illustrates that the upper bound can fail in the absence
of this uniform integrability condition.

Some further results are given in Section 4. The previously published upper
bound for sums of exchangeable random variables [de Acosta (1985a)] emerges
as the lower convex hull of the true rate function (Proposition 4.1); that is to
say, the best upper bound possible within the convex methodology that is the
focus of de Acosta’s paper. Example 4.2 illustrates that the upper bound need
not hold if ® is not compact. Finally, in the special case of a real-valued
exchangeable sequence, Theorem 4.2 shows that the upper bound holds for all
closed sets without any restriction on ® or the underlying distribution.

2. Large deviation rates for general mixtures. Given a function
A: @ X X - [0,], let A6, A) = inf{A(9, x): x € A}. We then have the following
basic lower bound.
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THEOREM 2.1. Let A C X be measurable. If
1

(2.1) liminf; log P (A) > —A(6, A)
whenever 0, — 6 € O, then

1
(2.2) liminf; log P*(A) > —inf{A(0,A): 0 € S(un)}.

Proor. Let (0,v) € ® X A. We must show that
1
liminf — log P*(A) > —A(6,v),
n

but may assume that A(6, v) < «.
First, note that for every ¢ > 0, there exists an open set U, containing 6
and an integer N, such that for every y € U,

Pr(A) > exp(—n[A(8,A) +€]), n=N,.

For if not, then in every neighborhood U; from a countable neighborhood base
at 0, we could find an element 6, € U; and a number r; arbitrarily large (in
particular, such that n; > n;_,) with

Ppi(A) < exp(—n;[A(6, A) +¢]).

But the sequence {6,} converges to 6, contradicting assumption (2.1).
Since U, is open, it has positive u-measure and so for n > N,,

P"(4) = [ PP(A) du(0)
> [ Pr(A) du(6)

> Ue—n[A(O,A)+s] dﬂ(o)’
6

by the construction of U,. Hence
1
liminf; log P*"(A) > —A(6,A) —e > A(0,v) —&.
Since ¢ > 0 is arbitrary, the theorem follows. O

A corresponding upper bound may also be deduced, provided it is also
assumed that the support of u is compact.

THEOREM 2.2. Let A C X be measurable. If S(u) is compact and

1
(2.3) lim sup — log Pj,(A) < ~A(6, 4),
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whenever 0, » 60 € S(u), then

(2.4) lim sup % log P"(A) < —inf{A(6, A): 0 € S(p)}.

Proor. If A(A) = 0, the theorem is true, so we may assume otherwise. We
will prove the case where A(A) < o, the proof when A(A) = o being similar.
We also assume without loss of generality that S(u) = 0.

Let ¢ >0 and let 0 be any element of ®. Arguing as in the proof of
Theorem 2.1, it follows from assumption (2.3) that there exist an open set U,
containing 6 and an integer N, such that for every y € U,

Pr(A) < exp(-n[A(6,A) —¢]), n=N,.

The family of open sets (Up), o covers ® and hence there is a finite subcover
(Uoi)ls i<k- Thus

P"(A) = [ PF(A) du(6)
k
< Zl on‘P;‘ du(6)

k
< Y emAC A=l (T, ),
1
hence
1
limsup — log P*(A) < max {—A(6;, A) + ¢}
n 1<i<k

< max {—A(A) +¢} = —A(A) +e.

1<i<k

Since £ > 0 is arbitrary, the theorem follows. O

If the level sets L* =: {x: A(x) < a} of a rate function A are compact for
every a > 0, we will say that A is proper. (This important property is so useful
it is often included in the definition of a rate function.) The following lemma
will be needed to establish the propriety of rate functions in Theorem 2.3.
Recall that a topological space X is said to be regular (T,) if it is Hausdorff,
and every closed set C ¢ X and point x ¢ C can be separated by a pair of
disjoint open sets; an extended real-valued function f: X — [0, «] on a topolog-
ical space X is said to be lower semicontinuous at a point x € X if for each
¢ < f(x), there exists a neighborhood U, of x such that f(y) > ¢ for every
y € U,; and lower semicontinuous (on X) if it is lower semicontinuous at
every point x € X. From now on, we will sometimes write A(8, x) = A,(x).

LEmMMa 2.1. Let ® be a compact first countable topological space and
suppose that for every 6 € @, the sequence {P;'} satisfies a large deviation
principle with proper rate function A,. If X is regular, if A(x) is jointly lower
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semicontinuous and if the upper bound (2.3) holds for every closed set, then
the function AMx) = inf{r,(x): 6 € S(u)} has compact level sets.

