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ASYMPTOTIC DISTRIBUTIONS OF WEIGHTED
U-STATISTICS OF DEGREE 2

By KeEvIN A. O’NEIL AND RICHARD A. REDNER!

University of Tulsa

The limiting distribution of weighted U-statistics of degree 2 is found
for a wide class of weights, including uniform weights. Nonnormal limits
can occur for both degenerate and nondegenerate kernels. A compact
expression is given for the cumulants of the distribution. Incomplete and
randomly weighted U-statistics are also analyzed.

1. Introduction. Let X, X,,... be iid random variables with distribu-
tion F, and f(x,y) be a real symmetric kernel function with mean zero and
finite variance: Ep(f(X,, X,)) =0, Ep(f*X,, X,)) < ». Given a bounded
symmetric ‘“weight function” a: N? —» R, consider the sequence

(1.1) U= T ai,i)f(X X,).

1<i<j<n

When a = 1, these sums are known as U-statistics of degree 2; the recent
book by Lee (1990) collects much of the literature on the subject. Of particular
interest is the asymptotic distribution of these statistics. If the kernel f is
nondegenerate, that is, if the function u(x) = Ez(f(x, X,)) has positive vari-
ance, the limiting distribution is normal [Hoeffding (1948)]. For degenerate
kernels, the limiting distribution of U, was described by Gregory (1977) and
Serfling (1980) in terms of the eigenvalues of an operator constructed from f,
as a sum of independent chi-square variables; see also Rubin and Vitale (1980)
‘and Dynkin and Mandelbaum (1983).

- When the weight function @ is nonconstant, U, is called a weighted

U-statistic. Conditions on a sufficient to produce asymptotic normality when f
is nondegenerate were reported by Shapiro and Hubert (1979). An important
special case is the reduced or incomplete U-statistic, where a takes only the
values 0 and 1. Designs (weight functions) resulting in both normal and
nonnormal convergence have been analyzed by Blom (1976), Brown and Kildea
(1978) and Janson (1984). However, general weighted U-statistics with non-
normal asymptotic distributions have not, to our knowledge, been described in
the literature. Such U-statistics are the subject of this paper.

We find that nonnormal limits can occur when the kernel is degenerate, and
when the kernel is nondegenerate but the weights are degenerate in a certain
sense. We give a compact expression for the cumulants of the asymptotic
distribution, involving certain expectations of both the kernel and the weights.
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Knowledge of the cumulants makes nonnormality of the limit transparent. A
theorem establishing normal convergence for a wide class of incomplete U-sta-
tistics with degenerate kernels is given, extending a theorem of Brown and
Kildea (1978). ‘

We also investigate several weighting schemes for which the preceding
expectations can be computed easily. One simple scheme, prominent in applica-
tions in physics, is a factored form: a(, j) = e,e;. The interesting coriclusion is
that, up to a scaling constant, the limiting distribution is indifferent to the
choice of “charges’ e;. A generalization where the variables X, are assigned to
groups and the weights are determined by the groups is discussed. Randomly
assigned weights are also analyzed.

The limiting distributions are found by the method of moments: The
limiting moments are found and shown to determine a distribution. Although
the moment computations can be generalized to weighted U-statistics of
degree greater than 2 [cf. O’Neil and Redner (1992)], these moments are in
general insufficient to determine a distribution. The existence of limiting
distributions for higher order weighted U-statistics is an open question.

The organization of the paper is as follows. In Sections 2 and 3 the main
theorems (Theorems 2.1 and 3.1) are proved, handling degenerate and nonde-
generate kernels, respectively. The case of randomly assigned weights is
treated in Corollary 2.2. Section 4 deals with incomplete U-statistics (Theorem
4.1), and the last section discusses some simple weight functions which satisfy
the hypotheses of the theorems. Examples from and connections with the
literature are given throughout.

