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THE PROBABILITY OF SMALL GAUSSIAN ELLIPSOIDS
AND ASSOCIATED CONDITIONAL MOMENTS

By Eppy MAYER-WOLF! AND OFER ZEITOUNI 2

Technion—Israel Institute of Technology

The problem of computing the lower tail of a Gaussian norm is consid-
ered in this paper. Based on large deviations arguments, a bound on these
tails is derived which is tighter than those obtained by other methods.
Conditional exponential moment bounds are also derived and as an applica-
tion, L? type Onsager—Machlup functionals for diffusions are computed.

1. Introduction. In this note, we consider the following problem: Let
{x;}7_1 be a sequence of i.i.d. Gaussian random variables. Consider the random
variable z = ¥7_;x2/a%, where {a;7_, is a sequence of given (deterministic)
numbers satisfying ©7_;1/a% < «. We are interested in computing the asymp-
totics P(z < ¢) as ¢ — 0, and in computing the asymptotics of expectations of
the form

2 < 5) .

The first problem was considered in [4]. Using an approximation by finite
sums and explicit computations for Gaussian random variables, the authors
get upper and lower bounds on P(z < ¢). Although their bounds are rather
explicit, the ratio of upper to lower bound diverges badly (except in the
particular case a,; = i, where they derive alternative bounds based on different
methods), and therefore one may not use their results to compute (1).

Another approach to computing asymptotics of z could be via the theory of
large deviations. Note that, since x; are Gaussian and independent random
variables, x/n'/2 =; (1/n)L?_,x', where x denotes the (infinite) vector
Xy, %y,..., =; denotes equality in distribution and x* are independent copies
of x. Therefore, the asymptotics of P(z > 1/¢) may be read from the general
large deviations theorem for vector valued Gaussian random variables coupled
with the contraction principle. The situation considered here, however, is
different in the sense that the random variable z /¢ converges to infinity a.s. as
e — 0, and standard large deviations results do not apply in the absence of an
equilibrium point.

In spite of the above, the route taken in this article is still based on
techniques inspired by large deviations theory. We modify the proof of Cramer’s

(1) E(exp( i gi(xi))
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SMALL GAUSSIAN ELLIPSOIDS 15
theorem to get implicit upper and lower bounds whose ratio, as ¢ — 0,

diverges relatively slowly. These bounds are then used to compute (1). The
following corollary will be proved in Section 3. Define

2
t4 { ¥(t) € L?(0,1): Z ln(z)(f ¥(t)cos((i — 3)mt) dt) < 00}.
Then:
COROLLARY 1. Let ¢ € H! be a given deterministic function. Then

lwllz <e| —=,.01,

e—>0

1

(2) B exp( 6,
0

where w, denotes a standard Wiener process, and || - ||z denotes L* norm.

This corollary may be used to show that, for a one-dimensional diffusion
which satisfies

(3) dx, = f(x,) dt + dw,, x5=0
with f € CZ%, one has that, for all ¢ such that ¢ € H/,
P(llx — ¢llz <¢)
4 P(llwllz < &)
oo o[- [ (6= r8)) at = 5 [0y at).

An extension of the above holds also for the case of n-dimensional elliptic
random fields, using the same methods as in [8] and [9]. In this case, however,
one has to impose more regularity on ¢ due to the fact that the lower bound is
not as tight as in the case of the Wiener process. For details, we refer to [6].

The limit in (4) is related to the Onsager—Machlup functional for diffusions
(cf. [5]). The result should be compared to [9], where a similar result for the
supremum norm was obtained only after tedious computations, with C¢, some
a > 0, replacing H!. A tighter result which does not rely on the bounds of
Theorem 1 may be found in [7]. A related application to the computation of
Onsager—Machlup functionals and estimators for stochastic PDE’s will appear
in [6].

The results of this paper can be somewhat extended in the case that the x,’s
are not independent and not Gaussian, provided some moment bounds on
their correlations and higher order moments hold. For details, see Remark 3 at
the end of the next section. Also, by combining the results of this paper and
the Berry—Esseen expansion, the bounds of Theorem 1 may be improved to
yield the exact asymptotic expansion as ¢ — 0. The details will appear in [2].
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We end this introduction with a notation. Throughout, for two positive
functions (or sequences) f, g, f ~ g will stand for

0< liminff < limsup — < =,
g g

2. Computation of asymptotic probabilities. Throughout, let {x;}7_;
be a sequence of i.i.d. Gaussian random variables defined on a probability
space (Q, &, P), with zero mean and unit variance. Without loss of generality,
we assume Q = R”. Let {a;}7_; be an increasing sequence of positive numbers.
We assume that

