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AN INVERSION OF STRASSEN’S LAW OF THE ITERATED
LOGARITHM FOR SMALL TIME

By NiNA GANTERT

Universitdt Bonn

We prove a local version of Strassen’s law of the iterated logarithm.
Instead of shrinking larger and larger pieces of a Brownian path and letting
time go to infinity, we look at a sequence of functions we get by blowing up
smaller and smaller pieces and we investigate the asymptotic behaviour of
this sequence as time goes to zero. It turns out that this sequence of
functions is a relatively compact subset of C[0, 1] with probability 1, and
the set of its limit points is the same as in Strassen’s theorem.

Let (X(¢)),., be a real-valued Brownian motion on a probability space
(Q, o7, P) with X, = 0. For n > 3, let

= X(nt)
6n(?) = V2nloglogn’

(¢,), -5 € C[0,1] is a sequence of functions we get from the Brownian path,
rescaling larger and larger pieces to the unit interval. The asymptotic be-
haviour of (¢£,), .3 can be described as follows. Let C[0, 1] be equipped with
the supremum norm || f|l = sup, ., .,|f()]. Let H be the space of ¢ € C[0, 1]
with the property that () = [{y(s)ds, 0 < ¢ < 1, for some ¢ € L*(0, 1]) and

set [yl = ”l!f”LZ([o, 1 for ¢ € H. Set
= {¢ € Hllyllg < 1}.

Strassen’s law of the iterated logarithm tells us that {¢,ln > 3} is relatlvely
compact in C[0, 1] with probability 1 and the set of its limit points is K. In
particular, for every continuous function F: C[0, 1] —» R, we have

0<t<l1.

P|limsupF(¢,) = sup F(¢)
veK

n—w

Taking F(X) = X(1), Strassen’s theorem yields the usual law of the iterated

logarithm,
X(n)
P|limsup ——————=1( = 1.

n—oo ‘/2n ].Og].Ogn
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1046 N. GANTERT

It is well known that there is a local law of the iterated logarithm, too:
X(1/n)

P| lim sup =1|=1.
. now V(2/n)loglogn

Therefore, the following question comes to mind: Is it possible to give a local
version of Strassen’s functional limit theorem, that is, to blow up small pieces
of the path instead of shrinking large pieces to the unit interval? In analogy to
Strassen’s theorem, we can state:

THEOREM 1. For n > 3, define
X(t/n)
fl/n(t) = ’ 0<
V(2/n)loglog n

K = {¢ € Hlllyllg < 1}.

Then, for P-almost every X, the sequence {¢,,,},_3 has the following proper-
ties:

and set

() {&,,,),-5 is relatively compact in C[0,1] and every limit point is an
element of K. .
(i) For every ¢ € K there is a subsequence of {¢,,,},_5 which converges

to .
In particular, for every continuous F: C[0,1] —» R, we have

P|limsupF(¢,,,) = supF(y)| = 1.
n-—o yeK

As an application of Theorem 1, we get statements about the asymptotic
behaviour of Brownian increments in small time.

Strassen’s law can be proved as an application of Schilder’s theorem on
large deviations for a Brownian motion with small variance. This goes back to
Stroock and Varadhan (1972); see also Stroock (1984). It is possible to give a
proof of Theorem 1 along the same lines, but, as Stroock pointed out to me, it
can also be derived directly from an extension of Strassen’s theorem ‘“for the
whole time axis” [cf. Theorem 1.4.1 in Deuschel and Stroock (1989)]. We now
give a proof in this second way.

Let © := {0 € C([0,); R?)[6(0) = 0 and lim,_ (|6(z)|/t) = 0}. For 6 € ©
define [|0|| := sup, . ,(16(2)| /(1 + ¢)). Then (O, | - |l¢) is a separable real Banach
space. Let H' = H'([0,); R?) be the space of ¢ € ® with the property that
Y(t) = [s4(s)ds, t =0, for some ¢ € L%([0, ); R?) and set |[yllg =
il 2go, y;mey for ¢ € H'. Let P denote Wiener measure on ©. Then the
following form of Strassen’s theorem holds:

,THEOREM 2. For n > 3, define
0(nt)

£,0) = ———o
£(2,6) V2nloglogn ’

(£,0) €[0,0) X ©
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and set

K= {y € H'llyllg < 1}.
Then, for P-almost every 6 € O, the sequence {£,(0)),_; has the following
properties:

() {£,(0)); _5 is relatively compact in © and every limit point is an element
of K. .
(ii) For every ¢ € K there is a subsequence of {£,(0)), _5 which converges in
0 to .

In particular, for every F € C(0;R),

P|limsupF(£,(0)) = sup F(¢)| = 1.
yeK

n—o

See Deuschel and Stroock (1989) for the proof.
Let us state the corresponding ‘“small time” theorem:

THEOREM 3. For n > 3, define
6(¢/n)
§1/n(t,0) = ’
V(2/n)loglog n

(¢,0) € [0,2) X ®

and set

K ={y € H'llyllm < 1}.
Then, for P-almost every 0 € O, the sequence {¢,,,(0)),_3 has the following
properties:

(@) {£,,,(0);_5 is relatively compact in © and every limit point is an
element of K.