2. Weighted U-statistics with degenerate kernels. Let f, a, X, and
U, be defined as before. (One may also consider a sequence of kernels f, and
weight functions a,; a trivial modification of the proofs that follow handles
this case.) Our first theorem discusses the asymptotics of U, when the kernel
f is degenerate; the limiting cumulants are expressed in terms of expectations
over ‘“‘cycles’:

(2-1) Ik=EF(f(X1’X2)f(X27X3) f(Xk’Xl))‘

(These expectations are finite since f has finite variance; see Remark 1.) The
I, have been shown to determine the limit of unweighted U-statistics [O’Neil
and Redner (1991)].

THEOREM 2.1. Let f be degenerate, and deﬁne I,, as before. Suppose that for
all k > 2, the following limits exist:

- (2.2) w, = limn=*Y a(iy,iz)a(iy i) - - a(iy, i),

where the sum is over all k-tuples (i,,...,1,) of distinct integers from 1 ton. If
wy > 0, then the sequence n~'U, converges in distribution to a limit with kth
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cumulant (k — D' I,w,/2 for k > 2, that is, with moment generating function

> Lw,
2.3 = kL,
(2.3) #(t) em[% 0% ! ]

Proor. The proof is by the method of moments: We show that the
moments of n~'U, tend to limits corresponding to the previously claimed
cumulants, and that these moments determine the distribution. First we
assume that f is bounded; this restriction will be lifted later.

Begin by evaluating the mth moment of n~U,:

Ee((n ' Ta(i, ) f(X, X;))")
=n" " Ya(iy, jy)  a(in, i) Be(F(Xip X)) - F(Xi, X)),

where the summation is over all ordered m-tuples ((iy, j), ..., (I, ) of
pairs of integers from 1 to n with i, <j, for all &.

Since f is degenerate, the preceding expectations, in which any integer
appears only once in a subscript, all vanish. Furthermore, those terms in
which the m-tuple of pairs contains fewer than m distinct integers in the
subscripts make only an O(1/n) contribution to the moment: ¢ and f are
bounded and there are only O(n™~D) such terms.

Now consider the terms in which the m-tuple of pairs contains exactly m
distinct integers in subscripts, each appearing exactly twice. If the m pairs are
thought of as vertices, and the m distinct integers are used to label edges
connecting these vertices, then all these terms can be represented as a
collection of cycles. The expectations in (2.4) then take the form I --- I?r for
some positive integers nq,...,n,,e;,...,e,, 1 <n; < --- <n, <m, satisfy-
ing the relation n,e, + -+ +n,e, = m. Ignoring O(1/n) terms, the mth
moment of n~'U, is

(2.5) YIn o Lren™™ Ya(iy gy) - a(ip, dn),

[m]

(2.4)

where [m] indicates that the first summation is over ni,...,n,,e;,...,e, as
before, and the second summation is over all the m-tuples of pairs
@Gy, gy, Jn) in which exactly m distinct integers appear, 1 <i, <
Jr < n for all k, and the graph of the m-tuple consists of e, cycles of order n,,
k=1,...,r.

The second summation can be simplified in the following way. Fix the graph
G (thatis, nq,...,n,,e;,...,e,), and note that the cycles and then the vertices
of G can be ordered so that the first n, vertices belong to the first cycle of
order n,, the second n, vertices belong to the second one (if e; > 1) and so,
forth; the last n, vertices make up the last cycle of order n,. Now consider the
sum

(2};) S(G,n) =n"" Y a(is, j1) " @(ipmsim)s

where the summation is over all sets of m distinct integers from 1 to n which
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appear in the summand in the way determined by this ordering of G. That is,
J1 =19, Js =135, =11 and so forth.

The m factors of the terms of S(G,n) may be permuted to form all the
terms of the second summation of (2.5). However, it is not correct to replace
this summation by m!S(G, n), for the terms obtained in this way are not
distinct. Each cycle of order & > 2 has a symmetry group of order 2k that
results in duplications; similar overrepresentation is made when & = 2. More-
over, cycles of the same order are indistinguishable in G but distinguished
when G is ordered to compute S(G, n); this results in overrepresentation by a
factor of e,!...e,!. Taking these factors into account, we find that (2.5)
becomes

1 Z (Inl/zn’l)e1 . (In,/znr)er

" T S(Gn).

