The Annals of Probability
1993, Vol. 21, No. 1, 136-142

THE EXISTENCE OF PROBABILITY MEASURES WITH
GIVEN MARGINALS

By HEINZ J. SKALA

University of Paderborn

In an important paper, Strassen discussed the existence of measures on
product spaces with given marginals in the context of Polish spaces. We
generalize his results to arbitrary Hausdorff spaces and indicate some
applications such as measures with given support and stochastic inequali-
ties on partially ordered Hausdorff spaces. In the second part of our paper,
we state two results on the general moment problem, thus generalizing
earlier theorems due to Kemperman.

1. Introduction and notation. In a celebrated paper, Strassen (1965)
stated a necessary and sufficient condition for the existence of probability
measures with given marginals. It turns out that his theorem still holds if we
replace Polish spaces by Hausdorff spaces and restrict the possible solutions to
a narrowly closed, convex set of Radon measures. Strassen’s theorem and
some of its consequences have been extended by Edwards (1978) to completely
regular spaces. His technique depends on compactification arguments and is
different from ours. An equivalent of our Corollary 6 was established by
Hansel and Troallic (1986) by first solving the easier content version and then
using Henry’s extension theorem. Essentially the same result occurs in
Kellerer’s (1984) important paper which was pointed out by a referee to the
author. Kellerer’s paper contains a lot of results related to ours. His main
arguments strongly depend on the well-known duality theorem of linear
programming. Plebanek (1989) obtained a version of Corollary 6 where only
one of the marginals is assumed to be Radon.

Let X be a Hausdorff space and denote by M8(X) (M1(X)) the nonnega-
tive bounded (probability) Radon measures on X. We endow M2(X) with the
narrow topology [weak topology in the sense of Topsge (1970)], that is, the
weakest topology for which all maps A — [Ad\ = A(h) are lower semicontinu-
ous (L.s.c.) whenever 4 is a bounded Ls.c. function. In this topology, a net (A;)
converges towards A (we write A; —, A) if and only if lim A,(X) = A(X) and
liminf A;(G) > M(@) for all open subsets G c X. (Equivalent conditions are
given in Topsge’s Portmanteau theorem.)

Bd 3((X) denotes the bounded Borel-measurable functions on X. As usual
we shall write #(X), #(X), £(X) and #(X) for the pavings on X of closed,
compact, open and Borel sets, respectively.

For further basic definitions and results we refer the reader to Bourbaki
(1987), Kelley (1955), Schwartz (1973) and Topsge (1970).
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2. On two theorems of Strassen.

THEOREM 1. Let S and T be Hausdorff spaces and let A # & be a narrowly
closed convex subset of M1(S X T). In order that there exists a A € A with
given marginals u € M1(S) and v € ML(T), it is necessary and sufficient
that

(1) ffd/.L+fgdv5sup{f(f€9g)dy:yEA}

for all bounded Borel-measurable functions f: S >R and g: T > R. [f®
g(s,t) =3¢ f(s) +g@) forall (s,t) €S XT.]

ProoF. The necessity of (1) being clear, we only prove sufficiency. Assume
(1) and denote by M, the set of all pairs (@, 8) € M1(S) X M1(T) such that
there exists a y € A with («, 8) as marginals.

The pairing

((a,B),(f,8)> = [fda+ [gdp

puts the two vector spaces M(S) X M(T) and Bdg,(S) ® Bd z(T) in duality
and we observe that the topology

o =o(M(S) X M(T), Bdyo(S) ® Bdgo(T))

relative to {(a, B),(f, 8)) = [fda + [gdp is just the product of the topologies
o(M(8), Bd 3,(S)) and o(M(T), Bd 5(T)) [see Bourbaki (1987), page 50].

That (u, v) is in the closure cl, M, follows from the Hahn-Banach theorem
together with the representation theorem of weakly continuous linear func-
tionals.

