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THE CRITICAL VALUE FOR THE UNIFORM NEAREST
PARTICLE PROCESS!

By T. S. MOUNTFORD
University of California, Los Angeles

We prove that the critical value for the uniform nearest particle system
equals 1.

Introduction. The uniform nearest particle system with rate A (UNPS()))
is the nearest particle system with rates B(l,7) =A/(I + r — 1). This is a
particle system on {0, 1} where occupied sites die at rate 1 independently of
the rest of the configuration and in unoccupied intervals particles are born at a
rate A uniformly spread on the interval. The UNPS processes are attractive;
consequently, there exists a critical value A, such that a UNPS(A) with all
states initially occupied survives for A > A, and dies out for A < A,. The
attractiveness of the system also entails [see Theorem 2.3, page 135 of Liggett
(1985)] that when the process is supercritical, there is a nontrivial invariant
measure.

In this paper we prove:

THEOREM 1. A UNPS(A) survives for A strictly greater than 1.

Theorem 5.5 of Liggett [(1985), page 347] states that a NPS with
Liir_1-,BU, 1) =b(n) <1 for each n must die out. This theorem implies
that a UNPS(A) dies out for A < 1. Hence, Theorem 1 shows that A, = 1.
Bramson and Gray (1981) give the upper bound 4log2 for the critical value
but their method handles a much wider class of nearest particle systems, many
nonattractive cases, than the method presented here.

ReMARKs. The proof in this paper relies heavily on the attractiveness of
the processes but easily generalizes to a class of attractive nearest particle
systems. Consider the nearest particle system with rates B(l, r) given by

! x
- i)
AL,r) l+r—11_1fl+r—1 *
where f:[0,1] - = is a positive function, symmetric about 1,/2 and integrat-
ing to 1. If f also has the property that xf(x) is increasing, then the nearest
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2032 T. S. MOUNTFORD

particle system is attractive. To see this, note that B(I, r) can be rewritten as

)tl x x dx
/;—1(l+r—1)f(l+r—1)_;’

which is decreasing in r and therefore by symmetry in /. If in addition to the
above, the function f satisfies [,,x~*f(x) dx < » for some strictly positive a,
then the method of this paper can be applied to show that the critical value of
Ads 1.

An attractive process which survives for A, also survives for any A > A,.
Accordingly, we need only present a proof of survival that is valid for A = 1 + ¢
and ¢ sufficiently small.

This paper uses ideas given by Bramson (1989) who showed that for each
A > 1, there is a nearest particle system which survives and for which the
interval birth rates, {6(n), n = 1,2, ...} are bounded by A. Bramson solved the
open problems 6 and 13 from Liggett [(1985), Chapter 7]. This paper addresses
the open problems 14 and 16 of the same section.

We make extensive use of coupling throughout this paper. It is assumed
that the reader is familiar with pages 122-130 of Liggett (1985).

1. We introduce and examine finite NPS modified to facilitate an inductive
procedure.

We now fix ¢ small and positive and proceed to define the finite systems. Let
nN: t > 0 be a UNPS(1 + &), modified so that: (i) deaths on [—2V,2N]° are
suppressed; (ii) births on [—2V, —2V + £2¥] and [2N — £2V,27] are sup-
pressed; (iii) Y is equal to 1 on [—2",2V]C and equal to 0 elsewhere.

For a subinterval of [—2",2V], I, we define n)'! to be a uniform nearest
particle system that differs from 5 only in that births outside I are sup-
pressed. The process ' is a Markov process with the same jump rates as
nN 1 the same set of possible states as 7! but so that 1"’ need not
necessarily equal 0 on I.

Let Ae,N — [_2N—1’ _2N—1 + EzN—l]’ Bs,N — [2N—1 _ 82N_1,2N_1].

For notational convenience we write 74 (nM4) for nN4"" (M 4""),
Processes 7' B and nN B’ are defined similarly.

Note that nN, n¥'4 and n¥' B are irreducible, continuous time, finite state
Markov chains. They thus possess unique invariant probability measures.

The notation |n}| refers to the number, at time ¢, of occupied sites of the
process for which death is not suppressed. Statements such as N4 = (+)0,
mean that at time ¢, all nonfixed sites for the process are (are not) unoccupied.