(2.7)
[m]

We now observe that S(G,n) — wy! -+ wyr as n — . Simply replace w,
by n™™Xa(iy,iy) -+ ali,,i;) and so on, and expand the product. Those
terms which do not appear in S(G,n) are all products of the form
ma(iy, j) -+ ali,,, jn), Where the integers iy, j;,...,1,,/j, take on fewer
than m distinct values. There are O(n™ 1) of these terms, and thus their sum

has limit 0.
The limiting value of the mth moment of n~'U, has now been established:

(Inl 'll/znl)e1 e (Inrwnr/znr)er
e;! e,!

(2.8) B =

[m]

Next we note the formal relation

= Mo > Lw,
2.9 —t" = tk|.
(29) %:m!t exp[% 2% }
To see this, rearrange the right-hand side,
Ikwktk 2 & (Lw,/2k)
520y ol 50 - g2 1 5, 00
2 k=2 j=0 J

expand and then compare terms.

We show now that the cumulant generating function [in brackets on the
right-hand side of (2.9)] has positive radius of convergence; (2.10) then shows
that the moment generating function has as well, and as a consequence the
moments determine a distribution [Feller (1968)]. Clearly w;, < M*, where M
is a bound for a, and repeated application of the Schwarz 1nequa11ty gives the
relation I, < I¥ /2 Hence the series in (2.10) converge for ¢2 < 1/(M?2L,).

The final step in the proof is to remove the restriction that f is bounded.
Let X and Y be independent random variables with distribution F. We now
assume only that Ep(f%(X,Y)) is finite. Given a positive integer M, define a
“mollified kernel” f,,(x,y) by setting f,(x,y) = f(x,y) if |f(x,y)| <M and
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zero otherwise. Then define the projection onto its degenerate part:

Eu(x,y) = fyu(x,y) - EF( fu(x, Y)) - EF(fM(X,y)) + EF(fM(X’ Y))
Clearly, g,, is bounded and g,, - f a.e. as M — «. Now we write

n_l Za(iv J) f(Xi7 XJ) = Sn(gM) + Sn( f_ gM)
(2.11) =n"' La(i, /) eu(X;, X))
+n 7t Ya(i, J)(f - gu)(Xi, X;).

It is easy to show that the variance of S,(f — g,,) goes to zero uniformly in n
as M — », and for each M, we have proved that S,(g,,) tends to a limiting
distribution as n — «. It suffices then to show that for each k£ > 1, the
expectation

(2.12) (M) = Ep(gu( X1, X3) - gu( X, X))

tends to I, as M — ». The integrand of I,(M) converges to the integrand of
I, a.e., so the desired limit follows from the dominated convergence theorem if
the integrand can be shown to be dominated by an integrable function. To this
end, define -

(2.13)  F(x,y) =|f(%,9)| + Ep(| f(x,Y)]) + Ep(| f(X,5)]) + 1.
Clearly |g,,| < F for large M, so that the integrand of I,(M) is dominated by

(2.14) F(xy,x5) -+ F(xy, %),

which is integrable (again by the representation of Remark 1) if F? is
integrable. Verification of this last fact amounts to checking that E(|f(x, Y)I)
has finite variance. This completes the proof. O

ReMARK 1. The (unweighted) U-statistic is a special case, with w, = 1 for
all &, so Theorem 2.1 is valid for ordinary U-statistics as well. Indeed, the
formula follows from the expression for the characteristic function given in
Gregory (1977) and Serfling (1980) when the I, are related to the representa-
tion of f used there. Specifically we have f(x,y) = LA;¢,(x)¢,(y) for certain
functions ¢; which satisfy the relations Ep(¢,(X)¢(X)) =5,;. From this
representation it follows that I, = ¥A% The sums converge because, by hy-
pothesis, I, converges.