(5) 3
i-1

Denote z 2 X3_,x2/a%. From (5), E(z) <« and therefore, z is a well
defined random variable. Let now s, be any deterministic constant, which may
be ¢ dependent. By the standard Tchebycheff bound, one has

< o0,
a“

K+

2

2 z = SeX;
P(— < 1) sE(exp(—se(— - 1))) =e*[]E exp(— 3 ))
€ € i=1 £a;
(6) -1/2 :
hd s
=e[]|1+ 2) 2 UB(s,) <=
i=1 £a;

which, written differently, yields

7 log(UB L& o1+ 2
(7) og(UB) =s.— 5 L log{1+ 75 |-

Obviously, any choice of s, in (7) leads to an upper bound for P(z < ¢). To
compute the complementary lower bound, we use a change of measure argu-
ment. Let s, be as before a deterministic constant, and define on Q,%) a

probability measure by
8 d e —sez/edP
( ) Ns = Ep(e—ssz/e) .

Note that under the measure 7., {x;} is a sequence of independent Gaussian
random variables with zero mean and variances o> = 1/(1 + 2s./za%). Let
5(¢) € (0,1/2), to be chosen later. Clearly, for any choice of 8(e),

P(z<e¢)

> ns(‘j_ (S (1 - 26(8), 1))8Xp(38(1 _ 28‘(8)))][;&3_852/8 dP(X)

2s -1/2
1+ ;)
Sai

(9)

El

o

= 0,2 & (1 - 28(), 1) Jexp(~25,5(e))e TT

i=1

£ LB(s,).
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Choose now s, such that
E (f) _ Ju(2/2)exp(—s,2/¢) dP(x)
el fueexp(—s,2/e) dP(x)

(10) =1-4(e),

€

or, more explicitly,

(1) ¥ o = (1= 8(e)e.

Such an s, exists for small enough ¢ since the left-hand side of (11) is
continuous in s, and assumes the values 0,X7_;1/a% for s, = ,0, respec-

tively. Under this choice of s,, we have the following lemma.

LEMmMa 1.
2 2 2 = x2
(12) B[S - (1-3(e) =—g§( gu ))

ProoF. Since X7_;E, (x?/sa?) = (1 — 8(¢)), one obtains that

£~ a0y - 3 BN

= e%at

(19 "
_ i _2~ Ens(xi)

ol a? ’

where the last equality used the fact that x; is still Gaussian under »,. O

Since
1

B, (x7) = 1+ 2s,/ea?’

E (xz) /a? is monotonically decreasing in i. Combining this fact with (12) and
Chebycheﬁ" s bound, one obtains

1_773(55(1—25(5),1))3 2(1) ( (1—8(8)))

S LT S
< 5% 2% 2 ; i€ ou/e0)
» 0 ( ) i=1 @ ay (11+ 25,/¢a1)
= e )2(1 - 5(5))( aZe(1 + 286/50'%))
- 1

8%(e)s;
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Note that, with the choice of s, as in (11), the ratio of upper to lower bounds is
bounded above for small enough ¢ by

UB(s,) - exp(2s,6(¢))
LB(s,) = (1-1/(8%(e)s.))

and this will be used below in the computation of exponential moments.

We conclude this section with an explicit computation of the bounds for
some special cases. Let f(-) be a nondecreasing function of a real variable such
that a? = f(i). Since the s, stipulated by (11) tends to « as ¢ — 0, it follows
that

(15)

(1/e)X741/(a% + 2s,./¢)

(19 I(7,%) e

where
I I I
i(f.8) 2 Efl f(x) +2s,/e

and, similarly,

1/s,)log(UB
) R ok

where

2s
L(f,¢) 2 1——[ log(1+ f(x))

One may now use asymptotic formulae for the integrals in hand to compute
the upper bound and then use (15) to estimate the corresponding lower bound.
In particular, consider the case a; = i#/% B > 1, and take f(x) = x#. Integrat-
ing by parts in the definition of I,, one obtains that

2s, 28s, 1
1 = 2s BI,.
(18) / og( )dx £ «[1 xP + 2s /¢ sehh
On the other hand, by a direct computation,
dy
— tl/B-1 A
el(f) = ¢ way,,,

where t, = (2s,/¢). Let vz = [5 dy/(1 +yP). By [8], vy = (ar/B) /sin(7/B), and
one concludes that as ¢ — 0 (and therefore s, — ®),

(19) lim g1/~ Dg, = y8/B=D /3

e—0

and

-1
(20) lim ¢/~ log(UB) = — i 5B/ eY.
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On the other hand, choosing 8(¢) such that log(8(¢)) /log(e) < 1/2(B — 1), one
concludes that

(21) @ < C exp(e~/AB-D)
LB ~
and therefore,
. _ B - ~
(22) 511_13(1)81/(3 Dlog(LB) = — yf/B=D

as well.

