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STRONG APPROXIMATION FOR SET-INDEXED PARTIAL
SUM PROCESSES VIA KMT CONSTRUCTIONS I.

By EMMANUEL Rio

CNRS, Orsay

Let (X;); <74 be an array of independent identically distributed zero-
mean random vectors with values in R*. When E(X;]") < 4o, for some
r > 2, we obtain the strong approximation of the partial sum process
(Z;c,sX;: S € ) by a Gaussian partial sum process (; c,5Y;: S € ),
uniformly over all sets in a certain Vapnik—Chervonenkis class ./ of
subsets of [0, 1]%.

The most striking result is that both an array (X;); < z¢ of i.i.d. random
vectors and an array (Y;);cz¢ of independent N(0,Var X,)-distributed
random vectors may be constructed in such a way that, up to a power of

log v,

sup | Y (X; - Y)|=0@@ D/2vyd/ry as,

se S lievs
for any Vapnik-Chervonenkis class ./ fulfilling the uniform Minkowsky
condition.

From a 1985 paper of Beck, it is straightforward to prove that such a
result cannot be improved, when . is the class of Euclidean balls.

1. Introduction. This paper focuses on the asymptotic properties of
partial sum processes indexed by sets in Euclidean spaces. These processes are
determlned by an array (X;); cz¢ of random vectors. Throughout, we assume
that these vectors have values in RE.If A s any collection of subsets of [0, 1]¢
we define the partial sum process {X(vS): S € /} by X(vS) =%, .,sX,,
where we use the convention that ¥; . X, = 0, the null vector of R*. When
d =1and = {[0,¢], 0 < ¢ < 1}, that is, when (X,),, is a sequence of i.i.d.
R-valued random variables with a finite r-th moment, Komlés, Major and
Tusnady [(1975, 1976), KMT] proved that a sequence (Y}), ., of i.i.d. Gaussian
variables may be constructed in such a way that, denoting by Y the partial
sum process associated with (Y}), . ,,
sup | X(vS) - Y(»S)|=0(»'") as.
Se/
Moreover, if the moment-generating function of X; is finite in a neighborhood
of 0,
sup | X(»S) — Y(»S)| =0(logv) as.
Se”

It is worth noticing that the rates of strong approximation appearing above are
optimal. This comes from Breiman’s remark [Breirhan (1967)] when the r-th
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moment is finite and from Erdos and Rényi (1970) [see Csorgé and Révész
(1981)] when the moment-generating function is finite. Recently, Einmahl
(1989) extended these results to R*-valued random vectors.

At the same time, several authors studied functional laws of the iterated
logarithm and uniform central limit theorems for multidimensionally indexed
partial sum processes (d > 2). The reader is referred to the above papers
concerning partial sum processes and to the following: Bass and Pyke (1984)
for a law of the iterated logarithm and uniform central limit theorem for
independent arrays obtained via a Skorohod-type embedding; Bass (1985) for a
functional law of the iterated logarithm and Alexander and Pyke (1986) for a
uniform central limit theorem and partial sum processes indexed by large
families of sets when only the second moment is assumed to be finite;
Alexander (1987) for independent arrays indexed by Vapnik—Chervonenkis
classes; Morrow and Philipp (1986) for invariance principles and rates of
convergence in the independent case for i.i.d. random vectors with a finite r-th
moment in the more general setting of entropy without inclusion and Banach
space valued random vectors. However, these rates are not explicit because of
the techniques used by Morrow and Philipp. On the other hand, Massart
(1989) obtained recently the rate »~'/%(log v)?>/? in the strong approximation
for R-valued partial sum processes indexed by Vapnik-Chervonenkis classes
fulfilling the uniform Minkowski condition, via K.M.T. constructions. How-
ever, he had to assume the existence of the moment-generating function. In
Section 3, we shall prove that Massart’s result is, up to a power of logv,
optimal when .~ is the class of Euclidean balls. Here, our aim is to strengthen
and to unify the results obtained by Massart, by Morrow and Philipp and by
Bass and Pyke to almost sure invariance principles with optimal rates of
convergence.

