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EXISTENCE AND CONTINUITY OF OCCUPATION DENSITIES
OF STOCHASTIC INTEGRAL PROCESSES

By PETER IMKELLER
LMU Miinchen

Let f be a square-integrable function on the unit square. Assume that
the singular numbers (a,); < of the Hilbert—Schmidt operator associated
with f admit some 0 <a < % such that Y7_,la,|* < . We present a
purely stochastic method to investigate the occupation densities of the
Skorohod integral process U induced by f. It allows us to show that U
possesses continuous square-integrable occupation densities and obviously
generalizes beyond the second Wiener chaos.

1. Introduction. Integral processes related to Skorohod’s [Skorohod
(1975)] extension of the Itd integral of the Wiener process arise in a number of
situations, for example, in the study of stochastic integral equations with
boundary conditions which destroy the adaptedness of the solutions or in the
disguise of Stratonovitch integrals occurring in the context of flows of diffeo-
morphisms on manifolds [see Ocone and Pardoux (1989), Nualart and Pardoux
(1991, 1992), Donati-Martin (1991) and Buckdahn (1989)]. Although designed
for stochastic purposes, Skorohod’s integral owes its analytic accessibility
mainly to the fact that it can be seen as the adjoint of the Malliavin derivative.
Its stochastic calculus, developed in Nualart and Pardoux (1988), displays a
number of stochastically interesting results. For example, for a fairly large set
of integrands, Skorohod integral processes possess quadratic variations which
are given in the same way as for their It6 counterparts and consequently are
nontrivial. Although the oscillation strength of the samples, hidden behind
this statement, calls for the investigation of their occupation densities, the
stochastic calculus seems to be unable to present an equally obvious and
natural access thereto. Based on the observation that Gaussian processes like
Wiener’s possess simple spectral properties and consequently offer an easy
approach to their occupation densities via Fourier analysis, we tried an alter-
native method in Imkeller (1991, 1992). The Fourier transforms of occupation
measures were translated into purely analytical language and an integral
criterion for the existence of densities in terms of Fredholm’s theory was
derived. However, seen from the point of view of stochastics, this approach
suffered from the same disease as other investigations in the area: The access
via Malliavin’s derivative eventually puts more weight on purely analytical
notions and lacks stochastic intuition and flavor.
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In this article we present an approach to occupation densities of Skorohod
integral processes which is purely stochastic. For the sake of clarity and
brevity of the exposition of the main methods, we chose to confine our
attention to the second Wiener chaos again. It will become clear along the way
that it generalizes to larger parts of the Wiener space in a rather straightfor-
ward way. . .

To sketch the main ideas, we suppose that a Skorohod integral process U in
the second chaos is given. If U is induced by, say, a symmetric function
f € L0, 11?), there is an ONB (4,), ., of L2([0, 1)) such that we may describe
f and U in the following way:

f=Xah®h,
i=1

U, = i;ilai[fothi deolhi dw — [Oth%(s) ds],

t €[0,1], where W is the Wiener process. Now the body of the approach
consists in using the power of semimartingale theory and its description of
local times in Tanaka’s formula. The obvious problem one has to face from the
very beginning is the lack of adaptedness of U with respect to the natural
filtration (F,),c o 1; of W. Following an idea of It6 which was elaborated in a
series of papers [see Jeulin and Yor (1985)], one could, however, think of
making U a semimartingale by enlarging the Wiener filtration. Considering
the preceding description of U, the obvious idea is to augment each F, by the
whole information present in the random vector X = (a;[qh; dW); . But
this surplus of information destroys the property ‘‘bounded variation” of the
nonmartingale part in the decomposition of U with respect to the enlarged
filtration: It simply is too big to make U a semimartingale. On second thought,
U should be at least a semimartingale in its own natural filtration, but this is
barely accessible to analysis. Thus there is no appropriate filtration at hand in
which to study stochastic integrals and local times of U simultaneously.

The key observation of the method presented here starts with the following
question: Is it at all necessary to have stochastic integrals with respect to U
available in order to study its occupation densities? What if, just as long as we
compute occupation densities, we forget about the stochastic nature of X
altogether and replace it by a vector x = (x;);.n of simple real numbers
running in the range of its possible values? Instead of U we could consider the
processes

S(x) = é‘,l (xifolhi dw — aifo'h%(s.) ds),'

where x is an infinite-dimensional parameter running, say, in [,. These are
not, only Gaussian processes (with a deterministic drift), but also perfect
semimartingales, if only we assume that L7_,la;| < », that is, that f is of
trace class. At this point it becomes obvious that trace conditions form a
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natural barrier to the range of application of the method presented. In a first
step, we can use Tanaka’s formula to compute occupation densities L(x) of
S(x) rather easily. With these at hand, in the second step we would like to
substitute X(w) for x again, at least for almost all w. However, since for any x
the function L(x)w) is an occupation density of S(x)(w) only for almost all w,
we run into the problem of having to remove uncountably many 0-sets. But 7,
is a separable metric space. So if we knew that L(x) is continuous in x, we
might be allowed to remove only countably many 0-sets instead. Therefore our
problem boils down to proving a.s. sample continuity of L(x) in x. This would
be rather hopeless on all of [,, but, if (a;), . decreases ““rapidly enough,” we
can show that x may actually be assumed to be in a rather small totally
bounded subspace of [,, for which an infinite-dimensional generalization of
Kolmogorov’s continuity criterion [see Kono (1980) and Pisier (1980a, b)] for
stochastic processes is applicable. By ‘“‘rapidly enough” we mean that there
exists a number 0 < a < 3 such that ¥7_,la;|* < », but we do not attempt
here to tighten our arguments for obtaining optimal results.

