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LOCAL TIMES, OPTIMAL STOPPING
AND SEMIMARTINGALES

By S. D. Jacka

University of Warwick

Let X be a semimartingale, and S its Snell envelope. Under the
assumption that X and S are continuous semimartingales in H?, this
article obtains a new, maximal, characterisation of S, and gives an applica-
tion to the optimal stopping of functions of diffusions. We present a
counterexample to the standard assertion that S is just ‘“a martingale on
the go-region and X on the stop-region.”

1. Introduction. It is well known that under suitable integrability condi-
tions on the process X, living on the usual filtered probability space
(Q, Z,(F),P), the process S, defined by

S, = esssup E[ X,|Z, |,
t<7
is the minimal supermartingale which dominates X. In this article we explore
the possibility of finding another characterisation of S when X is a semi-
martingale.

Under the assumption that X and S are continuous semimartingales in H?
[see Jacod (1979) for a definition of H'], we obtain a new, maximal character-
isation of S in terms of an ‘“anticipative” SDE involving the local time of
S — X at 0 (Theorem 5), and give an application to the optimal stopping of
continuous functions of diffusions, establishing new, sufficient conditions for
the so-called smooth pasting condition to hold.

Finally, it is a standard assertion that S is just ‘““a martingale on the
go-region and X on the stop-region” —we take this to mean (at least in the
case where X is a semimartingale) that

¢
St = So + fol«S-X)z—>0) dMs + /1((S—X)t_=0) dXs’

where M is a martingale. In Section 5 we give a counterexample to this
assertion, exhibiting a process X—which is a continuous function of a Brown-
ian motion—such that S — X develops a nontrivial local time at 0.

2. Some preliminary results. Fix a filtered probability space
(Q, F,(Z,), P) satisfying the usual conditions and a (special) semimartingale
X living on (Q, %, (), P) with X € H'.
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330 S.D. JACKA

We take the canonical decomposition of X:
X=M-+A,
where M is a martingale and A is a predictable process of integrable variation,
with Ay =0, and fix T < .
Define S = S7, where
esssup E[ X, | &, |:t < T,

t<r<T

Xp:t>T.

def
ST'=

It is well known [see Dellacherie and Meyer (1980), Appendix] that S is the
minimal supermartingale which dominates (X7) =, (X, , r), and it is obvious
that, since X € H!, S € H' and hence is a special semimartingale with

decomposition
S=N+B
with B a predictable decreasing process, with B, = 0.
We shall assume from now on that

(1) A, Band N "' N — M are all continuous.

Note that if A is continuous, then the continuity of B and N’ is assured if the

filtration (%) is quasi-left-continuous. We show this as follows: It is not hard

to see that there is a version of S such that for any stopping time o < T':
S,=M, + esssup E[A,|F]| as,

o<t<T

while if o is a predictable stopping time and is announced by the sequence T,:

S,_=M__+ lim esssup [E[A,l«%n]

n-—° T <r<T

=M,_+ esssup E[A |F] as,
o<t<T
by continuity of A and the quasi-left-continuity of the filtration. It follows
from Meyer’s predictable section theorem [Dellacherie and Meyer (1980)] that
(there is a version of S such that)

S=M+18S,
where S’ is a continuous supermartingale, which thus has a decomposition
S’'=N'+ B,

with N’ and B continuous. .
We now prove that the ‘“standard” optimal stopping times are indeed

optimal.

e

DEFINITION. For each stopping time 7 > 0 and each ¢ > 0, define

of =inf{s > 7: S, < X, + ¢},
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and set

LemMA 1. Under condition (1), for each fixed ¢t €[0,T] o, is t-optimal,
that is,

St = E[Xatly; ],
and so, since S — X is continuous,
S, = [E[Sa,|9; ]
Proor. First we show that if 7 is any stopping time with ¢ < 7 < T, then
(2) E[X, |7 | = E[ X% ];

in other words, 7 A o, is at least as good a stopping time as 7.
Now

€[ X, 0|5 | — E[ X5 ]
~E[X, ., ~ XI5 ]
= E[(X,, = X)L, <l % |
> E[(S,, = 8,)1(p,<|F | (since S > X, while S, = X,)

= IE[ST/\at - S'rl‘?; ]
> 0 (by the optional sampling theorem),
establishing (2).

To prove the lemma, take a sequence (7),) of 1/n optimal stopping times for
S,—so that

E[Xr|% | >=8,-1/n and ¢<T,<T, Vnx1,
and note that, from (2), we may assume wlog that 7, < o,. Now
1/n > €[S, ~ X | | 2 €[Sy, — Xy | F, |

and
Sr, = Xrp,

so it follows from Markov’s inequality that
P(Sz, = Xp, 2 n"1/?) <n /2,
But
(T, <07 ") € (Sr, - Xp, = n71/2)

SO
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Moreover, it follows from the continuity of S — X that

n-12

gy —> o0, a.s.,
so
p
(3) Tn - ;.