Throughout, terms like k(¢) and K, will denote constant which depend
purely on & and not on N (though it may only be possible to define them given
N sufficiently large). These constants may tend to 0 or « as ¢ tends to 0, but

. will always be strictly in (0, &).

The following lemma enables us to relate the invariant measure of 1% to

that of n™¥ 1
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LEmMma 1.1 (Fundamental coupling). Let nN A N8 and {nN"1I} be
independent processes with the {n}N ™17} equal in distribution to nN~1. Define
the following stopping times:

T, = inf{t: ntN’A, n,N’B * O},
S. =

12

inf{t >Tp:ngN4org]NB = 0}.

For i>1, T.=inflt > S;,_;: nN'4,nN'B # 0}. We can couple the above pro-
cesses with n} so that for T, <t <S,, we have

nity? cp’on [—2N71, 2N,

Proor. We note that Theorem 1.5 of Liggett [(1985), page 127] and the

attractiveness of the processes allow the coupling of 74, nN'2 and 7} so

that for all ¢, nM4 U g B c nN At the stopping time T, we will trivially have
;Y Tl N [ 2N 1 9N-11 c N, We again use Theorem 15 of Liggett (1985) to
couple n¥ and nN b7 so that for all times ¢ in (T}, S)),

nt_}.}’fﬁ[—2N_1,2N]Cnt . O

The lemma below describes the induction step for the proof of Theorem 1.

Lemma 1.2 Let ay = El(1/N?)[¥T, v -, dt] and
Py=P[Vte [VN,N?],3j:q]NA>) # 0]
=P[v¢e [VN,N?],3j;: 9] B(j) #0].
Then ay > (N? — YN)/N%uy_,PZ.

Proor. - Without loss of generality, we may assume that nY is coupled with
independent processes 7,4, 7" ® and {n]¥""/} as in Lemma 1.1. Let D, be

the event {{YN, N2] c [T ", 8;1}. Then on D,,

N? N2— /N +T
L Ing\l(o)=1 dt Z j:r ‘/__ JIT“{V—I,J(O)=1 dt.
J
The stopping times T}, S; are independent of the process nN"1J, so

N? N2+T,—{N
E[IDJf Ingv(o)=1dt]zE[IDJf +T, J—Ingv(o)zldt]
0 T \
(*)
._P[D]E[fN2 NI iy 1alt]

Now nN~1J is an attractive process with an initial configuration of all zeros.
Therefore, P[n)N~57(0) = 1] and (1/t)/(P[n¥~17(0) = 1]ds are increasing
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functions of ¢. Accordingly, for each j,
N2— V 2
l:f IN 1}(0) ldt} Z(N - \/I_V;)aN_l.
Summing () over j and substituting the above inequality gives

E[foNzlnNt(O)=1 dt] > (N? - VN)ay_ ZP[DJ']‘

Since the processes nN'4 and 5'4 are independent, the sum LP[D;]is equal
to (Py)?. Therefore the sum on the right-hand side is greater than or equal to
(N? — VN)PZay_,. Dividing this inequality by N2, we obtain the statement
of the lemma. O

As we show in Section 4, Lemma 1.2 effectively reduces our problem to
showing that P, tends to 1 sufficiently quickly.

2. We now proceed to introduce a coupling of our UNPS with an integer
splitting process. We also establish and use a martingale property of the
integer splitting process. These results will be used in Section 3 to show that
P,, tends to 1 very quickly.

We define an integer interval splitting process (IISP): The random nested
collection of » intervals {I, ;: 1 <j < n}, n > 1, is an integer interval splitting
process when: (i) all the intervals have integer endpomts and (ii) we obtain the
collection {7,,,, ;: 1 <j <n + 1} from {I, ;: 1 <j < n} by choosing one of the
I, ; at random (i.e., all the intervals have chance 1/n of being chosen) and
sphttlng it into two 1ntervals The splitting point is chosen at random from the
internal integers of the interval. The process is run until the stopping time
T = inf{n: there exists j < n so that I, ; has length 1}.

Below, Lemmas 2.1 and 2.2 establish a martingale property of IISP’s.
Lemma 2.3 introduces a coupling of IISP’s and UNPS.