We are interested in independent arrays of R*-valued random vectors with a
finite r-th moment (r > 2) indexed by Vapnik—Chervonenkis (VC) classes of
sets. In the forthcoming paper II we shall study classes whose entropy with
inclusion satisfies some integrability condition. Note that, in this case, it is
necessary to consider a smoothed version of the partial sum process. We
mention in advance that we obtain an almost sure invariance principle with an
optimal rate of convergence for any r > 2.

Now, we discuss further the scope of results and the related literature. In
Sections 3 and 4, using the extension made by Einmahl (1989) to the multidi-
mensional case of KMT’s results, we give a new multidimensionally indexed
(d = 2) embedding based on Rosenblatt’s multidimensional quantile transfor-
mation. The method is much closer to the method based on Skorohod-type
embeddings previously used by Bass and Pyke than to the techniques used by
Morrow and Philipp. However, for each S in ./, we obtain much better upper
bounds on P(|X(»S) — Y(¥S)| = ¢) than those of Bass and Pyke (1984). The
order of magnitude of this bound depends mainly on the smoothness of the
boundary 3S. So we shall need an extra condition on boundaries of elements of
the class 7. Let A be the Lebesgue measure on R9. Given a norm | - | on R?
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and a subset S of R?, we set
(3S)° = {y € R%: ly — 2| < & for some z € 3S},
and we make the following standing assumption on

(1.1)  sup A((8S)") < Ke® forany0 <& < 1, for some 6 €]0,1].
SeS

When 6 = 1, this condition is the uniform Minkowsky condition previously
used by Massart (1989) and Bass and Pyke (1984). When ./ is a VC class
fulfilling (1.1), our upper bounds and the combinatorial properties of the VC
classes yield

sup | X(vS) — Y(¥S)| = O(v~2/%(logv)"* + /") a.s.

Se/”
For example, note that Morrow and Philipp obtained an almost sure error
term of the order of O(»?/%(log v)~ ).

In Section 5, starting from Beck’s results [Beck (1985)], we prove that such

a result cannot be improved when 6 = 1, r > 2d(d — 1)~! and . is the class
of Euclidean balls. On the other hand, according to Breiman’s remark, this
result is optimal when r < 2d(d — §)~'. Finally, the Appendix is devoted to
the proof of a Gaussian approximation lemma, based on multivariate quantile
transformations.

2. Definitions and results. Throughout, the probability space () satis-
fies the following usual condition, due to Dudley and Philipp (1983). There
exists an atomless random variable, defined on (2, which is independent of the
observations. For any subset B of R?, define

X(B)= ) X,.
i€B
If 7 is any family of subsets of [0,1]%, let v.= {vS N Z%: S € #}, where
vS = {vx: x € S}. In order to get nice asymptotic properties for a normalized
version of the partial sum process {X(vS): S € ./}, we need to have some
reasonable growth conditions on v when v — +. So, we shall assume that
# is a Vapnik—-Chervonenkis class. We recall that this means

D(#) =sup{rn e N: #(A N *)
= 2" for some set A with #A = n} < o,

where A N #={A N S: S € #}and #E denotes from now on the cardinality
of E. We call D(.”) the density of .. See Dudley (1978) or Assouad (1983) for
many examples and properties of such classes.

» When E(|X,|") < + for some r large enough, we obtain a strong invari-
ance principle with an error term depending only on the class /. Let us now
state the related result.