Given this flow of ideas, the organization of this article is straightforward.

In Section 3 the beautiful theory of local times of semimartingales, as
presented in papers like Barlow and Yor (1981, 1982) and Azema and Yor
(1978), is applied to derive moment estimates for L(x) and S(x). These are
used to prove a.s. continuity on appropriate totally bounded subsets of I,

In Section 4, the results of Section 3 are related to Skorohod integral
processes mainly by finding a way to resubstitute X(w) for x a.s. In this
manner we obtain an existence result for occupation densities of Skorohod
integral processes subject to a trace condition (Theorem 3). From this point of
view it is not hard to figure out the a.s. continuity of the occupation densities
(Theorem 4).

It is most likely that the method of this article produces more general
results about existence and continuity of occupation densities in the following
three directions: for larger classes of integral processes in the second chaos
(fewer restrictions on the trace), for general Wiener space beyond the second
chaos and, especially, for solutions of stochastic integral equations with bound-
ary conditions.

2. Notation and preliminaries. We assume throughout that a basic
probability space (Q, F, P) is given on which a Wiener process W, indexed by
[0, 1], lives. Stochastic (Itd) integrals of adapted integrands u with respect to W
are denoted by [u dW, the quadratic variation of martingales M of the Wiener
process by [M]. u ® v is the product of two measures u,v. Occasionally, we
denote Lebesgue measure on the real line by A. For random variables on
(Q,F,P) as well as for functions on [0, 1], p-norms are abbreviated by the
same symbol, || - I|,. The space of all real-valued smooth functions on R with
compact support is denoted by ‘Cg(R). The tensor product f ® g of functions
f, g € L¥(0, 1]?) is the function (s, ¢) — f(s)g(¢) in L*(0, 1]?). Finally, I, is
the usual Hilbert space of square-summable sequences of real numbers.



OCCUPATION DENSITIES 1053

3. Occupation densities depending on a parameter. In this section
we consider the Gaussian field given by the stochastic integrals of determinis-
tic functions in L2([0, 1]) with respect to the Wiener process, drifted by some
deterministic function of bounded variation. More precisely, we suppose that V
is a continuous function of bounded variation |V|; on [0, 1]. For g € L2([0, 1)),
we let

(1) M(g) = [ 2(s) dW,,

(2) - S(g)=M(g) +V.
We know that, for any g, S(g) possesses an occupation density L(S(g),-)
which can be represented by Tanaka’s formula. For y € R, we have
1
(3) (819" =(=0)" = [Lise,>» d5(&)s + 7L(S(8),)

[see, for example, Azema and Yor (1978) and Barlow and Yor (1981)]. Since
S(g) is a semimartingale, we may decompose its stochastic integral appearing
in (8) and obtain the following formula, which is slightly more appropriate for
our purposes. For any y € R, we have

(S(8)1-y) —(—»)"
1 1
='/(;l{S(g)s>y)dM(g)s+/(;l{S(g)s>y)d‘,s+%L(S(g)ay)‘

The purpose of this section is to derive continuity results for the processes
(8,t) = S5(8)e

(4)

and
1
(&) = [ Liscor, >0 AVs + 3L(S(8),9)-

We will always tacitly assume that both of these processes are measurable in
all (three) variables and separable. This does not affect generality, since we
have continuity in probability at least, as follows from the subsequent moment
estimates, which are also used for establishing sample continuity a.s. This,
indeed, is the main subject of this section. We will work our way to the
appropriate refinement of Kolmogorov’s continuity criterion. In our case, we
obviously need a version for an infinite-dimensional parameter space, namely,
LA(0, 1]).

Estimates of the following type have been studied in a number of papers
[see Yor (1978) and Barlow and Yor (1981, 1982)]. Apart from a few minor
changes, we merely have to collect them. We start with the semimartingales.