REMARK 1. That the same limit occurs in (20) and (22) is a large deviations
statement. In this sense our bounds improve those of [4] (equations 4.5.1 and
4.5.2) whose ratio between the upper and lower bound is of the order of
exp(e ~V/~D) which is worse than the ratio in (21).

REMARK 2. There is one case in which precise computations can be made,
namely the case B8 = 2. In that case, we may and will in the proof of Corollary
1 view the coefficients a; =i as the eigenvalues of the Wiener process’
covariance function. From formula 4.3.5 in [1], one obtains after some
straightforward manipulations:

1+ (1)) i
= (1+0(1)) 5= exp| 5.
The product in our upper bound (6) can also be evaluated explicitly to yield

(24) UB(¢) = Ll_—i;:/);s_))w exp( 787-—:)

This upper bound (up to a multiplying constant) was also obtained in [4]
(formula 5.3.1) using a method specific to the case B = 2 (and different from
their general treatment). Moreover, this technique produced a tight lower
bound so that the ratio of their upper to lower bounds diverges like 1 /¢, which
is better than the ratio in (21).

(23) P(iﬁz<s

i=1%i

REMARK 3. We note that the bounding techniques that we use can be
applied also in the case of non-Gaussian random variables. In this case, the
upper bound is of the form

z od sx?\) .
(25) P(;<1)Sesi=l_[1 (exp(—;ﬁ—)) =UBI,
whereas the lower bound is of the form ‘
: 2 2
(26) P(— < 1) > 'r;(— €(1 - 25(¢), 1))exp(—2.<586(.~;)))UB1
€ €

and the tightness of the bounds depends on the ability to obtain a counterpart
of Lemma 1 in the non-Gaussian case. In the case that, as in the Gaussian
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case, one has that E,(x}) < ¢,E, (x})? the same technique as in the Gaussian
case coupled with an appropriate choice of 6(e) yields similar bounds. The
same remark applies also to the case where the random variables x; are weakly
dependent.

3. Expectation asymptotics and the Onsager—-Machlup functional.
In this section we turn our attention to the computation of expectations of the
form (1). As mentioned in the introduction, the main motivation for doing that
lies in computations related to the Onsager—Machlup functional presented in
Corollary 1 and its extensions to the random field situation. Therefore,
throughout this section, we remain in the Gaussian case and keep the nota-
tions introduced in the previous sections. For the sake of simplicity, we assume
throughout that g,(-) is odd and has linear growth at most. We note that in
some applications that we have in mind, this last condition is violated;
however, the same technique may be made to work. For details, see [6].

By the antisymmetry of g,(-) and Jensen’s inequality, one has that

Ei 8i(x;)

zs.s) =1.
i=1

zSS)Zexp

(27) E(exp( Y g,-(x»)

i=1
On the other hand, note that for any y(¢) > 1, and s, as in (11),

E(exp( i gi(x,-)) z< s)

i=1
(28) < El/"f)(exp( i 7(8)gi(xi))
i=1

sl

- E'/"®(exp(Z7_1y(e)&:(%;)))exp(—s,(z/e — 1))
< PU(2/s < 1)

where the expectation in the numerator is finite due to the assumption of
linear growth of g,(-). Therefore, we obtain that

E(exp( i g,.(x,.)) z < e)

i=1
UB(Se) 1/y(e)
LB(s,)

)

(29) <

JZoexp(y(e)g:(x;) — s.x7/ea’ — x7/2) dx, L/

% wexp(—s,x?/ea? — x7/2) dx;

XTI
i=1

»Note that in (29), UB(s,) must be the particular upper bound obtained by the
Tchebycheff inequality as in (6), but any lower bound in hand could replace (9).
Equation (29) is the basic upper bound on the exponential expectations (1). To
obtain more explicit bounds, we assume in the sequel that g,(x) = b;x.




SMALL GAUSSIAN ELLIPSOIDS 21

A substitution of g,(x;) = b,x; in (29) yields the bound

1/v(e) ® 2
) < (ILB(SS)) exp( y(£)b;

LB(s,) i§1 2(1 + 2s,/za7)

(30) E(xp( T b e <

i=1

Thus, we have the following theorem.