(ii) For every ¢ € K there is a subsequence of {¢,,,(0)},_5 which converges
in O to . In particular, for every F € C(O;R),

Plim sup F(£,,,(0)) = :ugF(w)] -1

Proor. Let T denote the time inversion transformation on 0, that is,
0, t=0,

(T0)(2) = to(%), t>0.

Note that T is an isometry from ® onto ® and Ty is an isometry from H'
onto H!: An easy computation shows that [|T6lle = [16lle and IT¥|lz1 = iz
Further, P is invariant under T. We have

£ (4, 6) = 6(t/n) _r To(n -) ()
L/ V(2/n)loglog n - v2n loglog n '
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Since P is invariant under T, Theorem 2 tells us that {¢,(6)f:_s, defined by
To(nt)

£.(2,0) = ————,
6(2,9) V2n loglog n

satisfies (i) and (ii). We now use the above properties of T': If the subsequence
{gnk(o)}k L of {€,(0);_, converges to ¢ € K, then {T¢, (0));_, converges to
Ty € K; since T is bijective on K, we conclude that {¢,,,(0)};_3, defined by
&1,,(0) = TE,(0), satisfies (i) and (11) O

Of course, Theorem 1 follows from Theorem 3.

Remarks. Let us consider the sequences {¢, (0)f;_, with &, € (e, ),
h, =, %, instead of {£,(0))_

ReMARk 1. The proof of Theorem 2 in Deuschel and Stroock (1989) shows
that {¢, (0)),_, still satisfies (i); one can even show
P[sup”fs ~ Kl =4 o] -1
and conclude =
P[lu;lsupF(gh) = supF(://) =1.

The same is true for {¢, ,, (0)),_, and we get the corresponding ‘“‘small time”
statement

P[limsupF(fl/h) = supF(t//)] = 1.
h—>o veK

ReEMARK 2. If we want the sequence {¢, (6)};_; to “generate” the whole set
K as limit points, we cannot do without a condition saying that {%,}, . does
not go to » too fast. [It is possible to choose {# ,}, . ; such that the function ¢
with ¢(¢) = 0, ¢ > 0, is, for P-almost every 6, the only limit point of {¢, [C))n
Careful examination of the proof of Theorem 2 in Deuschel and Stroock (1989)
shows that the following condition is sufficient: Assume for each C > 0 there is
a subsequence {A,, }, ., of {h,}, ., satisfying h, /h, >C,V k and

1

% log(hﬂk)y )

Then, for P-almost all 6, the sequence {¢, ()),_;, and therefore also the
sequence (¢, ,, (0)),_,, satisfy (ii).

for each y < 1.

ExampLEs. Of course, the local law of the iterated logarithm follows from
Theorem 1. Take F(X) = X(1)to get the following statement:

X(1/n)

P|lim sup
nowx V(2/n)loglog n

=1|=1
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and, taking into account Remark 1,

P[limsup X(k) = 1] =1.

r—o V2hloglog(1/h)
In the same way, we can take F(X) = sup,_,_/X(¢)| to obtain

. X ()l
Pflimsup sup =1|=1.

now 0<t<l/n V(2/n)loglogn

Consider F(X) = supy_;.,_./X( + ¢) — X(¢)|, where 0 <c <1. We have
supy, < x F(¢) = Ve, hence Theorem 1 yields

[ X(t +c/n) — X(t)l
P| lim sup sup ( /") ) =V |=
n-ow O0<t<l/mn—c/n V(2/n)loglogn
and, taking into account Remark 1,
) IX(t + he) — X(2)l
P|limsup sup
h—0 o0st<h—he \2h loglog(1/h)

In the same way, taking F(X) = supg_,.;_.SUPg., <X + s) — X(®)|, we
get

=1/E}=1.

=1

IX(t +s) — X(¢)l
P| lim sup sup sup ( ) () = Ve
n—w 0<t<l/n—c/n 0<s<c/n V(2/n)loglogn

and
_ IX(¢+s) — X(2)l
P|limsup sup sup
h—0 O<t<h—hc O<s<hc \/2h logl‘)g(l/h)

The last two examples are the “small time statements” which correspond to
Corollary 1.2.2 in Csérgé and Révész (1981).

VE}=1

REFERENCES

CsOrGS, M. and REvEsz, P. (1981). Strong Approximations in Probability and Statistics. Aca-
demic, New York.

DEUSCHEL, J. D. and STrRoOCK, D. W. (1989). Large Deviations. Academic, Boston.

StrOOCK, D. W. (1984). An Introduction to the Theory of Large Deviations. Springer, Berlin.

STROOCK, D. W. and VARADHAN, S. R. S. (1972). Topics in Probability Theory. CIMS Lecture Note
Series. Courant Institute, New York.

INSTITUT FUR ANGEWANDTE MATHEMATIK
UNIVERSITAT BONN

W-5300 Bonn 1

GERMANY