Proor. Suppose there exists an a, 0 < @ < », such that L* is not com-
pact. Choose and fix ¢ > 0. Because L® is not compact, there exists a net
{(6;,v,): i € I} € ® X X such that {v;} c L?, {v;} has no convergent subnet and
AM0;,v;) <a +¢ for all i. Because ® is compact and first countable, it is
sequentially compact, hence there exists a subsequence {(6, ol k=1)
such that §; — 6 € ®. Choose and fix 8 > a + 3¢. Because LJ, the level set
for A,, is compact, it contains only a finite number of elements in {v,-k}, for
otherwise {v; } would contain a convergent subnet. Thus for all % sufficiently
large, say k > k,, we have {v, : k > ko} c (L§)".

Let Cy = {v;,: k > ko). Because the sequence {v; } contains no convergent
subnet, C, is closed. Because X is regular and L} is compact, there exist
disjoint open sets U, and U, such that L{ c U, and C, C U,. Let C denote
the closure of U,; because U; N U, = &, clearly C = U,c Uy c (LE), and it
then follows from (2.3) that for every increasing sequence {n,: &k > &},

1
(2.5) lim sup n—logPo’f:(C) < —A(6,C) < —-B.
k—o k
But on the other hand, because A(6, x) is a rate function and U, 2 C,, we can
find an increasing sequence {n,: k£ > k,} such that for all £ > &,
1
(2.6) ;" log Porf:(Uz) > _A(ei,,’ Uz) — &2 —a — 28 > _B + €.
k
But the two inequalities (2.5) and (2.6) cannot both hold because, by construc-
tion, U, c C. O

THEOREM 2.3. Let O be a compact first countable topological space, let X be
a regular topological space and suppose that for every 6 € ©, {P}'} is a
sequence of probability measures on X satisfying a large deviation principle
with rate function Ay If (2.1) and (2.3) hold for every open set and every
closed set, respectively, and if A (x) is jointly lower semicontinuous in 6 and x,
then every mixture {P"} of the form (1.3), with mixing measure ., satisfies a
large deviation principle with rate function A(x) = inf{A(0, x): 8 € S(n)}. If
the rate functions A (x) are proper for every 8 € S(u), then A(x) is also proper.

Proor. It follows immediately from Theorems 2.1 and 2.2 that (2.2) and
(2.4) hold for every open and closed set, respectively. Since ©® is compact and
A8, x) jointly lower semicontinuous, it follows that A(x) is likewise lower
semicontinuous. If the functions A,(x) are proper, the propriety of A(x) then
follows from Lemma 2.1. O

The exponential continuity conditions necessary for the applicability of
Theorems 2.1 and 2.2 are known at present to hold in two special cases.
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(i) Let X =E be a separable Banach space, let X, X,, X,,... be a se-
quence of E-valued random vectors defined on a measurable space (Q A) and
let X, =(X,+ - +X,)/n. For each § € O, let P, denote a probability
measure on ({2, A), let P =P,o X, and let 7, = P,o Xy '. If the sequence
{X;} is independent and identically distributed with respect to P, for every
0 € O, if 7, varies continuously in the weak topology and if

(2.7 sup fet”Xl” dPy <, 0<t<w,
0

then it follows from Bolthausen (1984) that the family { P;*: § € @} is exponen-
tially continuous (with respect to the classical Cramér—Chernoff rate function).
It then follows from Theorems 2.1 and 2.2 that if ® is compact, then any
sequence {P"} which is a u-mixture of the sequences {P,'} satisfies a large
deviation principle with proper rate function given by (1.4). If P denotes the

p-mixture of {P,}, then { X}} is exchangeable with respect to P (i.e., cylinder set
probablhtles are invariant under permutations of the time index) and PIX, e
A] = P*[ A]. Thus Theorems 2.1-2.3 give the large deviation behavior for the
sequence of sample means of an exchangeable sequence taking values in E,
whenever the {P,} appearing in the de Finetti representation of P satisfy
Bolthausen’s condition (2.7).

(ii) Let X = S, a complete separable metric space and let Z,, Z,,... be an
exchangeable sequence of random elements defined on a probability space
(Q, A, P) and taking values in S. Let X, = (8, + --- +8; )/n denote the
empirical probability measure, where §, denotes the Dlrac measure concen-
trating mass at z. It then follows from the de Finetti representation theorem
that P can be represented as a u-mixture of probability measures {P,: 6 € B}
defined on (Q, A), where O is a subset of the probability measures on S which
is closed in the weak topology, and for each 6 € @, the sequence {Z;} 1s
independent and identically distributed with respect to P,. If P* =Po X "
and P! = Pyo X ! then P is th> u-mixture of {P;: 6 e G)} It is well known
that for each 9, {P". n>1} satlsﬁes a large deviation principle with proper
rate function

dv . dv )
(2.8) 2Ay(v) =j:qlog d_‘ﬂ'_o dv ifv <m, and log a0 e L,

To
and A,(v) = », otherwise. Baxter and Jain [(1988), Theorem 5] state that the
family {P;"} is exponentially continuous with respect to the family {A,} given in
(2.8) if the probability measures 7, =: P,o Z; ' vary continuously in the weak
topology. It then follows from Theorems 2.1-2.3 that if ® is compact, then the
sequence {P"} satisfies a large deviation principle with proper rate function
given by A(v) = inf, ¢ 5, {1,(¥)}, where A,(») is given by (2.8).