PROPOSITION 1. There exists a constant ¢ such that for all p > 2 and
g, h € L¥0, 1)) we have

sup |S(g): = S(h).l

tel0,1] p

p
<cPp?/?lg — hl§.
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Proor. See Barlow and Yor [(1982), page 207] for the details. The essential
ideas involved are the following. First, one applies Doob’s maximal inequality.
This is followed by an estimate for the pth moments of the modulus of a
Gaussian random variable. This way the order of magnitude of the constant
pP/? is produced, which seems to be optimal. O

Given an orthonormal basis & = (h); . of L?([0, 1)), I, is isomorphic with
L2([0, 1)) via the isometry

i:1, > L*([0,1]),

x> Y xh;.
i=1
We will use this well-known fact to transcribe the result of Proposition 1 into
the language of /,. Doing this, we make no explicit reference to the orthonor-
mal basis given, but always assume it to be fixed. Keeping this in mind, we use
the abbreviating notation

M(x) =M(i(x)), S(x)=8(i(x)), x¢&l,.

PrOPOSITION 2. There exists a constant ¢ such that for all p > 2 and
x,x' € l, we have

b
< cPpP2llx — x'lIf.

sup |S(x), — S(x'),l

te[0,1] p
Proor. This is immediate from Proposition 1. O

We now turn to the corresponding inequalities for the parametrized occupa-
tion densities. To abbreviate, we denote

K:L*([0,1]) xR x Q - R,
1
(8:9,0) = [ Lsio,mron @Y + 3L(S(8),7)(w).
We first fix g € L%([0, 1)) and compare K for different arguments in R.

ProposITION 3. There exists a constant ¢ such that for all p > 2, g €
L*(0,1]) and y, z € R we have

IK(g,5,") — K(&,2, )5 <cPp™/4{ly — 2P + [lgllz + VI, ]2y — 2IP/%).

Proor. The stochastic integral part of K is treated in Barlow and Yor
[(1982), page 212]. Indeed, if for y € R and ¢ € [0, 1] we set

¢
X} = fol(s(g)s>y) dM(g)s,
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we obtain, with a universal constant a,
I1X7 = X515 < arp® /4y — 2Pl M()]1* + IVIulI5/3.
However, obviously,
[M(g)], = llgls,
)
I1X7 — X315 < a?p®/4ly — 2P/ *[llgllz + V11172
Moreover, trivially,
(S(8)1 =) =(=3) "= (8(g)1—2) +(-2) "I s 2ly - 2.
Hence the desired inequality follows from (4). O

We next fix y and compare K for two different arguments in L2([0, 1]). This
time Barlow and Yor [(1982), page 218] do not give an explicit order of
magnitude estimate for the universal constants in the norm inequalities
derived, but their paper contains enough information to track down such an
estimate. For this reason we have to go into some details of the proof.

ProOPOSITION 4. There exists a constant ¢ such that for allp > 2, y € R and
g, h € L¥(0, 1)) we have

”K(g’y’ ) - K(h’y’ )”g
< c2p?{llg — Rl + [(llgllz + IVI)** + (IRlls + [VI)™*]llg — RI5"2).

Proor. This time, for g € L%(0, 1)), t € [0, 1], the stochastic integral part
‘is denoted by

t
Xf = fol(S(g>s>y> dM(g),.

The key estimate in the proof of Lemma 6.3 of Barlow and Yor [(1982), page
218] yields

p

1
1xE = X0 5 2| 0,0 A0 - 00,

p

+

i

1
fo (Liscer, >y — Liscny,>y) AM(h)s
(5) X
< 2”[c{’p"/zllg ~ hig

+IL*(S(h))IIF"*

sup |S(g): — S(h),l
tefo,1]

p/2
b
2
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where
L*(S(h)) = sugL(S(h),y),
e
and ¢, is universal. Now Corollary (5.2.2) of Barlow and Yor (1982) gives an
order of magnitude for the p-norm of L*(S(h)). More precisely, there are

constants c,, c3, ¢, such that for p > 2 and h € L%([0, 1]) we have

p/2
sup IM(h),| + V]

IL*(S (k)" < cg/?pP/?

t€[0,1] p
/2 2
tel0,1]
< c§/%p /2 /2 cp 2pP /4| RIIE/ + (lvll)””]

< C§p3p/4[||h||2 + |V|1]p/2-

The third inequality hereby follows from Barlow and Yor [(1982), page 207]. To
estimate the second factor in the last line of (5), we have to apply Proposition
1. This and (6), used in (5), yield the desired estimate for the stochastic
integral part of K. The remaining part is treated by noting that

(8(8)1 =) " ~(S(h)1 —9) | <1S(g)1 - S(h)
and by applying Proposition 1. O
We now combine the preceding two propositions.

ProPOSITION 5. There exists a constant ¢ such that for all p > 2, all
¥,z € R and all g, h € L*(0, 1)) we have

IK(g,5,) = K(h,z,)l}

< cmpP{ly = 2P + (gl + IV1))" Ay = 2IP/* + g — Allg

+[Uglls + V1) + (IRl + 1VI??]llg - RI572).

Proor. Combine Propositions 3 and 4. O

Fixing an orthonormal basis (h;);y of LZ(0, 1D as before, we finally
transfer the result of Propos1t10n 5 to 12 For less complex notation, we use the

abbrev1at10n
J:l, XRX Q- R,

(x,y,w) » K(i(x),y,®).
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ProPOSITION 6. There exists a constant c such that for all p > 2, x,x' € I,
and y,z € R we have

”J(xay’ ) - J(x,’ 2, )”z

2
< cp?{ly — 2P + (lalls + V1) Ay — 2P/ + llx - x'l15

#[lellz + V12 + ('l + VIl - 2'1872).