(2.1)
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THEOREM 1. Let # be a family of subsets of [0,1]%. Assume that * is a
VC class satisfying (1.1) for some 0 <8 < 1 and 8 < d. Let @ be a law on R*
with mean zero and positive definite covariance, satisfying

f lx|" dQ(x) < +o for somer > 2d/(d — 8).
R*

Let (X,); < 74 be an array of independent random vectors with common law Q.
Then there exists an array (Y;);.z¢ of independent N(0, Var Q)-distributed
random vectors such that

sup | X(»S) — Y(¥S)| = O(»@~2/2(logv)"*) a.s.
Se”

CoMMENTS. The construction of (Y;); does not depend on .. Note that no
smoothing is required in the above result. This is not surprising in view of the
central limit theorem (Corollary 4.4) of Alexander (1987). From that point of
view, Theorem 1 means that, in some sense, the rate of convergence in
Alexander’s central limit theorem is of the order of (v ~° log v)'/2.

Note that, when d = 1, Theorem 1 still holds when 6§ < 1. When 6 =d =1
and @ has a finite moment-generating function, the results of KMT (1976)
prove that the rate of approximation is of the order of O(logv) a.s.

When d > 1 and “ is the class of Euclidean balls, we obtain the following
lower bounds on the approximation. Let F and G be two different probability
laws on R with finite variance, and let W(F, G) denote the Wasserstein-type
distance between F and G, which is precisely defined in Section 5 [cf. Zolotarev

(1983) for probability metrics].

THEOREM 2. Let F and G be different probability laws on R with a finite
variance. Let (X;); 74 and (Y)); o4 be two arrays of i.i.d. random variables
with respective distribution functions F and G, and let # denote the class of
intersections of closed Euclidean balls with the unit cube. Then there exists
some positive constant c¢(d) depending only on d such that the two following
inequalities hold:

(a) E(Vl—d sup (X(v5) - Y(VS))z) > (e(d)W(F,G)):

(b) liminf»@~9/% sup | X(vS) — Y(¥S)| = c(d)W(F,G) a.s.

vt Se.” )

Now, assume that the moment of @ is between 2 and 2d(d — 8)~!. Then
the.rate of convergence does not depend on . anymore. However, in order to
get a strong invariance principle when only the second moment of @ is
assumed to be finite, we have to put an additional condition on .. Define
Lx = log(x V e) and LLx = L(Lx) and let ¢ be a mapping from R* onto R*
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such that the following hold:

(i) [y(lxl) dQ(x) < 1/2, and x~2¢(x) is a one-to-one con-
tinuous, increasing mapping from R* onto R™.

(2.2) (ii) There exists r > 2 such that x~"¢(x) is nonincreasing.

(iii)  Furthermore, if there does not exist s < 4 1such that
x~*i(x) is nonincreasing, then (x®LLx) ¢(x)is
nondecreasing.

Note that, when @ has a finite second moment, such a mapping exists [see
Major (1976)]. Throughout, ¢ ~* denotes the inverse function of ¢.

THEOREM 3. Let ./ be a family of subsets of [0, 1]°. Assume that # is a
VC class satisfying (1.1) for some 0 <8 < 1. Let @ be a law on R* with mean
zero and positive definite covariance, and let  be a mapping satisfying (2.2)
for some r < 2d(d — 8)~'. Let (X;);cz¢ be an array of independent random
vectors with common law Q. Then, there exists an array (Y;); cz¢ Of indepen-
dent N(0, Var Q)-distributed random vectors such that

(a) sup | X(vS) — Y(¥S)| = 0p(¢v71(»?)).
Se/

Moreover, if we assume that
(2.3) 7= U v’ isaVCclass,

veN

then, setting ¢(x) = ¢~ Nx)sup(l, (x "LLx)*/%y~X(x)), we have

(b) sup sup | X(pS) — Y(pS)| = op(y~1(+%))
p<v Se”

and, if x~/"¢(x) is nohdecreasing,

(c) sup |X(vS) — Y(»8)| =o(e(»?)) a.s.
Se/”

CoMMENTS. This result is a generalization of Einmahl’s results [Einmahl
(1987)] to multidimensionally indexed partial sum processes. The rates of
approximation appearing in Theorem 3 are exactly the same as in Theorems 2
and 3 of Einmahl (1987).