Therefore there exists a net (e, B),) of elements in M, converging weakly
to (u, v) which is the case if and only if («;) converges weakly to u and (B;)
converges weakly to v. As the relative topologies of the weak topologies on
M?(S)and M(T) are finer than the narrow topologies nM (S) and nM (T,
respectively, we infer a; —», u and B; —, v. Assign to every (o, B); a y; €A
with marginals (a, 8); and assume for the moment that the net (y,) is
compact, that is, universal subnets of (y;) converge. Let (y; ) be a universal
subnet and assume y; —, y; then y € A as A is narrowly closed. That the
marginal measures af and B, of y; converge narrowly to the marginal
measures a and 8 of y follows from Topsge’s [(1970), page 40] Portmanteau
theorem.

It remains to show that (y;) is compact. This is the case if and only if for
every subclass & of (S X T') which dominates #(:S X T) (i.e., V K € #(S
X T)3 G € £: G > K) we have
(2) {}/;,f hmisup (gél;,%( G°) =0,
where the infimum is taken over all finite subclasses &' of ¢ [see Topsge
(1970), page 43] and lim sup y,(S X T') <'w. The latter condition is trivially
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satisfied and we verify a somewhat stronger condition than (2). For a given
e > 0, there exist compact sets Kg and K, such that w(K§) < ¢ and u(K%)
<e. Let G € &, G D Kg X Ky, then there are open sets Gg and G such that
K¢ X Kp cGg X Gp € G [cf. Kelley (1955), page 142]. By the Portmanteau
theorem [Topsge (1970), page 40], limsup y,(G¢ X T) = limsup o;(G¢) <
w(GE) < wW(Kg) < e and limsup y,(S X G%) = lim sup B,(G5) < v(GF) <
(K§) <e. As G° C(Gg X Gp)° = (GE X T) U (S X GF), we obtain

lim sup y;(G°) < limsup y;(Gg X G)°
= limsup y;((G§ X T) U (S X G%))
< limsup(y;(G¢ X T) + v,(S X GF))
<limsupy;,(G§ X T) + limsup v,(S X G7) < 2¢,

which obviously implies (2) and our theorem is proved. O
ReMARK. It is sufficient to assume (1) for all bounded l.s.c. functions.

CoOROLLARY 2. Let S and T be Radon spaces and w,v Borel probability
measures on S and T, respectively. Let A # & be a narrowly closed convex
subset of Borel probability measures on S X T. Then the following are equiva-
lent: (i) There exists a Radon measure A € A with marginals p and v. (i)
There existsa A € A with marginals u and v. (iil) u(f) + v(g) < sup{y(f ® g):
y € A} forall f € Bdg(8S), g € Bd go(T).

Proor. Trivially (i) = (i) = (iii).

(iii) = ()): For every y € A, we define y(B) = supg . g inf; . ¢ ¥(G), B €
#(S X T). Then ¥ is a Radon probability measure which coincides with y on
#(S) ® #(T) and is dominated on (S X T) by y (.e., ¥(G) < y(G) for all
G]. See Topsge [(1970), page 29]. By the Portmanteau theorem, the constant
net y; =y converges to 7. Thus the narrow closure A of {§: y € A} in
M’ (S X T)is a subset of A. As 7(f ® g) = y(f @ g), we can apply Theorem 1
to A and obtain the desired result. O

CoROLLARY 3. In the following cases, Corollary 2 holds: (a) S and T are
Souslin spaces. (b) S and T are Lusin spaces. (¢) S and T are Polish spaces.

Proor. Souslin, Lusin and Polish spaces are Radon spaces. O

ReMARKs. (i) Corollary 3(c) is essentially Strassen’s (1965) Theorem 7.
(Put §=1and 2=1)

(ii) Corollary 2 cannot be inferred directly from Theorem 1 because prod-
ucts of Radon spaces need not be Radon, in general.