LeMMA 2.1. Denote the length of an interval I by |I|. If interval I with
integer endpoints is split at a random interior integer into two subintervals I,
and I, then E[|I5|"'% + |I,|7'/?] < 4[1| "'/~

Proor. Without loss of generality, we suppose I =[0,n] where n is at
least 2. Then

1 n—1

B2+ 7] = o T (=)

n — ;
) Jj=1

ne1, :\-1/2 .\ —1/2
J J
112 Y= + (1 - —)
i -1 E‘l n n
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The function x — x~ /2 + (1 — x)~ /2 is convex on [0, 1], so
iy —1/2 i\ —1/2 . x\—1/2 x\~1/2
(i) +(1-i) g[’”/z(—) +(1——) dx,
n n i—12 \n n

therefore

n-1 . x\—1/2
E\g~ Y2 + 1,72 <172 —— J+1/2(~) d.
(1251 TR I n—1j§1f,~_1/2 . x

1 _ x -1/2 x -1/2
A )
n—171, n n

Since the function x —» x7!/2 + (1 — x)!/2 is symmetric about 1/2 and
decreasing on [0, 1 /2],

1 e xy\-1/2
Ry L I P
n

n—1/1, n
1 x\-1/2 x\-1/2
<II|_1/2—fn(~) +(1—-) dx
n'o\n n
=417 2 o

LemMma 2.2. Consider the IISP {I, ), n > 1, with I, , = A%V, Let T =
inf{n > 1: j < n with lIn,jI = 1}. Then

nAT _1/2) ((rAT)-1 -1
= (' (e ez ) )T a0

Jj=1
is a positive supermartingale with respect to the natural filtration of the IISP,

{F,}. Here a A b denotes the minimum of a and b. The product over no factors
is defined to be 1.

Proor. This proof is simply an integer version of the argument used in

Lemma 2.4 of Peyriere (1979).
We may, of course, suppose that n < T. Define V,, to be L2211, , 1 ;
Lemma 2.1 applied to the interval I, ; yields

E[V, ,ilF,, I, ; splits] <V, + (4 = DIL, ;17

Since each interval is chosen with probability 1/n, it follows that

l—1/2

1 3
E[V, F,] <V, + — ¥3II, |72 = Vn(l N _).
~i n

The yésult follows. O

We define a continuous time integer interval splitting process to be a
continuous time Markov chain whose- discrete time jump Markov chain is an
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IISP as defined at the start of this section and which has a jump rate equal to
1 + ¢ times the number of intervals of the process or equivalently, each
interval splits at rate 1 + . We will also refer to such processes as IISP’s.

Lemma 2.3. For a subinterval of [2N,2N], I, there is a coupling of a
continuous time IISP {IJ} with I} =1, and a process 2N so that T <T,
where T = inf{t: 3 j with |I/| = 1} and T; = inf{¢: 3 i,i + 1 € I s.t. 0} N.J(3) =
aNIG + 1) =1}

Proor. On [0, T] the continuous time IISP may be identified with a spin
system A,, taking values in {0, 1}/ by A(x) = 1 if and only if x is an endpoint of
an interval I; for some j.

The spin system A, has flip rates

(1+¢€)B(l,r), ifa(x)=0,
0, otherwise.

eq(x,A) = {

It follows directly from Theorem 1.5 of Liggett [(1985), page 127] that the
processes A, and 7'’ may be coupled so that 7"/ c A, on [0, T']. The result
easily follows. O

- Lemma 2.3 is useful in obtaining bounds for 7', defined above. For example,
taking I = A> ", we obtain:

LEMMA 2.4. The stopping time TA (= Ty.n~) satisfies P[T, < N/16] <
K_.27*N for some k positive and all N large enough.

Proor. Given Lemma 2.3, it will suffice to prove the corresponding state-
ment for the stopping time 7. If the time T' at which an interval of length 1 is
created is less than N /16, then either (i) the number of splits by time N /16 is
greater than e3V/32 or (ii) the embedded discrete time IISP creates an interval
of length 1 before the e3V/32th split.