Unfortunately, in finite-dimensional spaces condition (2.7) is very restric-
tive; and there are a number of simple cases in which Bolthausen’s theorem in
its original form cannot be employed to deduce the large deviation behavior of
an exchangeable sequence from Theorems 2.1-2.3. (For example, any mixture
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of exponential random variables; see Example 3.3 below.) For this reason,
Bolthausen’s theorem is extended in the next section to include such cases.
This extension is cast in the setting of a locally convex space E to include as a
special case the Sanov example just discussed, but the argument would not be
essentially simpler were E assumed to be finite-dimensional.

3. Exponential continuity for sums of random vectors. Let E be a
locally convex Hausdorff topological vector space, B the Borel o-algebra of E
and X, X,, X,,... an infinite sequence of E-valued random vectors defined
on a common measurable space (2, A). We assume there exists a complete,
convex set E, C E, which is a Polish space in the relative topology and such
that X, (w) € E,, for every n > 1 and w € Q. This assumption will insure that
the random vectors S, =: X, + X, + --- +X,, and hence the sample means
X, = S, /n are A-measurable, and permits the application of certain results
in Bahadur and Zabell (1979); this paper is cited below as BZ. It could in fact
be weakened in one of several ways [see BZ, pages 591-592; Azencott (1980),
pages 20-23; Csiszér (1984), pages 770-771], but it has the advantage of being
relatively concrete and applicable to most examples of interest. (To be specific:
Assumptions 1-3 of BZ would be sufficient for the remainder of this section
except for Lemmas 3.1-3.2 and the necessity of lower semicontinuity in
Theorem 3.1.)

Let © be a first countable topological space, for each 6 € @ let P, denote a
probability measure on (2, A) and let P} =P,o X,'. Let E' denote the
topological dual of E and for each § € 0, define the function A,: E — [0, x] by

Ag(v) = sup (v, &) — log E [exp{ X, £)].
1334

Finally, let my = P,o X;'; and let m, = m, denote weak convergence of
measures.

Theorem 3.1 employs two basic conditions, which will arise repeatedly in
this section and the next:

(3.1) A:©® X E - [0, =] is lower semicontinuous;

{P;'} is exponentially tight: For every a > 0, there exists a
(3:2)  compact set K, C E such that sup,{P;(K?)} < exp(—na)
for all n sufficiently large.

THEOREM 3.1. Let X, X,,... be i.i.d. E-valued random vectors under P,.
If the map 6 — P, is continuous in the weak topology, then:

(1) For every open set U C E,

1
(3.3) lim inf ~ log P;:(U) > ~A(8,U).
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(ii) The upper bound

1
(3.4) limsup—,-z-log P (K) < —A(8,K)

holds for every compact set K C E if and only if A(8,v) is lower semicontinu-
ous.

Gii) If A6, v) is lower semicontinuous and {Pg'} is exponentially tight, then
the upper bound (3.4) holds for every closed set C C E.

Proor. We first establish the lower bound (3.3). We may assume without
loss of generality that A(#,U) < » and that U is open and convex. It then
follows that lim, , n~'log P}(U) = —A(6, U); see BZ, Theorem 2.3. Thus
for n sufficiently large, say n > N = N(9), we have P;(U) > 0. Let £ > 1 and
n > N + 1. Because U is convex,

(3.5) Pr(U) = (PE(U)) "M

PBIZ”"(U)’

where the square brackets denote the greatest integer function and r, is the
remainder term defined by » — N = k[(n — N)/kl+r,,0<r, <k — 1.

Let & be such that 0 <& < min,_; _,_, P," "*(U). Because P, = P, and U
is open, there exists an integer N; > 1 such that if » > N;, then

P¥*m(U)> min PN*(U) -¢=8>0.
" O<i<k-1

Thus by (3.5), we have

1 1 -
lim inf ~ log P;'(U) = liminf —~ IOg(Pei(U))[( N)/k]

1
k
This is true for any k%, hence taking the limit inferior of the right side we get

>

log PE(U).

1 1
liminf; log P (U) = liminf; log PX(U) = —A(8,U),

again applying Theorem 2.3 of BZ. (This elegant proof of the lower bound is
due to Alejandro de Acosta, and is given here with his kind permission.)