Clearly, it is enough to obtain a construction of the arrays such that (a) and
(b) hold with respective rates Op(y~'(v?)) and O(e(r?)) a.s. [See Major
(1976).] :

When .~ is contraction closed, that is, t.”C . for any 0 <¢ <1 (this
condition is fulfilled by many classes of interest), the class 7" defined in
Aheorem 3 is a VC class with D(?) = D(.). [To see this, note that, for any
subset A of RY with cardinality D(.#) + 1, there exists a positive integer p
such that A N #= A N p.”. Hence, |A N 7] < 2P+ ]
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Theorem 3 provides a rate of the order »=%/2y~1(v?) in Alexander’s central
limit theorem [Alexander (1987), Corollary 4.4]. From Breiman’s remark, we
believe that this rate is optimal.

Before discussing further our results, we give a consequence of Theorems 1
and 3 which was mentioned in the introduction.

COROLLARY 1. Let . be a family of subsets of [0,1]?. Assume that .* is a
VC class fulfilling (1.1) for some & in [0, 1[. Let Q be a law on R* with mean
zero and positive definite covariance, satisfying

[ lx|"dQ(x) < + for somer > 2 withr + 2d/(d — ).
Rk

Let (X,);c 72 be an array of independent random vectors with common law
Q. Then there exists an array (Y)); z¢ of independent N(0, Var Q)-distributed
random vectors such that

sup | X(vS) = Y(vS)| = Op(v=2/2(log v)/* + v/7).
Se”

Furthermore, if # satisfies (2.3), the strong invariance principle holds with
the above rate of approximation.

ComMENT. When r = 2d(d — §)~%, using our construction method, we are
able to prove that the rate of approximation is of the order of v¢/"(log v)3/2
a.s.

Theorem 3(b) is a weak invariance principle in the sense of Philipp (1980)
while Theorem 3(c) is a strong invariance principle where the function x —

x?LLx plays a fundamental role. In fact, we can derive two different results
from Theorem 3(c) according to the monotonicity of the function x —
Y(xXx2LLx) 1.

COROLLARY 2. Let . be a family of subsets of [0, 11¢. Assume that .* is a
VC class satisfying (1.1) for some 0 < 8 < 1 and (2.3). Let @ be a law on R*
with mean zero and positive definite covariance, and let  be a mapping
satisfying (2.2) for some r < 2d(d — 8)"! and the condition x —
y(xXx2LLx)" " is nondecreasing. Let (X, Dicz¢ be an array of independent
random vectors with common law Q. Then there exists an array (Y));cz¢ of
independent N(0, Var Q)-distributed random vectors such that

sup | X(vS) - Y(»S)| =o(y}(v?)) a.s.
Se”

From Breiman’s remark [Breiman (1967)], it follows that this result is
optimal.

On the other hand, when x — y(x)(x2LLx)~! is nonincreasing, Theorem 3
yields the following Strassen-type invariance principle.
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COROLLARY 3. Let . be a family of subsets of [0,1]%. Assume that * is a
VC class satisfying (1.1) for some 0 < & < 1 and (2.3). Let @ be a law on R*
with mean zero and positive definite covariance, and let  be a mapping
satisfying (2.2) and the condition x — y(xXx2LLx)~! is nonincreasing. Let
(X,);cz¢ be an array of independent random vectors with common law Q.
Then there exists an array (Y;);cz¢ of independent N(0, Var @)-distributed
random vectors such that '

(v'LLv) " /* Ssup/|X(vS) ~Y(¥8)| = o(»*/4(v?)) a.s.

CoMMENTS. When . contains the class of lower-left orthants and when
only the second moment is assumed to be finite, this result is optimal [see
Major (1976)]. Moreover, when (x) = x*(LLx)* for some 0 < a < 1, the
power of LLv cannot be improved [see Einmahl (1987), Theorem 4].