Noting that AT is uniformly integrable, because X € H!, and that
AL Soar
[by virtue of (3)], we see that
E[S, - X,|% | = E[S; - AT|% | = lim E[S;-AT|% | <0 as. O

LEMMA 2. Under condition (1), the process N given by

~

tAT
N, = fo 1((S—X)s_> 0) ds;

is a martingale.

Proor. Recall that S = N + B. It follows from Lemma 1 and the fact that
N is a martingale that for any stopping time 7 < T':

B,=S.-N,
= E[S,, - N, |7 |
= [E[BU,L% ] a.s.
Since B is decreasing this means that
(4) B, =B, as.

Since B is predictable and, for each ¢, o, is a stopping time (and hence
optional), we see that

{(w,t): B(w) # B, ()} is an optional set
and so it follows from Meyer’s optional section theorem and (4) that
P(B,=B,,Vt<T)=1.
We deduce that B is a.s. constant on the maximal components of the open set
{t>0:(8S-X),_>0}.

Therefore,

tAT
'/;) 1((S—X)s_>0)dBS = 0 a.s.,
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and it follows that

tAT
N, = _/; 1((S—X)s_> 0) ds,

tAT
= j(; 1((S—N)s_>0) st a.s.,

so that N is a local martingale. Finally, since S € H!, N € H! so that N is a
martingale. O

From now on in this section we shall work with the pair (S’, AT), rather
than the pair (S, X). All results may be translated into equivalent ones for
(S, X) by recalling that

S,=S,+M, and X,=A,+M,.

DEerFINITION. In what follows we denote by A~ the decreasing component of
A. We denote by LY(S’ — A), or just L?, the local time of (S’ — A) at 0, and we
define

He= 9 dA;

ReEMARK. Since A and L° are continuous, we can (and shall) take the
unique version of u which is predictable.

THEOREM 3. The local time of (S’ —A) at 0, L° is, as a measure,
absolutely continuous with respect to A~, and u satisfies

0<u,<lg_a,-0 (A a.e.).

ProoF. Consider the process Z =, S’ — AT. Since S’ > AT, Z >0, so
that, since Z is continuous:

t t
Z,=Zy+ [0 1z >0 dZ, + [0 17,0 dZ,

t
=Z,+ fo 1z, >0 dZ, + $LY(Z)

(from Tanaka’s formula [see Azéma and Yor (1978)]).
Thus
Si =7, + AT

! t ! t
= S) + [01(Zs>9) ds; + [01(Zs=0) dAT + LLY(Z)

~ t
=S, +N, + fol(zﬁo) dAT + L119(2),
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where, from Lemma 2, N is a continuous martingale. But S’ is a special
semimartingale, so the right-hand side of (5) is its canonical decomposition and
we may conclude that N’ = N + S; and
t
f Lz,-0 44T + 3L (2)

is the decreasing process B. But L%(Z) is an increasing process so
~ [¢1z,—0) dAT must be an increasing process and

SLAZ) < = [1iz,-0 44T,
with Radon-Nikodym derivative u < 1. O

COROLLARY 4. There is a predictable process u as in Theorem 3, with
0 < u < 1 such that u = 0 except on supp(A~), and, for 0 <t < T,

T T
(6) Si=A,+ [E( [t Ls—amy, >0 dA, + [t 1olisramy, -0y dA,| F

Proor. From (5) and Theorem 3,
~ t t
Zt = Zo + N, - fol(zs>0) dA? - j;)/'le(Zs=0) dAE,
but Z; =0 so
Z,= [E[Zt - Z ]
G _ AT T T T T
=E|N, - N, + [t 1iz, >0y dAT + [t poliz -0 dATIF, ).

Equation (6) now follows on recalling that N is a martingale. O

ReMARKs. 1. It is (6) which we term an anticipative SDE. An associate
editor informs us that such equations also arise in finance theory and filtering

theory, where they are termed ‘‘forward-backward” equations.
2. The proof of Corollary 4 also establishes that

- T T
N, = [E(fo Lz,>0 dAT + j;) Ksliz —o dAT| ) - Z,
. ;
= 6 [0 AT~ B4 | = Zo.