We next turn to the upper bound (3.4). Let 6, » 0 and let K C E be
compact. We can assume that A,(K) > 0. We will consider only the case where
Ay(K) < o, the argument when A, (K) = « being quite similar. Let ¢ > 0, and
for each v € K, let B, be an open convex, balanced neighborhood of 0 € E
such that Ay(v + B,) > A,(v) — &. Such a set exists by Theorem 3.2 of BZ. Let
N,=v+iB,cv +B,, and let K, be the closed, convex hull of N, N K.
Then K, is compact because K is compact and K, is closed and precompact in
a complete subset of E. Since K, c N, we see that

Ao(K,) = Ag(N,) = Ag(v + B,) > Ag(v) — e =2 Apy(K) — &.
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Now K is compact and K ¢ U, (v + 1B,), so K has a finite subcover:

k k
Kc U(vu+3B,)c UK,,.
i-1 i1

Let K; = K,, 1 <i < k. Now because each K; is convex, for any y € 0,

1 1
sup ;log Pr(K;) = limsup;logPy"(Ki) < —-A(K,);

nx1

the last inequality follows from Lemma 2.5 of BZ since K, is compact. Thus
1 k
- log P (K) < —Aen( U Ki) + log
i=1
which gives immediately that

k
; ’
1

k
limsup;log Py (K) < —limian,,n( U Kl-).
i=1

Since A is assumed lower semicontinuous and U%_,K; is compact, it follows
that the map A(6, U%_,K,) from O to [0, x] is lower semicontinuous. Thus

1 k
limsup;log P (K) < —A‘,( U K,-) < —Ay(K) + ¢,
i=1

and since ¢ > 0 is arbitrary, the upper bound for compact sets follows.

Now suppose that (3.1) does not hold. We discuss only the case A,(v) < ;
the case A,(v) = = has a similar proof. Then there exists a pair (§,v) € ® X E
and an ¢ > 0 such that for every neighborhood N, X U, of (6, v), there exists a
point (y, w) € N, X U, with A (w) < 2,(v) — 2¢. Since A, is lower semicontin-
uous, there is a neighborhood U of v such that A,(U) > A,(v) — . Let {N,:
k > 1} be a countable open neighborhood base at 9 and let {U,} be a countable
open neighborhood base for E, at v € E. We can assume that U, c U.
Let (y;,v,) be an element of N, X U, such that A(y,,v,) < A(6,v) — 2 <
Ay(U) — &. Now since

1
liminf;logPa’;(Uk) 2 —A(a,,U,) = —A(a,,v,) > —Ay(U) + ¢,

there exists n, such that if n > n,, (1/n)log P(U,) > —Ay(U) + &. Since
P+ is regular, there is a compact set K, c U, such that

1
~log P2(Ky) > ~Ay(U) +e.

Now let K = U K, A {v}, which is compact. Let 6, = @, when n € [n,,n,, ).
Then along the subsequence {n,},

1 1
— log Pj'*(K) > — log P’*(K,) > —Ap(U) + &,
n, "k n, ”

and hence (3.4) does not hold for K.
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Suppose finally that both (3.1) and (3.2) are satisfied. Then for any closed
set C,

Pl (C)<P}(CNK,)+ P (K3),
which implies that

1
lim sup - log P;'(C) < max{—A,(CNK,), —a}

< max{—A,(C), —a}.
Since a > 0 is arbitrary, the result follows. O

REMARK 3.1. In Theorem 3.1, the lower bound for open sets and the upper
bound for compact sets do not require that ¢,(¢) = E,[exp{ X, £)] be every-
where finite in a neighborhood of the origin, and remain nontrivial provided
$4(£) <  for some nonzero ¢ € E’; see for example, Lanford [(1973), pages
47-48] for a simple example of the phenomenon in the i.i.d. case.

The following two lemmas provide simple sufficient conditions for the lower
semicontinuity and exponential tightness conditions (3.1) and (3.2). For the
lower semicontinuity of A(6, v), the only explicit result of this nature that we
have been able to find in the literature is that of Azencott and Ruget [(1977),
page 12]; the first condition given in Lemma 3.1 is substantially less restric-
tive, and is close to best possible.

Lemma 3.1. (i) If for every sequence 6, —> 6 € O and ¢ € E', there exists a
sequence (¢,) in E’ such that ¢, — & in the Mackey topology and
(3.6) lim sup log ¢, (£,) < log ¢,(¢),

n—o

then M8, v) is lower semicontinuous.

(i) If E is reflexive and X(0,v) is lower semicontinuous, then (3.6) is
satisfied.

(i) If

(3.7) sup [ efVmy(dv) = M, <, ¢€E,

00 E
then h(0,v) = (v, £) — log ¢4(£) is continuous for every ¢ € E' and A(9,v) is
Jointly lower semicontinuous in 6 and v.

Proor. Let (6,v) € ® X E. We must show that for any ¢ < A,(v), thereis a
neighborhood U, X U, of (6, v) such that for all (v, w) € U, X U,, A (w) > c.
We can assume that v € E, since E, is closed and A,(v) = « for all v & E,,.
Furthermore, it is enough to show that for any sequence (6,,v,) — (6,v),
liminf A, (v,) > Ay(v), since E, is a metric space.