REMARK 2. From the formula for the cumulant generating function one
sees that the limit distribution is normal only if I,w, = 0 for all 2 > 2. This
never holds for the unweighted case, because the sums YA%* = I,, are positive.
However, normality can occur when a sequence of degenerate kernels is used,
by letting the support of the kernel shrink; see Jammalamadaka and Janson
(1986). ‘

ReMARK 3. The limiting distribution is symmetric iff all odd cumulants
vanish. For unweighted U-statistics, this is a condition on the kernel: the limit
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is symmetric iff the distribution of eigenvalues A; is symmetric about the
origin. For weighted U-statistics, symmetry may be a consequence of the
weights. For example, the weight function a(i, j) = 1 — (—1)**" yields limits
Wgp4q = 0 forall £ > 0.

REMARK 4. There is a canonical expression for (unweighted) U-statistics of
higher degree as the sum of a hierarchy of U-statistics having increasing
degree and decreasing variance; see for example Lee (1990). The asymptotic
behavior therefore depends only on the term with largest variance. Theorem
2.1 describes the limiting distribution if that term has degree 2. On the other
hand, the decomposition of weighted U-statistics does not in general give a
sequence with decreasing variance, so that these projections are less useful.
The next section provides an explicit example of this.

Theorem 2.1 is easily extended to U-statistics with randomly assigned
weights. If S is a set of positive integers, let G(S) = {a(i, j)li and j € S}. We
consider weights a(i, j) that are bounded random variables, independent of all
the X;, and with the additional independence condition: if S; and S, are
disjoint, then G(S,) and G(S,) are independent.

CorROLLARY 2.2. Let f, X; and U, be as in Theorem 2.1, and a(i, j) be as
before. Suppose that the limits

(2.15) @), = lim n™* Y E(a(iy, iz) "+ alis, i)

exist for k > 2 and that W, > 0. Then n~'U, converges in distribution to a
limit with kth cumulant (k — DI, W, /2.

Proor. In the expression for the mth moment of n~'U, in (2.4), replace
products of weights by the expectation of the product. The proof then proceeds
as in Theorem 2.1. The independence condition is needed to factor the
expectation of the product of weights into the product of the expectations over
the connected components of the graph of that product. O

As a simple example, take a(i, j) to be independent random variables with
means pu,; and variance o Suppose that o®=limn ?Y¢? exists and
n~'Lu,;; f(X,, X;) converges in distribution to a limit ¥ by Theorem 2.1; that
is, Wy, W, ... exist. A short calculation shows that W, = 0® + w, and @, = w,
for all £ > 2. Thus the cumulant generating function splits and the limiting
distribution of n~'U, is that of the sum of two independent random variables,
one with distribution N(0, I,02/2) and the other with distribution Y. For a

related result, see Janson (1984).

* 8. Nondegenerate kerneis. In this ‘section we suppose that f is a
nondegenerate kernel with zero mean and finite variance. The type of limiting
distribution of U, now depends on the weights. Recall that the projection of f
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onto its degenerate part f involves the conditional expectations A(x) =
E(f(x,Y)); specifically, f(x,y) = f(x,y) — h(x) — h(y). We can define a sim-
ilar conditional expectation for the weights for each n:

1 n
(381) n(n) =(ali, Mo = T atis )

[taking a(i,i) = 0]. Likewise we write (v*(n)), = n~'Lv?(n), and so forth.

In the proof of Theorem 2.1, it was found that the moments were deter-
mined by the expectations over cycles I, and w,. In the nondegenerate case we
will need the expectation of f over cycles,

(3.2) fkiEF(f(Xsz)fﬁ(Xz,XQ"' f(Xk’Xl)),
as well as expectations over ‘“‘chains,”

Jy = EF(h(Xl) f(Xp Xy) - f(Xk—z, Xk—l)h(Xk—l))’

(3.3) L . . o .
R = '}l_r)r;n k Za(lo,ll)a(’plz) o a(lpoglp_1)a(Tpo1,08)s

where the sums are taken over all (& + 1)-tuples of distinct integers from 1
to n.

THEOREM 3.1. Let f be a nondegenerate kernel with zero mean.

() If n{vX(n)), - =, then U, is asymptotically normal.
(i) If (vA(n)), is o(1/n), the limits wy, wy, ... all exist and wy > 0, then
n~'U, has the same limiting distribution as n™'L, _ ;a(i, j) f(X,, X;).