Proor. This is immediate from Proposition 5 and the isometry property
of i. O

On bounded subsets of /,, the inequalities of Propositions 1 and 6 combine
to give the following exponential inequalities.

ProPOSITION 7. There exist constants cy, ¢, such that for all x, x' € I,

[Supte[o,l]ls(x)t —8(x"),l r)
exp <c.

E
collx — x'll2

ProoF. Let ¢ be the constant given by Proposition 1. Choose c, > cV2e
and let

, 2
[sup; e (o, yS (%), = S(a"),l||50
(esllx = x'llz) ™

x,x" € ly, p = 1. Then according to Proposition 1 we have

ap(x,x') =

)

0 ! oo 2 p
a,(x,x c
DGR G )
P=1 p' p=0 02 p‘

x,x' € l,. However, the last series is summable by choice of c,, as can be seen
from the quotient criterion for convergence of series. This completes the
proof. O

PrOPOSITION 8. Forr >0 let K, = {x €l |lxlls < 1},
d,((%,5),(x,2)) =cofly —zl + ly — 21" + llx = 2'llz + llx — «'[15/?)

with ¢y = [1 + 2(r + |V[1)*?]ce + 1, where c is the constant given by Proposi-
tion 6. There exists a constant ¢, such that for all y,z € R and x,x' € K, we

havfe .
) B |J(x,y,-)—J(x’,z,-)| <
T (. () |5
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Proor. By definition of d, and elementary inequalities, Proposition 6
gives

(223, ) = (2, 2 < ( —) pP2P(r + V1), ((2,9), (', 2))"

for x,x' € K, and y, z € R. Hence we may define
”J(x’yy ) - J(x,,z, )”Z
d.((%,9),(x,2))"

x,x' €K,, y,2 €R, p>2, and proceed as in the preceding proof, using the
definition of ¢,. O

a,(x,x',y,2) =

b

Our next aim is to draw conclusions from the preceding propositions
concerning the a.s. continuity of the mappings

(x,t) = M(x),,
(x,9) = J(x,9,°).

It would be unrealistic to hope for continuity on the whole infinite-dimensional
space /,. Not being totally bounded, even the sets K, of Proposition 8 are still
too big. Yet, on totally bounded subsets of [, we might be more lucky. Indeed,
a generalization of Kolmogorov’s continuity criterion due to Kono (1980) and
Pisier (1980a, b), refinements of which are given in Talagrand (1990), claims
that the existence of a continuous version follows from a growth condition
concerning the minimal number N(e) of balls of radius ¢ needed to cover the
parameter space. We will therefore have to fix small enough subsets of I, as
the parameter space and give good enough estimates of N(g). Since we will
have to work with different metrics on [,, we have to state clearly which one
we actually refer to. This leads to the following notation with, unfortunately,
two indices. For a totally bounded metric space (X, d), ¢ > 0, we let NX%(¢)
be the minimal number of d-balls of radius ¢ needed to cover X. The following
auxiliary results are elementary.

ProrosiTioN 9. Let (X,d) and (X', d’) be totally bounded metric spaces.
Assume that Y = X X X' is endowed with metrics a and b such that

a((x,x),(y,5)) <d(x,y) +d'(x',y),
b((x,2'),(y,9")) <d(x,y) vd(x,y).
Then for € > 0,

Y,a ' X,d i) X',d'(i)
NYe(g) <N (2 N¥( ),

NY’b(e) < NX’d(e‘) NX"d'(s).
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Proor. We justify the first assertion, the second one being analogous. Let
K, (x) and K, (x') be balls of radius ¢/2 in X, X' centered at x,x’
belonging to respective covers of X, X'. Then

K.((x,2) ={(5,¥) € Yia((x,%),(5,¥)) <&}

is a ball of radius ¢ in Y centered at (x, x') which contains K, ,(x) X K, ,5(x')
and consequently belongs to a cover of Y. Hence Y can be covered by
NX (g /2)NX 4 (¢ /2) balls of radius ¢ with respect to the metric a. This
implies the first assertion. O

ProposiTiON 10. Let (X,d) be a totally bounded metric space and b o
metric on X such that there exists a constant c satisfying

b(x,y) <cd(x,y),
x,y € X. Then for ¢ > 0 we have
N%b(g) < N¥4(c ).

Proor. By hypothesis, any d-ball of radius ¢~ '¢ is contained in a b-ball of

radius e. Hence there exists a cover of X by N*%(c~¢) b-balls of radius e.
This implies the asserted inequality. O

Equipped with only these elementary inequalities we will now deduce the
key statement about the growth properties of N(¢) as ¢ | 0. Whenever it is
clear which metric space we are dealing with, the index X,d will be sup-
pressed. For a sequence b = (b,); . in [, of positive numbers we let, in the
sequel,

B, ={x€l, x| <b, forieN}.