Let (0,,v,) = (6,v), let ¢ < A,(v) and choose ¢ € E' such that (v, ¢) —
log ¢,(¢) > c. By hypothesis, there exists a sequence {£,} € E' such that
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¢, — £ in the Mackey topology and lim sup $0(£,) < $(£). Since £, — £ in the
Mackey topology and E, is Polish, it follows that (v, &,> = (v, £). But
Ao (v,) 2 (v,, €, — log ¢, (¢,), hence

liminfa, (v,) = (v, ) — limsuplog ¢, (£,)
= <U, §> - log d’ﬂ(f) > ¢,

and it follows that A(6, v) is lower semicontinuous.

The second assertion of the lemma is an immediate consequence of Mosco
[(1971), page 519, Theorem 1]. To establish the final assertion of the lemma,
let 6, — 6. It suffices to show that for fixed £ € E',

$0,(§) = [ e0mo (dv) > [ e€Omy(dv) = by(£).

Now let g,(v) = min{exp*™), e*}, so that g, is bounded and continuous. Then
by (£) — $4(£)] is bounded by

et dm,

3.8
( ) j;§(0)> k)

f efMdm, +’fgk dm, — fgk dm,| +
{£(v)> k) E E

for every k. Now for any y € 0,

f efVdx, < e‘kf e*Vdm, < e *M,,.
{e(w)> k) {E(w)> k)

Thus for any € > 0, we can choose and fix £ large enough that each end term
in (3.8) is less than /3 and since ey, converges weakly to 7,, the middle term
can also be made less than ¢/3 for large n, depending possibly on k. The lower
semicontinuity of A in 6 and v then follows from the continuity of 2 ,(6,v). O

Given a subset A C E, the Minkowski functional of A is defined to be the
function g 4(v) =: inf{t > 0: v € tA}, with ¢ ,(v) = wif v & tA for any ¢ > 0. If
tv € A for 0 <t < 1 whenever v € A, then the subset is said to be positively
balanced. Alejandro de Acosta (1985a) has introduced the following useful
sufficient condition for exponential tightness:

There exists a convex, compact, positively balanced set K c E such that

(3.9) M = sup [ e9xX) P, < oo,

00
The next lemma shows that a generalization of the Bolthausen condition (2.7),
employed by Baxter and Jain (1988) for another purpose, may be used to
establish the de Acosta condition (8.9) and thus verify (3.2). The lemma is a
generalization of Theorem 3.1 in de Acosta (1985a).

LeEMMA 3.2. Suppose that E, is positively balanced and that there exists a
countable family of seminorms {p;: i > 1} generating the relative topology on
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E, at the origin. If {m,: 6 € O} is tight and for eacht € R and i > 1,

Supf tpi(X,) dP < o,
60O

then there exists a convex, compact, positively balanced set K satisfying (3.9)
and {PJ'} is exponentially tight.

Proor. The proof uses the notation and ideas from Theorem 3.1 of de
Acosta (1985a). Choose B € (0, 1). Since {m,: 6 € 0} is tight, there exists a
compact set K, CE;, such that m(K:) <B™ for all § € ®. Since E,
is complete, we may assume that K, is convex, positively balanced and
K, cK,.,. We can assume that p;,, >p,. Let 7, (t) = m{v: p(v) > t}
and let t, 0 = inflt > 0: 7, () < B™}. It can then be shown that
lim,, , {m~ supg(tm 0,:)} = 0 [see de Acosta (1985), page 555]; thus for every
1nteger i > 1, there emsts an integer m; > 1 such that whenever m > m,,
m~'sup,t,, ,; <i '. We may assume that m,, , > m;. For any m >1,let i
be such that m; <m <m,,, and define B, = {v € Ey: pv) <t,, ).
Define the compact set K to be the closed, convex, positively balanced hull of
the set K*=U,, om‘I(K N B, »). To show that K is compact, it is
enough to show that K* is totally bounded since E, is complete. If U is any
neighborhood of 0 € E, then there is a neighborhood U, of the form U, = {v €
E: p(v) <(1/k)} such that U, N E, c U N E,. Then m~'B,, » € U; N E, for
all m > M = max(m,, m,). Thus K* U¥K, U U and since UMK is
compact, K* is totally bounded.

Next we prove that K satisfies (3.9); for this it suffices to show there exists
a constant ¢ > 0 such that

(3.10) mo{v: qx(v) >t} <cB’ forallt > 0Oandall 6 € @.