Now, from Corollary 3, we can derive a functional law of the iterated
logarithm (LIL). More precisely, let (X;);.,« be an array of independent
random vectors with common law @ such that [xdQ(x) = 0 and Var @ = I,.
Let . be a family of Borelian subsets of [0, 1]¢ satisfying the assumptions of
Corollary 3. For any function F from . into R*, let

IF|l.-= sup |F(S)I,
Se/”
where |x| denotes the Euclidean norm of x, and let % be the subset of
functions from . to R* given by

K= {F: for some f: I¢ - R* with [dl f()Pdt <1,
I

F(S) = fsf(t) 3: forall S € /}.

When . contains the class of lower-left orthants, f is uniquely defined. So,
we shall assume that . contains the class of lower-left orthants. Then the
approximating Gaussian process constructed in Corollary 3 satisfies the condi-
tions of Theorem 3.1 of Bass and Pyke (1984). So, the following result holds.

LAW OF THE ITERATED LOGARITHM. ((2v?LLv)~'2X(»8): S € /) is rela-
tively compact with respect to the metric || - ||_-, and the set of limit points is
exactly % a.s.

CoMMENTS. This result is new, as far as we know. Note that Bass (1985)
has proved such a law for smoothed partial sum processes indexed by classes
having an integrable entropy with inclusion.

Now we prove Theorems 1 and 3. The proofs of these theorems are based on
the methods of a common probability space previously introduced by Komlés,
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Major and Tusnady. So, we first describe our method of construction of the
two arrays of independent random vectors.

3. Construction of the arrays. Throughout this section, @ is a law on
R* with mean zero, finite variance and positive definite covariance matrix. We
may without loss of generality assume that Var @ = I,. (X; i)icz¢ denotes an
array of independent random vectors with common law @, and ¢ is any
mapping satisfying (2.2).

In order to construct the two arrays (X, )iez¢ and (Y));cz¢ on our rich-
enough space, we first construct two sequences (X;); ., and (Y), 1 of indepen-
dent identically distributed random vectors with respective distributions
and N(0, I,). Then, by means of a one-to-one mapping o from Z¢ onto Z ,, we
will turn the sequences so defined into arrays.

We need to recall the following lemma, due to Skorohod [see Dudley and
Philipp (1983) for a proof of this result].

LemMmA [Skorohod (1976)].  Given two Polish spaces R, R, and a random
variable V from Q) to R, with law q, let Q be a probability law on R, X R, with
marginal distribution q on R,, and let U be a random variable with uniform
distribution over [0, 1], defined on Q, which is independent of V. Then there
exists a measurable map ¥ from [0,1] X R, to R, such that (¥(U,V),V) has
loaw Q.

From Skorohod’s lemma it follows that it suffices to construct the sequence
(X;);., from a Gaussian sample in another probablllty space. In order to
define the r.v.’s X;, we define partial sums of the r.v.’s X, from the corre-
sponding Gaussian partial sums by means of multivariate quantile transforma-
tions [see Major (1978) for more about the properties of such transformations].
But, in order to get nice asymptotic properties for these transformations, we
have to put additional conditions on the law of the non-Gaussian random
vectors. More precisely, we need to work with smoothed random vectors.

In order to avoid these technical difficulties, we shall use an argument of
Sakhanenko (1984), which consists of iterating the same construction method,
that turns a sequence of independent standard Gaussian vectors into a se-
quence (Z;); , o of independent random vectors such that, for each i > 1, Z,,
has law N(O I) and Z,;,_, has law Q. This argument allows us to transform
partial sums of smoothed random vectors. Let us now describe more precisely
our method of construction.