If (ii) occurs, then upon the creation of the interval of length 1, the
supermartingale of Lemma 2.2 associated with the embedded discrete time
IISP must have greater than (1/62V~1)~1/2TI3Y/32(1 + 3/j)~". This term is
greater than &!/2ceN(°82/2-9/32) where ¢ does not depend on N. By Doob’s
optional sampling theorem, thls event has probability majorized by
1/(ce'/2eNe2/2-9/32)) Gince (log2)/2 is greater than 9/32, this term is of
the form demanded by our theorem. The probability of (i) is less than

1
3N/32E[# of splits in (O N/16)] = 3T/3§fN/16(1 + &)e@+er gt

e(L+eIN/16

<
= ¢3N/32

This, too, is exponentially small for ¢ small enough and the lemma follows. O
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Similar bounds for other UNPS will be used in Section 3 without further
calculation.

3. This section is devoted to the proof that P, tends to 1 very quickly. The
key observation is that until the first time that two adjacent nonfixed sites are
occupied, a finite UNPS(1 + ¢) grows at least as fast as a particular birth and
death chain. We then define two sets of states, state 1 and state 2, for the
process 1, 4. Loosely speaking, if the process is in state 1, it will have a large
number of sites in A* % occupied and far away from each other. It will also
have a very high probability of reaching state 2 (in which an extremely large
number of sites in A*"N are occupied) before becoming extinct on A®Y.
Conversely, the process starting from state 2 will, with very high probability,
reach state 1 before becoming extinct. In this way we can show that Py is
close to 1.

We can introduce the birth and death chain:

B(¢) will denote the continuous time birth and death chain on the nonnega-
tive integers (starting at 2 unless otherwise stated) with transition rates

r(1,2),p(0,1) =0, p(1,0) = 1.

For n > 1, p(n,n+ 1) =(n — 1)1 + &), p(n,n — 1) = n. The next lemma
follows simply from a comparison of jump rates and thus no proof is given.

Lemma 8.1, Consider 0" with In{""| > 2. Let T, be the first time that
two adjacent, nonfixed sites are occupied by n}N'*. There is a coupling of n}-!
and B(¢) so that [n]N'T| > B(t) fort [0, T,].

It is easy to see that B(¢) can escape to infinity with positive probability. As
n increases, the transition rates at state n resemble more and more those of a
continuous time branching process where particles split into two particles at
rate 1 + ¢ and expire with rate 1. These processes grow with exponential rate
& with positive probability, so the following result is not surprising.

LeMMA 3.2. For each 0 < 6 < &, there exists a positive constant c; such
that for all t sufficiently large,

P[B(t) > e®] > c;.

Proor. Fix & in (8,¢). Fix n, even, so large that for all r > n/2,
(1 +8)r <@ +eXr—1). Let B'(¢) be the birth and death process with
transition rates p(m,m + 1) = m(1 + §), p(m,m — 1) = m.If B and B’ are
both started at n, then we can couple the two processes so that for all
t < T, s2, B'(t) < B(¢), where T, ), is the first hitting time of n,/2 by B’. Now
it is easy to see that for each ¢ positive, there is a constant C; (valid for all n
greater than 4) so that P[B'(¢) > e®“*D] > C;. Thus P[B(¢) > %¢*D] > C; —
P[T, ,, < ]. This latter quantity is greater than C;/2 for n large enough. By
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the Markov property, we see that for ¢ large enough, P[ B(¢) > e¢%|B(0) = 2] >
C;/2P[B(1) = n|B(0) = 2] and the result follows. O

We now proceed to make use of Lemmas 2.4, 3.1 and 3.2. For notational
convenience we suppose that log? N and £2V~!/log? N are integer valued. We
divide A>" into log? N subintervals of equal length, J,, J,, .. ., Jiog? N-

For i =1,2,...,log% N, let x'* be copies of 77 which are independent.
The following lemma is proved by the same reasoning employed in showing
Lemmia 1.1 and so its proof is omitted.

LeEMMA 8.3. There is a coupling of the processes x}N'' and nN'* so that for
all t, U xN e o4

The above lemma enables us to argue that if the probability of an increasing
event is bounded away from zero for all the y/V'‘, then the probability of the
event for "4 is very large indeed. The following lemma helps ensure that at
a fixed time ¢, the probability that N4 # 0 is small.

LEmMMA 3.4. Let t, be a fixed time in the interval [VN, N /16]. For each k,
Plx* # 01 = f(e) > 0 for some f(¢) strictly greater than zero and depending

on N or t,.

Proor. Consider the continuous time integer valued process

Y(t) =|x**|.