Given the definition of K, however, the verification of (3.10) is immediate; see
de Acosta (1985a). Finally, to see that (3.9) implies the exponential tightness of
{P;'}, let @ > 0 and K, = (a + log M)K. Then

Py(Kj) = PO{qK(Sn) > n(alog M)}

< Po{eXp Z 9x(X;)
i=1

> e—n(a+log M)}

= (Ey[exp{gx(X))}]) e "M " < e ",

and the lemma follows. O

The following examples illustrate various aspects of Theorem 3.1 and
Lemmas 3.1 and 3.2. The first example demonstrates that the lower semiconti-
nuity condition (3.1) does not by itself ensure the upper bound (3.4) for all
closed sets, even when E is finite-dimensional.
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ExampLE 3.1. Let ® = {6: 0 < 0 < 1}, let E = R?, let 7, denote the Cauchy
distribution on R' c R?,let m, = (1 — 07 + 055-1 ), and let X;, X,,... bea
sequence of i.i.d. random vectors in R? with common distribution ,. Consider
the closed unbounded set

1
C= {(x,y) eR*>y> Pt 1}.

Although A satisfies (3.1), the upper bound (3.4) does not hold for the set C;
that is, —A,(C) = o, yet there exists a sequence 6, — 0 for which

1
limsup —log P! > —Ay(C) = .
n n

The lower semicontinuity of A(6, v) in 6 for every v follows from Lemma 3.1.
We show that (3.4) is violated for a sequence {6,} < ®, with 6, » 0. By
Chernoff’s theorem, A,(C) = «. Let 8 > 0, let U, = {(x, y): y > (1/2x%),0x >
1} and let

n—[no] -1 :
A,y = {Xj —07L,0),1<j<[n0]+ 1; = <8, — Spoys1 € RI}.
It is easily verified that A, , c{X, € Uy} c{X, € C}, and it then follows
from Chernoff’s theorem and Stirling’s formula that lim, _, n "' log Pj(C) =
0. Thus for any ¢ > 0, there exists an integer n, such that for all n > n,,
n~'log P}(C)> —¢. If 6,—-0 (6, >0), one can choose an increasing
sequence of integers 1 < n; <n, < -+ such that n;'log P;’*(C) > —2¢ >
—0 = —Ay(C) for all £ > 1; and thus (3.4) is not satisfied for every sequence
9, > 0. O

The next example illustrates that the de Acosta condition (3.9) does not
entail, and is thus independent of, the lower semicontinuity condition (3.1).

ExampLE 3.2. Let E=R; let @ ={0: 0 <0 <1}; let 7m;=20( let 7
be the exponential distribution on R with density e™*, x > 0; and let 7, =
(1 - )y + 61, 0 <6 < 1. Although my = 7y as 6 — 0, A,(x) is not lower
semicontinuous: Clearly, A,(x) = ® except when x = 0, while if 0 <6 < 1, it
is easily computed that for x > 0, Ay (x) = sup_, ., {tx — log[l — 6 +
6/(1 — t)]} <sup_..,<;tx <x, using Jensen’s inequality to show that the
logarithmic term is nonnegative. It is clear, however, that condition (3.9) is
satisfied, since for all ¢ < 1,

1 1
Eylexp(dlizl)] = (1 - 8) + 07— <1+

-_—, 0<6<1.
-1 1-¢

The next example illustrates that although (3.7) is sufficient for (3.1) and
(2.7) is sufficient for (3.9), in neither case is the first condition necessary for
the second.
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ExampLE 3.3. Let ©® = {0: 6, < 6 < »}, E = R! and let 7, be exponentially
distributed, with density f,(x) = e, x > 0. Then A,(x) = 6x — 1 — log(6x),
x> 0; and A, (x) = o, x < 0. If M(¢) is the moment generating function, then
My (t)=0/(0—1t), t <6, and M, (¢) =, ¢t > 0. Thus A (x) is jointly lower
semicontinuous in § and x, but M,(¢) clearly does not satisfy (2.7) or (3.7).
Nevertheless, the de Acosta condition (3.9) is satisfied for any sequence
6, — 6: take K = {x: |x| < 0,/2}, any 6, > 0.

The next example illustrates that condition (3.7) in general entails neither
(2.7) nor (3.9), even when ® consists of a single point.

ExampLE 3.4 [Based on de Acosta (1985a), Example 3.2). Let E = [2, the
Hilbert space of square-summable sequences v = {x;, x,,...); let e, = (§; j)
denote the ith unit vector in {2 (where §;; is the Dirac delta function); and let
X be a random vector in E such that P[X = a,e,] = p,, where a, = log n,
p,=cn" 2 and ¢ = 1/{(2). If ¢ is a linear functional on /2, then by the Riesz
representation theorem, there exists an element (¢,%,,...> € [% such that
&) =X, .1t,%,. Thus Elexp(é(X))] = cL , . n"~? < o, since ¢, — 0, being
square-summable. Now let ¢, be the Minkowski functional of a compact set.
Clearly, lim, ,gg(e,) = © (otherwise infinitely many e, would lie in a
compact set {v € E: qx(v) < a < »}, which is impossible because no subse-
quence of {e,: n > 1} is Cauchy). Thus Elexp(q(X))] = c¥, , n %€ "3 = o,
so that (3.9) and hence (3.2) fails. Likewise E[exp ¢||X|[] < « precisely when
t < 1, so that (2.7) fails as well.