(iii) Suppose that the sums v (n) = n"Y2%a(i, j) are bounded [taking
a(i,i) = 0, so that {vi(n)), is O(1/n). If the limits w, and z, exist for k > 1
and z, > 0, then the sequence n™'U, tends to a limiting distribution with kth
cumulant (k — DT, w, + k!J,2,)/2; that is, with moment generating func-
tion

Lw,

1 o
(3.4) o(t) = exp[(—z—)kg2 (—k— + szk)tk]-

Proor. Using the definition of f, we have

(35) Y a(k)f(X;, X)) = L a(j k) f(X;, Xp) + n L h(X,)vi(n).

j<k j<k

The variance of the first sum on the right is O(n?), while that of the second is
0(n?) - n{vA(n)),. If n{(v2(n)), — =, then the second sum dominates and the
central limit theorem applies, but if (v3(n)), is o(1/n), the first sum domi-
nates and Theorem 2.1 applies. This establishes (i) and (ii).
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The proof of (iii) follows the pattern of the proof of Theorem 2.1 closely and
is only sketched here. We may assume that f is bounded and write

(86) n U, =n"' ¥ a(j,k)f(X;, X,) +n 2 L h(X;)v(n).
J<k

Begin by noting that in the expansion of ((n~'U,)™), boundedness of a and
v,(n) implies that the limit as n — « is determined by those terms in which
exactly m distinct integers appear as subscripts, each appearing exactly twice.
In particular, an even number of the m factors must be A’s. Each term can be
described graphically, with each factor of f represented by a vertex touching
two edges and each factor of A by a vertex touched by one edge. Each
connected component of each graph is either a cycle or a chain, and the
expectations therefore can be expressed as products of powers of I, and J,.
When expressing the graph in standard form with a standard ordering of the
vertices, one must note the symmetry group of a chain has order 2. The
formula for the moments, and hence for the cumulants, now follows as in
Theorem 2.1. Finally it is easily checked that the limiting distribution is
determined by the limits of the moments. This completes the proof. O

A simple example is provided by the weight function a(i, j) = (—1)**/, for
which (v*(n)), is O(1/n?) while each w, = 1. Thus from Theorem 3.1 it
follows that n~'Y(—1)"*f(X,, X;) has a nonnormal limit even if f is nonde-
generate.

On the other hand, suppose a(i, j) = e;e;, where (n + cVn)/2 of the e’s
are 1 and (n — ¢Vn)/2 are —1. Then (v*(n)), - c%/n and w, = 1, z, = c?
for all £ > 1. This gives an example where Theorem 3.1(iii) applies. This case
may be compared to Janson (1984) and to the ‘““surface charge” case in Lieb
and Lebowitz (1972).

4. Incomplete U-statistics. Incomplete U-statistics may be analyzed as
in Theorems 2.1 and 3.1, the main change being in the normalization constant.
Given a bounded weight function a(i, j), define N*(n)=X,_;. j 0%, J)
and let C(n) be the maximum number of nonzero weights in each collection
{a(i,1),...,a(i,n)}, as i ranges from 1 to n. Incomplete U-statistics are
computationally simpler than the full U-statistic to the extent that the connec-
tivity C(n) is small compared to n. For such a statistic the proper normalizing
factor is N(n) rather than n. The next theorem assumes that C(n) is O(n®)
for some a < 1; when a = 1 we are back to Theorem 2.1.

THEOREM 4.1. Letf, a, X; and U, be as in Theorem 2.1. Suppose there are
constants k, K and a, 0 < a < 1, such that 0 < kn'** < N%(n) and C(n) <
Kn®. Then N~Xn)U, is asymptotically normal with variance I,.