" 3. A maximal characterisation of S and a uniqueness result. We
now consider solution pairs (S, 1) to the discontinuous version of the anticipa-
tive SDE (6). )
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THEOREM 5. Suppose that (W, v) are a solution pair to the discontinuous
version of (6)—that is, v is a predictable process and

T T
(7 W,=A, + [E(ft L(w-ary, >0 dA, + ft Velqw-ar), —o) @A | F

for all t € [0, T']—then [by virtue of (7)] we can (and shall) assume that W is
right-continuous and:

() W=AT a.s.,
() W< S’ a.s,
(iii) if W is a supermartingale, then W= S’ a.s.,
Gv) if
(8) 0<v,<1 and {s:(W-AT),_=0}csupp(47),
then W =8’ a.s.

In other words, any solution of (7) dominates AT; S’ is the maximal solution
of (7) and the unique supermartingale solution of (7); and (S’,u) is the
unique solution pair of (7) which also satisfies (8).

Proor. (i) Given ¢ €[0,T], define 7, = inf{s > #: W, > A_}; notice that
< T (because WT A7) and that, since W is cadlag, W, >A,. Now on
[t 7,) W < A, so, since A is continuous,

W,=A,+E

T T
[ w-ary,_> 0 @A+ [ vl w-ary,_-0) dAF,;
Tt Tt

=A,+ [E[Wn -A S ] > A, as.
Right-continuity of W and A then implies that
P[W,>2A,V¢te[0,T]] =
(ii) If we now define 7, = inf{s > ¢#: W, = A}, then 7, < T and by right-con-

tinuity W, = A_, while we see from (i) that, on [¢, 7,), W> A, so, by continu-
ity of A:

W, =A, +[E(j dA, +[ Lw-amy, >0 A, +[ vlw_ary, -0 dA|F

Tt

= IE[VVTtlg; ] = IE[ATtIZ ]

Thus for every ¢ €[0,T] there is a stopping time 7, € [¢,T] with W, =
HA, |#], so, by the definition of S’ and right-continuity of S and W, W < S’
a.s.

(iii) It follows from (i) and (ii) that
(9Y AT<W<§,

but Snell’s criterion tells us that if W is a supermartlngale satisfying (9), then
W=_8"
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(iv) Suppose (W, v) satisfy both (7) and (8), then for all ¢ € [0, T']:

t t
VVt = At - (f 1((W—AT)S_>0) dAs + fvs]'((W—AT)s_=0) dAs)
(10) 0 0

T T
+ [E( [0 Low-ary,_ >0 dA, + [0 v lwoar, -0 dA|F )
So
~ t
W,=A, + M, + [0(1 — 1) L w_ar), -0y dA,

[where (M,) is the martingale given by the second term on the right-hand side
of (10)], but, from (8), 1 w_ar, __o, = 0 and is 0 unless s € supp(A~), and so

~ t —
W,=A,+ M, - [0(1 — 1) L w_ar), -0y dA;.

It follows that, since v < 1, W is a supermartingale and hence, by (iii), W = S’
a.s. O

4. Remarks on the foregoing and some corollaries.

4.1. Remarks on Theorem 5. 1. The process AT itself satisfies (7) with
v = 0, and it follows from Theorem 5(i) that it is the minimal solution. It is
interesting to ask under what conditions (if any are needed) are all semi-
martingales Y satisfying A7 <Y < 8’ of the form

Y, = [E[ Al|F, ] for some increasing collection of stopping times {7,}.

2. It should be possible to construct a process A such that W, =,
sup; ;7 EL Al %] satisfies (7) but AT + W+ S'.
3. It is possible to show that if (W, v) satisfy (7), then

VS]‘((S'—AT)S_=0) < /'LS]'((S’—AT)S_=0) (A_ a.e.).

4.2. Convergence as T 1. If X € H', then A is closed on the right as a
continuous process of integrable variation, so by mapping [0, ] to [0, 1] we can
see that S, given by

S, = esssup E[A,| % |,
t<T<®
satisfies (7) (with T = ) and is a supermartingale; more generally, we may
apply the results of Theorems 8 and 5 and Corollary 4 to S. Moreover, since
S’(AT) increases with T and is bounded above by S, we see that S% =4
lim ., S'(AT) is a supermartingale which dominates A and hence S = S*.

4.3. Some corollaries for Markov processes. Suppose that (¢,; ¢ > 0) is a
diffusion in R? and X, = e *!g(¢,, T — t), where g is a continuous function. It
is clear that

S, =e f(&,T - t)
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for a suitable continuous function f, with f > g [see, e.g., Krylov (1980)].
Because f and g are continuous, it is apparent that L°(S — X) will only

increase when ¢, € 4D, where

Dd:f{(x,s): f(x,s) > g(x,s)},

and hence we may deduce the following theorem.