4. Large deviations for exchangeable sequences. Given Theorem
3.1, Theorems 2.1 and 2.2 of Section 2 may be immediately applied to derive
lower and upper bounds for large deviations of the sample means of an
infinitely exchangeable sequence. Because the random vectors X, are assumed
to take values in the Polish space E, C E, their distribution is known to
satisfy the de Finetti representation theorem: the sequence may be repre-
sented as a mixture of independent and identically distributed random vari-
ables; see, for example, Aldous [(1985), pages 50-51].

TueoreM 4.1. If X, X,,... is an infinitely exchangeable sequence of ran-
dom vectors with mixing measure u and P"(A) =: P(X, € A), then for any
open U C E,

1
liminf; log P*(U) > —inf{A(0,v): 0 € S(pn),v € U}.

If ® is a compact metric space and (3.1) and (3.2) hold, then {P"} satisfies a
large deviation principle with proper rate function A =: inf{A,: 6 € S(u)}.

Proor. The lower bound follows from Theorems 2.1 and 3.1. If (3.1) holds,
then by Lemma 3.1, 2,(6,v) is jointly continuous in 6 and v for fixed ¢ € E';



1162 I. H. DINWOODIE AND S. L. ZABELL

thus A(6, v) = sup{h (6, v): ¢ € E'} is jointly lower semicontinuous in 6 and v.
If (3.2) holds, then {Py: n > 1} satisfies a large deviation principle with rate
function A, [de Acosta, (1985b)]. The conclusion then follows from Theorems
3.1 and 2.3, because every topological vector space is regular. O

ExampLE 4.1. We return to Example 1.1 to illustrate the difference be-
tween the rate function A in Theorem 4.1 and the upper rate function given in
Example 1 of de Acosta (1985a). Let S(u) be the two-point set {p,, p,},
0 < p; <p; <1. Theorem 2.3 shows that A = min(A,, 2, ) is an upper and
lower rate function. Thus A(x) is nonconvex, zero precisely at the two points
{p1, ps}, and strictly positive everywhere else.

Let A, (x) denote the rate function given in de Acosta [(1985a), Example 1].
A simple direct calculation yields that

1_P1’

x
Ae(x) = xlogp— + (1 — x)log
1

x
=xlog— + (1 — x)1 <x<1;

gpz ( *) ogl_Pz’ P2 =%
while A,(x) =0 if p, <x <p, and A,(x) = © if x &[0,1]. Thus A, is the
lower convex envelope of the true rate function A, agreeing with A except on
(py, P2).

Example 4.1 provides a simple illustration of an important limitation inher-
ent in the convex methodology: the upper bound it provides does not coincide
with the actual rate when multiple phases exist. This phenomenon is in fact a
general one: the upper rate function it specifies for exchangeable sequences is
always the lower convex envelope of A (that is, the greatest lower semicontinu-
ous convex function less than or equal to A), and thus the best possible convex
upper bound.

ProposITION 4.1. Let E be a separable Banach space. If ® is second
countable and

Ay (v) = (log $)*(v) = sup (v, £) — log 4(£),

where ¢(£) is the essential supremum of ¢.(£): ® — [0,], then A, (v) is the
lower convex envelope of A(v).

Proor. We claim first that ¢ = sup,c g(,, #, when O is second countable.
For if {9,} is a sequence in S(x) and 6, — 6, then liminf, _,, ¢, (£) = ¢4(£). It
follows that ¢,(£) < ¢(£), for otherwise u{y: ¢,(£) > ¢o(¢) — &} = 0 for £ > 0
sufficiently small. Thus sup, ¢ g, #s < ¢.
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But if © is second countable, then it also follows that ¢ < sup,c g, ¢4- For
if ¢(£) > M, = sup,c 5, Po(¢) for some &, then u{f € O: ¢,(£) > M} > 0.
But this would imply that an element of this set lies in S(u), which is
impossible. Thus ¢ = sup,c g(,., ®s-

Next, we claim that A, < A. To see this, let § € S(u) and let ¢* denote the
convex conjugate of the function ¢. Then ¢ > ¢,, hence A, = (log ¢)* <
(log ¢4)* = A,. Since 6 € S(u) was arbitrary, it follows that A, < A.

Finally, let ¢ be an arbitrary lower semicontinuous, convex function such
that 0 < ¢ < A. Then for any 6 € S(u), ¢ < Ay, hence ¢* > X% = log ¢,. Thus
¢* > supflog ¢,: 6 € S(u)} = log ¢. Now since ¢ is lower semicontinuous and
convex, ¢ = ¢** < (log ¢)* = A, hence A, is the greatest lower semicontinu-
ous convex function below A. O

If © is not compact, then in general the upper bound need not hold.