Y is not quite a Markov process though it jumps with constant rate depending
on the corresponding state of 7: (a) When in state 0, Y jumps to 1 with rate
e/2log? N. (b) When in state 1, Y jumps to 0 with rate 1 and to 2 with rate
which depends on y/V'* but is always at least £/2log? N.

Define the stopping time T}, = inf{¢: Y(¢) = 2}. If T} > VN, then one of the
following must have occurred: (i) the time spent by Y at 1 before a jump to 2 is
greater than VN /2; (ii). the number of jumps from 0 to 1 is less than
VN /log* N for the first VN /2 units of time spent at 0; (iii) the first
VN /log* N — 1 times that Y jumps from 0 to 1 are followed by returns to 0
before any visits to 2.

It is easy to see that P[T}, < VN ] must tend to 1 as N tends to infinity. Let
T* be the first time that y/'* has two adjacent nonfixed sites which are
occupied. Using the proof of Lemma 2.4, we can see that P[T* — T, < N/16]
tends to 1 as N becomes large. .

From T, until T*, Y can be coupled with B(¢) so that Y(¢ + T,) > B(¢).
The birth and death process B does not depend on N and escapes to « with a
positive probability depending on &, p(¢). For ¢, < N/16, it is easily seen,
therefore, that

P[n} # 0] = P[T; < VN|[p(¢) = P[T* <N/16]] = f(¢) >0. O
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We say a state 7 is in state 1, if there are f(¢)log? N /8 occupied points in
A*N which are each more than (¢2V~!/log? N) away from the rest.

Lemma 3.5. For [VN <t, < N/16], P[n}4 is not in state 1] <
P[B(log® N, f(¢)) < (log® N/4) f(e)] < K ,e %N for N sufficiently large.
Here B(log® N, f(¢)) denotes a binomial random variable with parameters
log? N and f(¢).

ProoF. Lemma 3.3 states that the process 4 may be coupled so that

log* Ny N.i « nN. 4 Thus by Lemma 3.4, the number of J such that x>/ = 0
is stochastically greater than a binomial random variable with parameters
log? N and f(¢). By Chernoff’s inequality, outside of a set of probability
K, ,e #¢* N there will be more than log2(N) f(¢)/4)’s with X9+ 0. If
this occurs, then it is easy to see that we can find at least log%(N)f(¢)/8
occupied points each at least 2V~ /log? N apart. O

LemMmA 3.6. Let nf” be a UNPS(1 + €) process on the whole of Z' with
initial configuration

57 (x) =n5?(y) =1,
n5Y(2) =0 forzeZ'/{x,y}.

Let T, , be the stopping time inf{t: n*” has adjacent occupied sites}. If
y —x > e2¥"1/log? N, then:

@ P[T, ,<N/32] < K,2°N/128
(i) Until T, ,, In7?| behaves like the birth and death chain B(t).

Proor. The first statement follows in the same way as Lemma 2.4, while
the second statement can be seen by simply comparing rates. O

Recall that 5,4 will always denote a uniform nearest particle system for
which births outside of A*" are suppressed and whose initial state has
[-2% 2N completely vacant. We change our definitions so that henceforth
n/# will denote a process with identical transition rates to >4 but whose
initial position is in state 1.

Lemma 3.7.  Consider any process n;"'#. There exist K, , and ky(e) so that
for all nY"# in state 1 outside of a set of probability K. g, g0 FaeNoE" N,

(i) there will be more than e*N/® occupied sites in A> N at time N /32; and

(i) at no time t in [0, N/32] will n¥4 = 0.

ProoF. Since the process nN'4 is attractive, nothing is lost in assuming
that our initial state has precisely (f(¢)log? N)/8 occupied sites each more
than (¢2V~!/log? N) apart from the other occupied sites.
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Let x; <y; <xy <y, < -+ <Y f(g)logz ~)/16 denote the occupied sites of
A®>"N. Then we may couple the process n:4 with the lndependent processes
n*»% as described in Lemma 3.6, so that for all time U ;n% c n}Y

It follows from Lemmas 3.2 and 3.6 that for each i, the probability that
Inji % > €N/ is greater than c, , — K27N/1%. The result now follows from
the independence of the 5/~ processes. O ‘ A

We say a state 7 is in state 2 if it is a possible state for 4 at positive time
and it contains greater than or equal to e °N/%* occupied sites in A*N. So
Lemma 3.7 states that outside a set of small probability a process ™4 will be
in state 2 at time N /32.