ProPOSITION 11. Let b = (b,);cn be a decreasing sequence of positive
numbers such that for some a < 2 we have

0
Y ¥ <.
i-1

Assume that B, is endowed with a metric d such that (B,,d) is totally
bounded and such that for some ¢ > 0,

d(x,x') =cllx — x'|13?
for all x, x' € B, satisfying |lx = x'llz < 1. Then the function
e = In(N(e) +1)

is integrable on [0, 1].
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Proor. For B > 0 we let ¢z = £7_;b’. This number may be infinite. Upon
eventually replacing the metric d by the metric ¢~ 'd and looking at Proposi-
tion 10, we may and do assume ¢ = 1. For j € N we let

Z;={x € By: x;, = 0 for i # j},

X, ={x €By:x;=0fori>j},

X ={x €By:x,=0fori<j}.
On all of these spaces, we consider two metrics. The first is the restriction of
d, the second the restriction of

d(x,y) = suplx; — y,I'/%,
ieN

x,y € l,. All these restrictions are denoted by the same symbols. Instead of

NBvd(¢) we briefly write N(¢), ¢ > 0. It is plain that for i € N the interval
[—b,, b;] can be covered by at most

d_-balls of radius ¢. Hence for j € N we have
€

v <

E E
< sy s
B CAR Y S

Y € . (€
I__[Nzi’d“’(j_l/4 —)NXJ"d(—)
i=1 2 2

J (8b,j1/? €

27 el )
LI=_[1 ( &? B

For the first and third inequalities, we have used Proposition 9, whereas the

second is justified by Proposition 10 and the obvious inequality

d(x,x") <jY*d(x,x")

for x, x" € X;. Now for ¢ > 0 let us choose

IA

V1

IA

et
j = min{i € N: b8/5 <« — 1},
Jj(€) mm{z Cy/5b; 16}

Since b converges to 0, j(e) exists. Now let x € X ,,. Then

1/4 . 1/4 1/4 £
d(x,0) = (_inz) < (Zbiz) < (eopsbi3) " < 3

i>j i>j

since b is decreasing. Hence X, is contained in a ball of radius /2 centered
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at 0 and consequently

(7) N% <»>d(2)=1.

Let us next estimate j(¢). For this purpose let y < 1 be big enough to ensure
Cgy 5 < ©. Then, by definition,

e by A
(J(e) — 1)(5) <X cg/5biSY/5 < ¢§/5Cgy /55
i=1

hence

2\
(8) Jje) <1+ cg/5c87/5(;) .
Now (7) and (8) imply that for 0 <& < 1,

1
In(N(¢)) sj(e)[ln(Sbl) + 5lnj(e) — 2In e]

<a, *In—,
&

with a real constant a., depending only on y. But since y < 1, ¢ = In N(¢) is
integrable on [0, 1]. This implies the assertion, since N(¢) > 1 always. O

Whereas Proposition 11 is appropriate for dealing with the process J, the
following proposition will be used for N.

ProposiTioN 12. Let b = (b;),c be a decreasing sequence of positive
numbers such that for some o < 1 we have

M

b < oo

i=1

Assume B, is endowed with a metric d which is equivalent to a constant
multiple of the metric induced by the ly-norm. Then the function

e~ [In(N(e) + 1)]'/?
is integrable on [0, 1].

Proor. We have to work with the metrics d% and d2 instead of d and d_
in the proof of Proposition 11. This yields the estimate

J [ 4b,jY?
N(e) < 1‘[( d l)NXf’d(g).
—\
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This time, for £ > 0, we choose
2
Jj(e) = min{i € N:¢yd; < Z}
Then, accordingly,
. £
NX’(e)’d(__) =1
"2
and
2y
J(g) <1+ c{cy(—) )
£
where y < 1 is chosen big enough to make c, < «. Hence
1 1/2
[In N(&)]V? < aye_“/(ln —)
£

with a constant a., depending only on vy. This obviously implies the asserted
integrability. O

As corollaries of the preceding propositions we obtain the following continu-
ity results.

THEOREM 1. Let b = (b,),;c be a decreasing sequence of positive numbers
such that for some a < £ we have

s

bff < oo,

i=1

Then J, restricted to B, X R X (), possesses a version which is continuous.

Proor. First of all, choose r large enough to ensure K, D B,. Then
Proposition 8 states that there exists a constant ¢, and a metric d, on K, X R
for which B, X I is totally bounded, if I is a bounded interval in R, and which,
in range 1, is equivalent to a constant multiple of the metric induced by
Il- 1152 + | - "%, such that for all ¥,z € R and x,x' € B, we have

E(ex [lJ(x,y, ) = Izl ” <c
Pl a ((my), (x,2) | =

Since it is enough to prove continuity on B, X I for compact intervals I, we
may even suppose that the “space’ variable is an additional variable in [,. In
this situation, according to Kono’s theorem [Kono (1980)], in the version of
Talagrand [(1990), page 2], continuity of a version of J, restricted to B, X (,
will follow if we can establish that

e = In(N(e) + 1)

is integrable on [0, D], where D is the diameter of B,. However, since B, is
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totally bounded for d,, this follows from 1nteg'rab1hty on [0,1], which is
established in Proposition 11. 0O

THEOREM 2. Let b = (b,), . be a decreasing sequence of positive numbers
such that for some a < 1 we have

Yo
i=1

Then
X [0,1] X Q 3 (x,t,w) = S(x),(w) €R

possesses a continuous version.