“PrROOF. As in Theorem 2.1, we may assume that f is bounded. In the
expansion of E((N~n)U,)™), consider all the nonzero terms with graphs
having exactly r connected components. (Since f is degenerate, we have
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r <m/2.) There are no more than n"C(n)™"" of these terms, which is
O(n"+2(m=m) On the other hand, N~"(n) is O(n~™1**/2) Since f and a
are bounded, the sum of all nonzero terms with graphs having exactly r
connected components is O(n"~™/21~®) Thys the only terms which con-
tribute to the limit are those with graphs consisting of two-cycles. The limiting
moments can now be found by counting as in Theorem 2.1: All odd moments
are zero and the even moments are '

2I,/4)™ 2m)!
(4.1) Mom = (2"7')!'(—%/!)_ = Izm%-

This completes the proof. O

When « = 0, this result is very similar to a theorem proved by Brown and
Kildea (1978), which is valid for both degenerate and nondegenerate kernels.
Theorem 4.1 is easily extended to nondegenerate kernels with positive a by
using the decomposition in (3.5).

5. Some weighting schemes. In this section we discuss some weighting
functions which are yseful in applications and for which the limits w, can be
computed easily.

Perhaps the most common example from physics is the following. Given a
bounded sequence of constants e, e, ..., define a(i, j) = e;e;. Since

1 k 1
n Taliyiy) - aliyi) =n* £ed - ef = (5 Eet] +0[ ),

we find that n~!'Xe? —» ¢ > 0 implies w, = c* for all £ > 1. Thus n~'U,/c
tends to the same limiting distribution as the (unweighted) U-statistic in the
degenerate kernel case. One has the same limit if the e, are independent
bounded random variables and n 'Y E(e?) — ¢ > 0.

Another useful weight function is one determined by “groups”. Let B =
(b,;) be a real symmetric s by s matrix, and let g: N - {1,..., s} be a “group
identity function.” Now we can define a weight function a where the weights
are determined by the groups

(5.1) a(isJ) = bgiy, g0

For example, if B is diagonal, then the only nonzero terms in U, are those for
which g(i) = g(j) (and thus U, is the sum of s independent parts.) Suppose
now that r(n) denotes the proportion of the integers in {1,...,n} which are
mapped by g into the ith group. If r(n) » r;, 1 <.i <s, then it is easy to
show that

s .S
(5:2) wy = )OREER ry, rikbi1i2bi2i3 bikil‘
=1 ip=1 .
Thus the cumulants in Theorem 2.1 are easily computed. For example, if B is
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diagonal, w, = Lr/b%, and the cumulant generating function is the sum of the
cumulant generating functions of the s independent groups.

The statement of Theorem 3.1 may also be modified in this special case. Let
r(n) = (r(n),...,r(n)) and suppose r(rn) — r as n — . (It is no restriction
to assume that no component of r is 0.) Then with nondegenerate kernel,
asymptotic normality holds when Br # 0, and the limit is nonnormal when
nBr(n) is bounded.

The assignment to groups may be made randomly. Suppose g(i) is a
sequence of iid random variables that take the value i with probability r,
1 < i < s. The independence hypothesis of Corollary 2.2 is satisfied, and it can
be shown without difficulty that

s

(5-3) wy, = Z Z ry, Ty tltzbizia bikil‘

i;=1 i=1

Given a symmetric Riemann-integrable function g: [0, 1]* > R, consider a
triangular scheme of weights, a,(i, j) = g(i/n, j/n). The proof of Theorem
2.1 is easily adapted to show convergence of the normalized weighted U-statis-
tic to a limit with cumulants (¢ — 1)!w, I, /2, where

wy= [ g(x1,%5) 0 g%, %) dry o dxy
[0,1]
Theorem 2.1 shows that the limiting distribution is the same as that of the
U-statistic n™'%; _ ;h(Z;, Z,) where Z, = (X,,Y;), the X; are as before and
the Y, are independent random Varlables unlformly dlstrlbuted over [0, 1], and
the kernel & is given by h((x,, y1), (x5, ¥5)) = 8(y1, ¥9) f(x4, x5). This distribu-
tion is in turn the same as that of a multiple Wiener integral, following Dynkin
and Mandelbaum (1983). It seems a plausible conjecture therefore that the
limiting distributions of weighted U-statistics of order greater than 2 may be
given by corresponding multiple Weiner integrals when the weights have this
special form.

Acknowledgment. We wish to thank an anonymous referee for suggest-
ing the conjecture in the last paragraph.
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