We denote any process with transition rates equal to those of nN'4 (and
therefore to 7 4) but starting from 7 in state 2, by N 4.

LemMaA 3.8. Consider any process ¢iN'4 as described in the remarks preced-
ing this lemma. Outside of a set of probability less than K ,e %€’ N ( for
all N large enough) we have: (i) for all 0 <t < Ne/ 192 yNA 0, and
(i) Y fop is in state 1.

Proor. Let n! be a process such that no births occur and deaths occur
independently at rate 2 + ¢ and ¢! = ¥¢" V. From the attractiveness of the
respective processes, we can write n/%' U n/'4 c yN4, where ngt = gtV
and no births occur for n'! and deaths occur independently at rate 2 + ¢.

When written in this way, we can see that

P[30 <t <Nes/192: g4 = 0] <P[30 <t < Ne/192: A1 = 0]
<[1- e—Ns(2+s)/192] elNes8t
Similarly, Py 4 #1902 18 not in state 1] < P[0y, /192 is not in state 1].
For N large enough we can invoke Lemma 3.6 and bound the last quantity
by K, ,e” kx)log” N and the lemma follows. O

Recall: Py = PV ¢ € [N, N2], p¥4 « 0].

LemMA 3.9. The quantity Py is greater than 1 — 32NK(g)e #We* N for
some K (&), k(g) > 0.

Proor. We say that the process />4 makes a crossing from r to s if nV'4
and n'4 are both in state 1 and for each ¢ in (r, s), n™'4 is not identically
zero. It follows from Lemma 3.5 that outside of a set of probability
K 1’Ee""'l(e)l°g2 N 771;;7‘4 is in state 1. Given this event, Lemmas 3.7 and 3.8 and
* the Markov property ensure that n»4 makes crossings from VN + (G -
1X1/32 + 1/192)N to VN +i(1/32 + 1/192)N for i=1,2,...,192N/
7+ 1 outside of a set of probability. (1 + N192/7)[K, e"""(e)log Ny
K, e #s®1%*N] The proof of the lemma follows easily. O
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4. In this section we complete the proof of Theorem 1.
Let u 1 be the unique invariant measure corresponding to the process 7.
Since 0} is attractive and starts with all its nonfixed sites vacant, it follows

that

1
e a({n:m(0) = 1)) = 55 [* P[n(0) = 1] dt = a.

The quantities Py, are all strictly positive, so Lemma 3.9 ensures that

l_l P N < ®,
N=n,
when n, is large enough to ensure that P, is defined. Lemma 1.2 and the
above inequality ensure that
w 2 w

hmlnfaN > H ﬁN—z‘/N— Il Pya,, > 0.
=ng N=n,
That is, there exists ¢ such that ay > c¢ for all N. Therefore
liminfy . uy ({n: n(0) = 1}) > c.

Let ntN " be the UNPS(1 + ¢) with 1s fixed at [—2%, 2¥]° (in other words,
with transition rates equal to those of n¥ except that births on [—2V, —2¥ +
£2V] and [2V — £2V, 2V ] are permitted). By attractiveness, if w is the unique
invariant probability measure corresponding to 72, then liminfy . uy{n:

n(0) = 1}) > liminfy . uy ({n: n(0) = 1}) = c.

The state space {0, 1}Z is compact under its cylinder topology, so there exists
u which is the weak limit of a subsequence of the w,’s. Necessarily u({n:
1n(0) = 1}) > ¢ and so is nontrivial. The UNPS is a Feller process and for a
fixed continuous function g, by Theorem 2.2 of Liggett (1983), S_,n~ on(t)g
tends uniformly in N to S(¢)g, where S(¢) is the semigroup correspondlng to
the unrestricted UNPS and S_,n~ ,~(2) is that for the processes nN'. It now
follows that for each continuous g and time ¢, that

[S(t)g(n)du(n) = lim [S(t)g(n) du(n)

A}linw S_gn oni(t)&(m) duy(m)

&lrﬁnwfg(n) duy(n) = [(n) du(n),
which is to say u is a nontrivial invariant measure. O A
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