THEOREM 1. Let a; be an increasing sequence such that a; ~ i?/? asi — o
for some B > 1. Assume that

el

(31) Z i1726% < o,

Then

(32) E(exp( )y bixi) z= 3) —.-o L.
i=1

Moreover, when B = 2, instead of (31) it is enough to assume that L_, In(i)b?
< oo,

Proor. By (30) and (21),
(exp( i b; (xi)) z < 5)

-1/28-1) b2

NS 2: ' 2(1 + 25,/(c0%)) |

(33)

< Cl/‘y(s) exp(

Choose now

-1/2(B-1)
() = S 572(1 + 25,/ (%))

Clearly, for ¢ small enough, y(¢) > 1 (actually, y(¢) — © as ¢ — 0). Substitut-
ing in (33), one obtains that
; < )
b2

E(exp( i bi(xi))
SCV“”&p%J Vmanz ( ;

(34)

i=1
1+ 2s,/(za?))

and, in view of (27) the claim will follow if we can prove that
b2

g~ 1/2(B-1
Z 1 2(1 + 2s,/(£a?))

es0 0.
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Define iy(e) = inf{i: 2s,/(ea?) < 1}. Note that for a; ~ i#/% s, ~¢g /#~D
and therefore, i,(¢) ~ e /A~ that is, s, ~ i,(¢) and & ~ i (e)' "~. Now,

b2
—1/2(B 1)
;21 2(1 + 2s /(sa2))

ig(e) b2

(35) e~ 1/2B-1 Z 2(1 " 2';/(8”;))

© b2
4 HED Y I
i) +1 2(1 + 2s,/(&i?))

Choose an increasing sequence 7, such that 7,i"1/2 — o, 1,i~! decreases

and L7_,m;b? = M < «. Consider the first term in the RHS of (35). One has

io(e) b2
e~ 1/2(B-1) Z !
2(1 + 2s,/(&iP))
(e) .}2;B B o
(36) _ o b2 Lo(¢)
1/2(B-1) Z 1 e@B=3)/2B-1H_ - ~ Z "‘hb;z
i=1 Se 577;0(5) i=1

. 1/2 1
< Mcig(e) " "Miyey 2e—-0 0,

where the second inequality follows from the fact that i# /7, is an increasing
sequence. Returning now to the second term in the RHS of (35), one has

o bt2

g l/2B-D ¥ :
(o1 2(1 + 2s,/(&i?))
(37) < e VHPTD VT p2 < T I/ABDj ()72 Y 1/2p2

io(e) i=ig(e)
=c Z il/Zbi2 o0 07
i=ig(e)

which together with (36) and (35) yields (32) for general 8. For the case of
B = 2, using the tighter expressions UB(s,) ~ exp(—w2/8¢)/ Ve from (24)
and LB(s,) ~ exp(—m2/8¢) from (23), we may modify (33) so that

E(exp( » bi(xi)) z< 5)

i=1
“In(e) /2 b2
v(¢) Tr(e) Z 2(1 + 2s /(ea2))

(38)

< Cl/')'(e) exp(
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By choosing y(e) = \/‘— ln(s)/[2):°;=l(bi2/2(1 + 238/(ea§)))] , it remains to
prove that

b2
ln(E)LZ1 2(1 + 2s,/(£a?))

Using a sequence 7; such that 7,/In(i) — «, 1,/i decreases and L7-n,b? =
M < o, and mimicking the proof for the general B case, the limit in the

RHS of the modified (36) and (37) becomes c In(iy(e))/n; () =0 0 and
cX? ., In(i)b? -, 0, respectively. D

-0 0.

ig(e)

Proor oF CoroLLARY 1. Let {e,(#)} be the complete orthonormal system in
L%(0,1) which are the eigenfunctions of the Wiener process’ covariance func-
tion, that is e,(¢) = V2 sin(a,t), i € N, where a; = (i — (1/2))7. Using the
Karhunen-Loeve expansion, represent the Wiener process as w, =
Y7 (1/a)x;e(t), where x; = a; [qw,et) dt are independent standard Gauss-
ian random variables. Note that [|wll3 = ©7_,x2/a2. Next, we claim that for
any deterministic ¢ € L%(0, 1),

1 Z X 1 .
(39) fo o(t) dw(t) = Ela_i [0 d(t)é;(t) dt.
Indeed,
1 e 1
[0t du, = T E(x, [ 6(0) du s

.
Il

1
M81M8

0
xLaLE( 1wtei(t) dtfolqb(t) dwt)
o

(w(l)/ e,(t) dt—j /e(s)dsdwt)f o(t) dwt)

.
Il
-

(40)

; qu(t)fe(s)dsdt

=i fl ‘()¢(t)dt

- ¥ 2 flawe

where we have used the fact that [le(s)ds = —é,(¢)/a?. Using now (39),
Theorem 1 may be applied with b; = [3¢,(£)¢(¢)/a;, yielding Corollary 1. O
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