Proor. For this application we actually consider a version of Kono’s
theorem for vector-valued processes, namely, the process

B, X Q5 (x,0) » S(x).(0) € C([0,1]).

The topology on C([0, 1]), the space of all continuous functions on the unit
interval, is induced by the sup-norm. It is easy to see that Kono’s theorem [see
Kono (1980), pages 203-205] extends to this situation. We may now proceed
exactly as in the preceding proof, using Propositions 7 and 12 instead of
Propositions 8 and 11. O

The preceding two theorems provide enough information for what we are
really up to: the study of occupation densities of integral processes with
nonadapted integrands.

4. Occupation densities for integral processes in the second chaos.
We may summarize the main result of the preceding section in the following
statement: The occupation densities of the process

S(x) = fo g:lxihi(s) dw, - v

are continuous in all variables, if x varies in a sufficiently small totally
bounded subset of /,. How is the main subject of interest of our investigation,
namely, Skorohod integral processes, related to processes of this kind? To see
this, let us suppose that our integral process is in the second Wiener chaos and
is induced by some f € L*(0, 1%). For simplicity, just in the following exposi-
tion of ideas, assume f to be symmetric. Let a = (a,); ., be the family of
eigenvalues of the Hilbert—-Schmidt operator associated with f, of decreasing
absolute value and counting multiplicities, and let (%, )i en be the correspond-
ing ONB of L0, 1]). Then

w

f= Y ah, ®h,
i=1

[see Weidmann (1980), page 166]. Its Skorohod integral process U can then be
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described in the following way. Let

u= Y a;h;[ h;dW.
0

i=1
Then

s

U= Y q, fo'h,.dwfolhidW—fO'h%dA)

i=1

is the integral process of u. Now let
V= Ya,[ Kidx.
i=1 "0

Only if we suppose that f is of trace class, V will be a deterministic process of
bounded variation such that

V], = Z |ai|~

i=1

In this case, if we set

X(o) = (af heaW)|

ieN

w € ), we have

M(X) = .;ilaifo.hideolhidW;

80, in the terminology of Section 3,
(9) S(X)="U.

It now becomes obvious that there is a relationship between the local times of
the family (S(x)), <;, and the occupation density of U.

In this section, we make this relationship precise and, in particular, show
that the continuity of the local times of S(x) in x implies the existence of an
occupation density of U. Of course, we have to pay a price: In the preceding
section we have seen that the local times of S(x) vary continuously only if x
belongs to some set of the type B,. Via (9), we first show that U(w) has an
occupation density if X(w) € B, ,1-s for some vy, 8 > 0. This of course imposes
a condition on the eigenvalues which goes beyond the pure existence of a trace.
We assume that there is a positive number a < % such that

Y la,* < .
i=1
Under this hypothesis we are also able to prove a.s. continuity of the occupa-

tion density.
We have not made any attempt either to optimize the growth condition on a
or to generalize the results to the whole Wiener space. However, it is evident
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how to attempt a number of improvements of the results. For example, the
orders of magnitude of the constants c, in the martingale inequalities of
Section 3, in particular that of Proposition 4, may not be optimal. Improving
their values might lead to better exponential inequalities for J and conse-
quently to larger subspaces of /, on which continuity of the local times of S(x)
holds. Also, the inequalities used in the proof of Proposition 11, as well as
those of Proposition 14, seem to be susceptible to some improvements. Given
the nature of the proposed method, to go beyond the second chaos, moreover,
seems to be a rather straightforward procedure.

The assumption that f be symmetric was only for the sake of simplicity in
the preceding arguments. From now on we will work with arbitrary fe
L*(0,1]%). In this general situation we let a = (a;);, 5 be the sequence of
“singular numbers’’ of f, that is, the eigenvalues of the absolute value of the
Hilbert—Schmidt operator associated with f, taken in the order of decreasing
modulus. The absolute value figures, for example, in the polar decomposition
of an operator. It is well known that there exist orthonormal bases (4,); <y
and (g,); cn of L%(0, 1)) such that

f=Yah og
i=1

[see Weidmann (1980), page 170]. As a minimal assumption, we suppose that f
is of trace class, that is, that

and its integral process
o . 1 .
U= A h,dW| g, dW— | h; id)t).
T [l v~ [[n

Finally, we let

Then V is of bounded variation and
V= Y la,l.
i=1

Let us first conclude from the main results of the preceding section that
S(x) possesses continuous occupation densities “uniformly” on B,.
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ProOPOSITION 13. Let b = (b,);.n be a decreasing sequence of positive
numbers such that for some a < 2 we have

0
Y b < oo,
i=1

Then for almost all o € Q the following two statements are true:

() For all x € By,

1
Z(J(x, @) = fo Ls@yw > 4Ys

is an occupation density of S(x)w).
(i) J(x, -, w) is continuous for all x € B,.