It seems to be an open question under which set-theoretical assumptions it
can be proved that the product of Radon spaces is again a Radon space.
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(iii) As the narrow topology defined on the space of all Borel measures on
S X T is not Hausdorff if S X T is not a Radon space, Corollary 2 is not
applicable for A = {A,} if A, is not Radon.

An easy consequence of Theorem 1 is:

COROLLARY 4. Let S, T, w, v be as in Theorem 1 and let F + D be a closed
subset of S X T. There exists a Radon probability measure A with given
marginals w, v and M(F) = 1 iff

(3) [fdu + [gdv < sup{f(s) +g(): (s,¢) €F).

REMARK. This corollary was stated by Edwards (1978) for completely
regular spaces.

As an interesting application of Theorem 1, we prove a counterpart to
Strassen’s (1965) Theorem 11.

THEOREM 5. Let S and T be Hausdorff spaces, F # & a closed subset of
S X T, e > 0 agiven real numberandlet A = {y € ML(S X T): y(F) > 1 — &}.
There exists a Radon probability measure A € A with given marginals p €
M(S) and v € Mi(T) if and only if

(4) w(Bg) +v(Br) < sup{y(Bg X T) + (8 X Br): v € A}

for all Borel Bg C S and By C T. [1t suffices to assume (4) for all open Gg € S
and GpCT].

PROOF. 1j isu.s.c., thus by the definition of the narrow topology, y — y(15)
is w.s.c. and therefore the set A is narrowly closed. Trivially A is convex and
nonempty.

The necessity of (4) being clear, we prove sufficiency by establishing (1) for
nonnegative Borel-step functions f and g with representations f = L”a;1,,
20, and g=Y7_,B;15, B; =0, with S=A, D> - DA, 24,1 =
,u.(A NA4,,)>0 and T ="U B; with B; pairwise disjoint and v(B;) > 0.

As

sup{fhdy y EA} =(1 —a)suph +e§u17)'h
X

for every bounded Borel measurable function 2 on S X T, we infer from (4)
that

(5) w(Bg) + v(By) <1+ ¢ whenever B¢ X By N F = .
Furthermore, sup{/f ® gdy: y € A} = (1 — &)c + ¢(a + b), where a = L ,q;,
b max ; Sn B, and ¢ = supy f ® g. To give a formula for ¢, we define the sets

={j: A, XB;NF # @} and denote .@i U{B Jjed}, ¢ v(@"’) and
a =Xy aja We obtain ¢ = max{g; + a;: j eJl} Let & be the biggest i
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with &; < &. Using (5) for Bg = A, and Bj = B?, we obtain uw(A,) < v(%) + ¢
for i >k, while u(A;)) <1 for i <k. If a=X,_,a, >c —b, then we put
[ =k, otherwise [ = k + 1, so that (b + @ — ¢)e; < (b + a — ¢)e in any case.
We then obtain the desired formula:

n

/fdu + fgdv = ._ilai/-"(Ai) + 'Z]_BjV(Bj)

j=

IA

ey a;ta+ Z(Bj+ ) ai)V(Bj)

ik j ird;5j,i>k

e(a —a) +ag; + Y (,Bj + aj)V(Bj) + Y ij(Bj)

JEJ, J€dJ,

<e(a—a) +ag +c(l—¢g) + bg

cte(a—a)+ (b+a—-c)g

IA

(1-¢)c+e(a+b). i
A short look at the proof of Theorem 5 shows:

CoROLLARY 6. Let S, T, F and ¢ be as in Theorem 5. Then there exists a
Radon probability measure \ with given marginals u € MX(S) and v €
M2X(T) such that \(F) > 1 — ¢ iff (5) holds, that is, u(Bg) + v(Bp) <1+ ¢
whenever B¢ X Bp N F = &.

ReEMARkS. (i) If F = Fg X Fr, then (5) reduces to u(Fg) > 1 — ¢ and v(F;)
>1—¢. (@) If S=T and F is the diagonal {(s, ¢): s = ¢}, then (5) reduces to
lw — vl <e.