THEOREM 6. If £, f and g are as above and there exist (deterministic)
measures m, and mgy such that:

(i) & has a density p with respect to m,
(i) dA~< dm,,
(iii) m; ® my(dD) = 0,

then L°(S — X) is indistinguishable from 0.

Proor. It follows from the strong Markov property that u [as in (6)]
and K =y, dA;/dmy(s) are of the form u,=u(,T —s) and K, =
e *k(¢,, T — s) respectively—so denoting the ¢-section of 9D by (dD),,

t
EL)(S - X) = [E(foﬂ«sl((s—x)s>0) dAS_)
t
= E(foru'sl(@s,T—s)E"D) dAs—)
- f()tj;aD)e—“sM(a,T = 5)p(&9, a;5)k(a, T = s) dmy(a) dmy(s)

= e u(a,T - s)p(&p,a;s)

aDNRx[0, £]
Xk(a,T —s)d(m, ® my)(a,s)
=0. |

ReMARK. Under the conditions of Theorem 6, we may obtain the following
representation for f:

T
f(é0,T)=A4A + [E(fo 1, 7-5ye D) dAs)
T
= [E(AT - fo 1«§3,T—s)eDC> dAs)
_ [E(e‘“Tg(gT,O) + [Temer(g, T - 5) ds)
0
- fRde“"Tp(fo,a;T)g(a,O) dm(a)

+ e *p(£g,a;8)k(a,T —s)d(m, ® my)(a,s).
DeN(REx[0,TD

The following corollary is then immediate.
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COROLLARY 7. Suppose the conditions of Theorem 6 are satisfied. If p is
C! in ¢ with derivatives which are uniformly continuous in R X [¢t4,t,] for
any 0 <t,<t, <, thenfisC'in ¢ forall t > 0.

ReMark. This is the smooth pasting condition; see, for example, Krylov
(1980) or Jacka and Lynn (1990) for applications. :

5. A counterexample. The foregoing analysis might lead one to specu-
late (as the author did) that #, =4, LY(S’ — A) is always 0. Unfortunately,
the following counterexample shows that this is not so.

5.1. The counterexample. Let (B,; t > 0) be a Brownian motion on the
filtered probability space (Q, &, (%), P) with % = 0(B,; s <t) and = Z.
Let L? =, L%(B) and define

A, =L¢-L;*,
for some fixed a > 0. As usual,
S, = esssup E[A,|F ].

t<r<T

Since
def
X,=|B,—al — |B, + al

differs from A, by the martingale [!sgn(B, — a)dB, — [{sgn(B, + a)dB,,
the optimal stopping problem is equivalent to that of optimally stopping X,.
Now X, = f(B,), where f(x) = |x —al| — |x + al, and so, since f is bounded
above by 2a and achieves this maximum at any x < —a, we should always
stop A if B < —a. Conversely, if B, > —a, then, defining 7, = inf{s > ¢
B, < —a} AT,
E[A,|Z | > A,

since there is a positive probability that L® will increase on [¢, 7,], while L™¢
will not increase on [¢, 7,] since L™* is continuous and only increases when
B = —a. It follows that the optimal stopping policy is to stop the first time
that B, < —a.

We may now evaluate S explicitly, but we do not need to do so in order to
realise that £, may be strictly positive—to see this, apply (6) at ¢ = 0; we
obtain

T
Sy = E(fo 1(SS——AS>O) dAs - %jT
=E(L} — 5-Z7)-

But S, = EL? so
E-£p = 2E[ L% —L%] > 0.
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5.2. Its local time. As we indicated above it is possible to compute S
explicitly—in fact, it is easier to compute S =4, S(X). A little calculation
should convince you that S, = f(B,, T — ¢), where

f(x,t) = 2((2a +x) + (a — x)(b((—atvz—)) - (3a + x)@(gc:—ljz—x—)))

t |2 —(a —x)* (3a + x)*
(5] (exp(__zt )_exp(__zt ))

for x > —a, and
f(x,t) = 2a
for x < —a (® is, of course, the standard normal distribution function).

A quick check shows that f is piecewise C%! but that it has a discontinuity
in the first spatial derivative at x = —a of 2 — 4®(2a/¢'/?), while (as we
would expect)

1% 9
——5——f=0 forx # —a.
2 dx ot
It follows, from an easily proved generalisation of It6’s formula, that

Si= 8y + N, — [2(20(2a/(T - 5)"/%) — 1) dL;",
0
where N is a martingale started at 0, so that
4 1/2 _
Lp = - ®(2a/(T - L.
7 =4[ (1-0(2e/(T - 5)"%))dL;
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