Proor. Theorem 1 allows us to choose a set ;. C Q such that
P(Q,) = 1
and such that for 0 € Q
J(*, " ,w) restricted to B, X R

is continuous. Hence (ii) holds for w € Q ;.. Now B, is a separable set in /,

with respect to the metric induced by | - li”%. Choose a countable dense
sequence (x"), cn in B, and for each n € N choose a set 1, C () such that
P(Q,)=1

and such that for o € Q,, we have that

2(J(x",- L) — f011<s<xn>s(w>>-; st)
is an occupation density of S(x")w). Tanaka’s formula (4) allows us to do so.
Finally, choose a set Q. € Q such that
P(Qy) =1
and such that for all w € Q,,
[0,1] X B, 2 (t,x) = S(x):(w)
is continuous. This is justified by Theorem 2. Now define

QO = QJc N n Qn N ‘Q’Nc"

nen
Then
P(Q,) = 1.
To prove that (i) holds for all w € Q, we have to show that for all x € B, and
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¢ € C(R) the following is true:

[Rd)(z)J(x, z,w)dz
= [#0) [ N> Ve + [[H(S(3)(0))u(2)" ds

= [[0(S8(2).(0)) Y, + ['6(S(x).(@))uy(x)" ds,
where
W) = [ o) dy, u() = Lok
z€ Rand y € l,. Since w € Q,, for all n € N we have
[s@I @,z 0)dz = [ Y(S (M) dV, + f "B(S(x")s(w)u (2™ ds,

n € N. Now choose a subsequence (y"), <y of (x"), cn such that y" — x for
n — o, It is then sufficient to prove the following three statements:

(10) fRd)(z)J(x”,z,w) dz - fRd)(z)J(x,z,w)dz,
(11) Lo(SGm).(0)) Y, > ["6(S(x).(w)) 4,

(12)  [lo(SGM) (o), (r) ds = ['9(S(e)u(w) ()" do,

as n — ., Since w € Q,, (10) is a consequence of dominated convergence.
Since w € (1, we have

P(S(")s(@)) = ¢(S(x).(@)),
(S(™)s(@)) = d(S(x)s())

as n — o, boundedly. Hence (11) follows again from dominated convergence.
Moreover,

u(y") = u(x) in L2([0,1])
as n — . Hence (12) follows from convergence in L*([0, 1]). This completes
the proof. O

We now consider the random vector
X = (Xz) ieN?

‘where

X; = aifol‘gi aw,
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i € N. We want to show that the possible values X takes are essentially
contained in sets of the type B,.

PRrOPOSITION 14. Suppose that for some 0 <8 < 1 such that 26 <1 — 9
we have

i '28
Then there exists an increasing sequence of sets (A,), <y in F such that
(i) P(A,)—1 forn — o,
(ii) X(w) €B

n e N.

nlalt=? for w EAn,

Proor. For i € N let
Y; = la,l" [ g dW.
0
Then we have

0

B(swpY?) < TE(Y?) = Tlaf” <,

ieN i=1 i=1
since, for i € N, [4g; dW is a Gaussian unit variable. Now let
A = {wEQ: suplY;(w)l sn}, n e N.
ieN

Then (A,), < is obviously increasing in F and

1

P(A) < —2E(squ,~2) 50

n ieN

as n — o, This implies (i). Now let ® € A,,. Then for i € N,

1X,( )| = la;I*™ ' .dW(w)I

- 1-6
= la,I' IV (w)l < la,'°n.

This implies (ii) and finishes the proof. O

A combination of Propositions 13 and 14 yields existence of occupation
densities for U on the sets A, as we now show.

PROPOSITION 15. Suppose that for some a < + we have

la,[* < oo

™s

i=1

Forn € N let A, be according to Proposition 14, chosen for 8 = a /2. Then for
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almost all v € A, the following two statements are true:

. 1
(i) Z(J(X(w), ) — fo 1(S(X(w))s(w)>‘)d‘/s

is an occupation density of U(w).
(i) J(X(w), - , ) is continuous.

ProOF. Proposition 14 implies that for o € A, we have
X(w) (S Bnlall—a/Z.
Now, since a < 3, 1 — a/2 > ¢. Hence there exists some g < 2 satisfying
Z ,ai,(l—a/2)l3 < o,

i=1

l1-a/2

Now we apply Proposition 13 to b, = nla;l , i € N. It implies that

1
2(J(x,' , @) — '[0 l(S(x)S(w)>»)st
is an occupation density of S(x)(w) for all x € B, ,1-«, and that J(x, -, w) is

continuous for all x € B, ;1-«2. For almost all @ € A,, we may therefore
substitute X(w) for x in order to obtain the desired conclusion. O

Proposition 15 enables us to state our first main result.