Let (Y));5 = (Y;9),., be a sequence of independent standard normal ran-
dom vectors. Suppose that there also exists a sequence (5,), . , of independent
random variables havmg uniform distribution on [0, 1] and being independent
of the sequence (Y;°), . ,. By means of a construction method which shall be
explained later [cf. (*)], we define a sequence (Z)),, , = (Z?),., of indepen-
dent random vectors from (Y;°), , and 8, such that the followmg hold:

1. The random vectors (ZJ); . , are N(0, I,)-distributed.
2. The random vectors (ZJ;_,), . , have law Q.
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[This means that (Z?),., is a deterministic measurable function of (Y}?), .,
and §,, which shall be explained later.]

Now we define the sequence (Y;!);,, of independent Gaussian r.v.’s by
Ys._, = 0and Y, = Z2. for each positive i, and we set ZJ;,_; = X,;_;.

Clearly, the random vectors (X,,;_,);., are independent with common law
Q. It remains to define the random vectors (X,;); . ,. By Skorohod’s lemma,
there exists a sequence (Z}); ., of independent o{5;,Y;': i > 0}-measurable
r.v.’s such that the following hold:

1. Z},_, = 0 a.s. for any positive i.
2. (Y4, Z3)); o has the same law as (Y;%, Z?), . o-

So, by induction, for each integer [, there exists a sequence (Y}, Z});. , such
that the following hold:

1. For any positive i, Z; is o{(5,, Y;’: i > 0}-measurable.

2. The sequence (ZL,, Y4,), > , has the same law as the sequence (Z?,Y;°); . ,,
and (Z},Y}) = (0,0) as. for any i & 2'N.

3. For any positive i, Y tl, = Z4i,.

Then, for each nonnegative integer [, for each odd integer i, we set
Xy, = Zki;. Clearly, the sequence so defined will be a sequence of independent
random vectors with common law @ [see Einmahl (1989)]. Now, it remains to
explain the method of construction of the sequences (Z?);. , and (Y;°),,, in a
common probability space. By Skorohod’s lemma again, it suffices to construct
the sequence (Y;°);. , from (Z?),. ,. Our construction method uses the dyadic
scheme previously introduced in KMT (1975). However, if one wants to use the
dyadic scheme exactly as in KMT, the main technical difficulty is that one
cannot perform only a truncation at the beginning of the construction, because

~ this technique would not provide optimal rates of convergence, as illustrated
by the work of Bass and Pyke (1984). So, we shall adapt the technique of
adaptive truncations initiated by Bass (1985) in his paper on the functional
LIL for partial sum processes to the dyadic scheme of KMT.

(*) CONSTRUCTION OF THE TWO SEQUENCES. Throughout the construction,
the intervals ]l m] have to be interpreted as subsets of the set of positive
integers Z,. /%(Z,) is given the canonical inner product, which we denote by
(-] ), and / 21, m]) denotes the subspace of /*(Z ) of functions with support
included in ]/, m]. We want to define the finite sequence (Y;)yz_; _oz+1 as a
deterministic function of (Z,),z _; _,z+1. Here, it will be convenient to define a
dyadic orthogonal basis, as Massart (1989) does.

Let I; , =1p2/,(p + 1)2/], and let ¢, , be the characteristic function of I; ,
For any pos1t1ve integers p and J, We set eJ p =€ p— 2€e_1 5, Clearly
{ep, 1,6, 0<j=<L, 287 <p <27} is an orthogonal basis of

2%(12%, 2L+1]). So, in order to construct the sequence (Y;)z ; gz+1, it suffices
to construct the random vectors Y(e; ;) and Y(¢; ), where Y(f) = L, f(i)Y;
for any function f of / 2(z+) with finite support Now we set V, ; = Y(eL )
and V = Y(¢; ).
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In order to construct the random vectors V;, 1 and V, V, , from the sequence
(Z)gr < ; < oz+1, We now introduce a nonincreasing filtration (& ;) ;. of
o-fields, related to different levels of truncations at each stage of the dyadic
scheme.