A further immediate consequence of Theorem 5 results in a generalization
of the key implication of Theorem 1 in Kamae, Krengel and O’Brien (1977).
Let S be a Hausdorff space endowed with a closed partial ordering and denote
by #(S) the family of increasing Borel sets, that is, B € #(S) iff s € B and
s <t together imply ¢ € B. We shall write u < v iff w(B) < v(B) for all
B e #(S).

COROLLARY 7. Let w,v € M1(S); then u <v implies the existence of a
A € ML(S X S) with support in F = {(s,t) € S X S: s < t} such that n and v
are the marginals of A. [It suffices to assume u(G) < v(G) for all open
increasing sets.]

« Using different arguments, this result has also been obtained by Kellerer
(1984). 1t is therefore not uninteresting to observe that a basic duality result
by Kellerer from which other duality theorems may be derived is also an easy
consequence of Theorem 5.



MEASURES WITH GIVEN MARGINALS 141

CorOLLARY 8. Let S, T, F be as in Theorem 5 and let A be the set of all
Radon probability measures on S X T with u and v as marginals. Then

sup{y(F):y € A} = inf{[fdp, + [gdu: 1, <f®g; f,gBorel}

(6) — inf{u(Bg) + v(By): F c (Bg X T)
U(S X By): Bg, By Borel)

and the supremum is attained.

PRrROOF. A is narrowly compact [this follows from our proof of Theorem 10
or from Kellerer (1984)]. Hence y — y(1z) assumes its supremum. Trivially
sup < inf. An easy calculation shows that sup < inf leads to a contradiction
with Theorem 5. O

3. A general moment problem. The following theorem is due to
Kemperman (1983) for completely regular spaces. The proof for arbitrary
Hausdorff spaces is similar to Kemperman’s and is left to the reader.

THEOREM 9. Let X be a Hausdorff space and let A # J be a convex and
narrowly compact set of Radon probability measures. For an arbitrary set of
bounded l.s.c. functions h;, i € I, and given real numbers c; the following
conditions are equivalent: (i) There exists a A € A such that AM(h;) < c; for all
i € I. (ii) For every nonnegative linear combination Lj_a,h; there exists a
A € A such that MX5_ja,h;) < Xp_ja,c;,.

ReEMARK. It is well known that M1(X) is narrowly compact iff X is a
compact space. -

Frequently, moment conditions come together with given marginal mea-
sures. Therefore we state:

CoroLLARY 10. Let S and T be Hausdorff spaces with given marginals
u € ML(S) and v € ML(T). Denote by A the set of all Radon probability
measures on S X T with u and v as marginals. For an arbitrary set of
bounded [.s.c. functions h;: S X T —» R, i €I, and given real numbers c;,
there exists a A € A such that AMh;) <c; for all i €I iff condition (ii) of
Theorem 9 holds.

Proor. It is well known that there exists a unique Radon probability
measure A on S X T such that A(Bg X B;) = u(Bg) - v(By) for all Borel
subsets Bg and By of S and T, respectively. Therefore we have A # . [See,
e.g., Schwartz (1973), page 63, and observe that for probability measures the
essential outer measure coineides with the measure of a set.] Trivially, A is
convex and only its narrow compactness remains to be proved. As u and v are
Radon, A is tight, that is, for every ¢ > 0, there exists a compact K ¢S X T
such that A(K°) < ¢ for all A € A. Trivially sup{A(S X T'): A € A} < » and



142 H.J. SKALA

therefore A is net-compact (in fact, relatively compact) for the narrow topology
[Topsge (1970), page 43]. Let (A;) be a net, A; € A, such that A; —, y. Then
the marginals of the A; (i.e., u and v) must converge narrowly towards the
marginals of y. (Take, e.g., an open subset G of S and apply the Portmanteau
theorem to G X T.) Thus y € A and A is narrowly closed and hence narrowly
compact. O
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