THEOREM 3. Suppose that for some a < %, we have X5_,la;|* < ». Then for
almost all w € Q, U(w) possesses an occupation density which is given by

i
Z(J(X(w), : ,w) - ](; 1(Us(w)> 3 st),
and such that J(X(w), + , w) is continuous.
PrOOF. According to Proposition 15, to fulfill the requirements of the
assertion, we only have to remove a 0-set from each A, . On the other hand,

Proposition 14 states that U, nA,, is a 1-set. This yields the result. O

Concerning the a.s. continuity of the occupation density of U, Theorem 3
only leaves one question open: Is

1
y= [ Lo dv
continuous a.s.?
PROPOSITION 16. For almost all o € ) the mapping

1
y - fo L >y 4Vs

is continuous.
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Proor. We assume in the following proof that f is continuous. It is easy
to generalize to arbitrary f, given its basis description. We first prove that the
signed measure dV, is absolutely continuous with respect to the measure
u%(w) ds for almost all w € Q. Now note that

dV,=f(s,s)ds
and '
1 2
u¥(w)ds = (fo f(s,u)qu(w)) ds.
Hence it is enough to show
A® P({(s,w): £(5,5) # 0, [f(s,u) dW,(0) = o}) - 0.
0

According to Fubini’s theorem, the expression on the left-hand side equals

1 1
P ’ qu=01 S, s d’
fo (fof(s “) )m,)#m $

but this expression vanishes, since for s € [0, 1] the random variable

folf(s, w) dW,

is Gaussian with variance [ f(s,u)?®du, which is nontrivial a.e. on the set
{f(s, s) # 0}. This proves absolute continuity. Now observe that, for all € Q
for which both absolute continuity holds and U(w) possesses an occupation
density, we have

1
fo Ly wy-»n AV =0
for all y € R, since
1
fo Ly )=y i(@) ds = 0
for all y € R. This completes the proof. O

Theorem 3 and Proposition 16 together yield the second main result of the
paper on continuity of occupation densities.

THEOREM 4. Suppose that for some a < %, we have X3_,la;|* < . Then for
almost all w € Q, U(w) possesses a continuous occupation density.

Proor. Combine Theorem 3 and Proposition 16. o

REMARK 1. We do not know whether the orders of magnitude of the
constants in the L7”-inequalities taken from Barlow and Yor (1982) are opti-
mal. Optimizing these estimates would lead to a better modulus of continuity
for the processes and consequently to a betfer estimate for the number N(¢) in
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Proposition 7. This in turn could allow for bigger subspaces of /, than the B,
and consequently enlarge the class of f < L%(0,1]%) for whose associated
integral processes occupation densities exist. We have not tried to make these
conjectures precise.

ReMARK 2. The proof of Proposition 13 by no means depends on the
independent random variables it is applied to. This is not the only source of
hope that the method developed here and exemplified in the case of the second
Wiener chaos leads to much more general results. We conjecture that at least it
can be transferred to any Skorohod integral process generated by finitely many
chaos with additional restrictions concerning the trace of the Malliavin deriva-
tive Du of the integrand u. More precisely, suppose u is a Skorohod inte-
grable process not necessarily in the second chaos with integral process U, and
let (h,), <, be an arbitrary ONB of L%(0, 1]). In a first step one would describe
U under assumptions concerning the trace of Du as £5_; [qu, h(s)ds[ih; dW
plus a trace term. In the next step, the [,-valued random variable X =
(Jdu, h(s)ds, i € N) would be introduced and replaced by a “parameter”
x € l,. Now a new problem arises, due to the random nature of the trace term.
One possibility to solve it could consist in parametrizing randomness in it in
the step made before. In a final step one would have to make assumptions on u
to ensure that X is a.s. in a countable union of sets of the form B, with b as
in Proposition 11. This should lead to a construction of occupation densities
of U.

REMARK 3. The approach of this article can also be applied to yield results
on occupation densities of solutions of stochastic integral equations, for exam-
ple, with boundary conditions [see Nualart and Pardoux (1991, 1992), Ocone
and Pardoux (1989) and Donati-Martin (1991)]. The proof of this statement is
deferred to a forthcoming paper.

REMARK 4. In the same way as Theorem 3 was deduced from Theorem 1,
we could have obtained a continuity result for the process U = S(X), based on
the method presented, under certain trace conditions. These trace conditions,
however, turn out to be unnecessarily restrictive, considering the continuity
results for Skorohod integral processes figuring in Nualart and Pardoux
(1988). This fact is by no means surprising and indicates that one of the main
aspects of our method, namely, to forget completely about the stochastic
nature of the random variables [Jg; dW, i € N, and their mutual interactions,
may prohibit obtaining optimal results in specific situations. We conjecture
that our existence and continuity results, even for occupatlon densities in the.
second chaos, can be essentially improved.
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