A DYADIC FILTRATION. Let us define the increasing sequence (M), , by
¢(M;) = 2/*' for any nonnegative integer j, let Q be the dlstrlbutlon of
X1y u; and let @; be the conditional distribution of X, given (IX|] < M),
where X is a r.v. with law @. With B; denoting the random set of odd integers
i such that |Z,| > M;, for any positive integers j and p, we set

(31) U]?p = Z Zi’
i€l; ,\B;

and we define %, ;, for any 0 <j < L, by
F L= O'(Bj, IX;l:i e Bj,Uj?p: 2l <p < 21+L—j).

Js

Clearly, (% )<< is a nonincreasing filtration. So, if we define the r.v.’s
V. . and VJ p in such a way that:

1. V, , is &, -measurable with law N(0,2%T,),
2. for each j in ]1, L], the random vectors VJ p are &_,; ;-measurable and,
given & ;, conditionally independent with law N(0, 2'1,),

the random vectors V;, ; and VJ » Will be independent with a normal distribu-
tion. In order to construct these Gaussian r.v.’s, we need further notation. So,

we set

(3.2) ue,=U°' -2 Y Z.

i€l; 4 9,\B,

Clearly, ljj?p is #,_, ;-measurable. We also set
(3.3) b, ,=#(B;n1I;,) and b = 2b;_1,2p-

Now we want to define V . p from & ; and Uop Clearly, the r.v.’s (Z; DigB)
given {B;: Z,li € B}, are condltlonally independent with conditional distribu-
tion Q; when i is odd and N(0, I,) when i is even. Hence, conditionally given
Z L the r.v.’s {Uop 2L~J < p < 21*L7J} are independent, and, for each p, the

condltlona] law of U 0 has a smooth and strictly positive density on R*.
Furthermore, this den31ty depends only on b; ,, b b; , and Uj?p. So, we may
define V; » as a function of (b; ,, bj 2 UL U0 )

In order to define V »» we define a random vector W /. » from (UJOP, )
such that, given B; the random vectors U, 0 and W are uncorrelated. So
we set

(3.42) W, , = UP, + 5, Var ;(Var(U?,IB;)) Uy,
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where Var(-|B)) is the conditional variance, given B;. We also set

(3.4b) W, = (Var(W, IB,)) W,

Js Jp*
DEFINITION OF V, . Given (bJ » 0, ,), V, , is the multivariate conditional
quantile transformation of W,°,, for given U°,

This transformation will be precisely defined and studied in Appendix A.
Now, for each nonnegative integer j, we set

—\1/2
(3.5) I, I, + Var @)

B 1
J_E(

DEFINITION OF V; ;. Vp , is the multivariate quantile transformation of
IU ’
L1

By definition, V, , is & ;-measurable with law N(0,2"1,). For each j > 1,
the random vectors (WJ p)p> o are, conditionally given % ;, independent w1th
a conditional smooth and strictly positive density dependlng only on b

and U’ . Hence the random vectors (V »)pso are F_ g L-measurabiep ar;dp
given 9‘ 1, conditionally independent w1th common law N(0, 2/ ). It remains
now to deﬁne Y,, Y,, and the random vectors (V; ), ,. Here, we may assume
that the probability space is rich enough to contain a sequence (Y;),., of
independent standard normal random vectors independent of the sequence
(Z);.o, and we set Y, =Y, Y,=Y; and V, , =Y, ., - Y;,,,, for any
positive p. Then, the sequence defined above is a sequence of independent
standard normal random vectors. Moreover, the following nice property holds.

ProrPERTY 1. For each positive j, the random vectors (U'jf’p, Vj,p)po are
independent and identically distributed.

We will now turn the sequences (Y),., and (X;);., so constructed into
arrays. Z¢ being given the usual sum, product and order, we define a subset JJ
of N? by

J={(jirJar---rJjq) €N suchthat j, <j, < - <j, <j, +1}.