ExampLE 4.2. Let E be the topological vector space of finite signed mea-
sures on the interval R, = [0, ©), endowed with the weak topology. Let ® =
{1,2,8,...} and define wu(k) =6/m2%k?% k> 1. Let @, denote the uniform
probability measure on the Borel sets of the interval I, =: [2k — 1,2k] and let
P, = @} denote the corresponding product measure on R”. Let T: R, — E be
defined by T'(x) = §,, where §, is the point mass at x, let ) = R% and let Xj:
Q - E be defined by X;({x,,..., %;,...}) = T(x,). Consider the mixture P"(A)
=Y5%_,Py(X, € A)u(k). For each k € O, A, as computed with (2.8) is both
an upper and lower rate function for the sequence of probabilities P;' =
P, > X! (BZ, Section 7), but we will show that A(v) =: inf{A,(v): £ € O} is not
an upper rate function for the mixture {P"}, by constructing a closed set
C c E with

1
(4.1) lim —log P*(C) > — inf A(V).
n—owo N veC

Let C;, j > 1, be the set of discrete probability measures on R, having no
more than J mass points all of which lie in the interval [2j — 1, 2 j] Each set
C; is closed, hence C = U;,,C; is closed. Noting that P(X,€C,) =1,

J

1<n <k, and that P(X, € C,) =0,n >k + 1, it follows that

Pr(C) - élPk(X,, € C)u(h) = é u(k)
6 - 6 6 1
Lk —5fn 2 dx= —

Thus lim, ,,, n~!log P"(C) = 0. But it follows from (2.8) that for any & > 1
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and any measure v € C, A,(v) = », since v is discrete and @, is not. Thus
A(C) = » and (4.1) follows.

Note that in Example 4.2, the upper bound for closed sets does hold for the
component sequences {P}'} [see, e.g., Groeneboom, Oosterhoff and Ruymgaart
(1979); BZ, Section 7].

The final result states that if attention is restricted to real-valued exchange-
able random variables, then the upper bound is universally valid. Note that @
is not assumed to be compact.

THEOREM 4.2. If E = R, then for every closed set C in R,

1
lim sup — log P*(C) < —inf{Ay(v): 6 € ®,v € C}.

Theorem 4.2 follows as an immediate consequence of the following lemma.
Although very simple, we have been unable to find a reference for it in the
literature [the closest is Azencott (1980), page 13, Theorem 2.3]. Note that the
constant 2 is best possible (consider the example of the binomial distribution).

LemMma 4.1. Let {X;} be an i.i.d. sequence in R under the probability P,. If
C c R is closed, then

Py(X, € C) < 2exp(—nA,(C)).

Proor. Let U ={x € R: Ai(x) > ¢}; U is open because A, is lower semi-
continuous and in fact U is either an open convex set or the union of two open
convex sets. To see this, consider first the case where there exists some
number x, such that A,(x,) = 0. Then A, is monotone increasing on [x,, %)
and monotone decreasing on (—, x,]. Thus both U; = U N (x4, ) and U, =
U N (—x,x,) are open and convex. Since A, (U) >0, U= U, U U,. Next
consider the case A, > 0. By Corollary 2.1 of BZ, either A,(—®) = 0 or A, () =
0. If A,(—) = 0 and x; < x,, then by the convexity of A,,

Ag(xy) = Ay ax2+(1—a)(1_a - l—a))
< ady(xy) + (l—cu))x,,(1 . l—a)'

Then let a — 1 to see that Ay(x;) < A,(x;); thus A, is monotone. A similar
argument shows that A, is monotone if A,() = 0. It follows that in either
subcase A, is monotone and hence U is convex.
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Thus U = U, U U,, where U, and U, are open convex, but one of U, or U,
may be empty. Now by Lemma 2.2 and Theorem 2.1 of BZ,

1 - 1 - -
—log Py(X, € U) < —log[ P(X, € U;) + P( X, € Uy)]

IA

1
p— log[e_nAﬂ(Ul) + e_nAG(UZ)]
n

IA

1 1
—log[2e7"°] < —log2 —c. ]
n n

REMARK 4.1. In addition to de Acosta (1985a), Bahadur and Raghavachari
(1972), Bartfai (1979) and Izmirlian (1990) have studied large deviation ques-
tions involving exchangeable sequences. Bahadur and Raghavachari (1972)
consider the problem of the asymptotic efficiency of tests, using a large
deviation criterion for the optimality of a test and give as one illustration
testing the composite null hypothesis of independence versus the composite
alternative of exchangeability. Bartfai (1979) investigates a large deviation
question of a very different type from that discussed here. If X, X,,... is a
real-valued infinite exchangeable sequence, with E|X;| <« and S, = X,
+ -+ +X,, then it follows from the Birkhoff ergodic theorem that the random
variable Z =: lim, ,, S, /n exists almost surely. Bartfai considers deviations
of S, /n from Z and states conditions under which exponential convergence of
S,/n to Z will occur. Izmirlian (1990) has studied large deviations for
partially exchangeable sequences having a finite state space.
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