Clearly the map from ¢/ onto N which maps (j,,..., j;) onto j; +j, + - +j,
is one-to-one. For each integer J,let (ji, jay - - -, Jg) be the unique element of J
such that j =j, +j, + --- +j,. Let R; be the lattice of 1ntegers multiples of
(271,272 ... 2J4). Let us define the box C;, for any p in R; by [here
1=0@,1,...,1) € RY

(3.6) C.,={xez%p+1<x<p+(21,...,2/)}

J, P

Let us now state a lemma which provides a one-to-one mapping having some
nice geometrical properties with respect to the dyadic boxes defined above.
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LEMMA 0. There exists a one-to-one mapping o from Z% onto 7, mapping
the boxes Cy, on the intervals 0, 2N] and the boxes (Cj ), R, ON the
intervals I; , =1q27,(q + 1)2/].

Proor. It will be more convenient to define o~ !. Let x be any positive
integer. One can write x — 1 in radix-2:

x—1=ay+2.a,+ - +2ka,,

where % = [log(x — 1)/log 2], floor brackets designating the integral part. Let
us now define o~ X(x) = (x4, ..., x;) by

(3.7) x—1= Z ad(l+l)—i21’
>0

for any i in [1, d], where we use the convention that a, = 0if [ > k.

Clearly, 0! is a one-to-one map. We now prove that, for any nonnegative
N, o~! maps 10, 2] on the box Cj y. Let x be any element of 10, 2"]. One can
write x — 1 in radix-2 with N digits at most (i.e,, # < N). Let (Ny,..., N,) be
the element of J such that N, + - -+ + N, = N. By definition of J, j > N, iff
jd — i > N. Hence, for any i in [1, d], x; — 1 can be written in radix-2 with N;
digits at most, that is, x; — 1 < 2%, It follows that o~ '(x) belongs to Cj y.
Since o~ ! is one-to-one, o~! maps 10,2¥] onto Cy y. Therefore, ="' is a
one-to-one mapping from Z, onto Z<.

Let j be any positive integer. For any g > 0, x belongs to I; , iff x =
q.2’ +y for some y in 10,2’]. Let (y;,...,¥4) = 0~ '(y). Then, using the
definition of &, it is easy to see that ¢~ (x) = 0~ (1 + q.2/) + o~ (y). Clearly,
o~ (1 + q.27) belongs to the lattice R;, and o~ '(y) is an element of the box
C;, ; defined in (3.6). Hence, o™ (; ,) c C; , for some p in R;. Since o lis
one-to-one, the equality holds and Lemma 0 follows. O

Then, we set Y; =Y, and X; =X, for any i € Z4. Clearly, the array
(X,); <72 so defined is an array of independent random vectors with common
law Q.

4. Upper bounds for the construction. For any class 7" of sub-
sets of Z%, we set 07'= {0(V): V € 7}. For each positive integer v, let ./, =
U,<,p” and &, = o.#. By Lemma 0, & is a class of subsets of 10,2%4],
where N is the smallest integer such that 2V > ». With the above definitions,

(4.1) sup sup | X(pS) — Y(pS)| = Asung(A) - Y(4)l,

p<v Se.”

where X(A) = L, caX;. So; henceforward we work with the sequences
(X,); > and (Y});, , defined in Section 3.

In order to control the random vector Y(A) — X(A), uniformly on the class
&, it will be convenient to use the orthogonal basis previously introduced in
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the construction. Let é; = e; ;. We define the orthogonal systems %, and %,
by

By =1{€;:0<j <Nd} U {ey,} and ,@.:{é, :0<p<2Nd—j},

where N is the smallest integer such that 2V > v. Then & = U Y%;'%; is an
orthogonal basis of 12(]0, 2Nd]) Now, let II; be the orthogonal pro;ectlon on
the space generated by U/_,%,. If f is any mapping from 10, 2V%] to R, let
X(f)=%,fOG)X,.

For any function bounded by 1, the control of X(f) — Y(f) depends mainly
on the inner products (II; f|II; ). From now on, for convenience, we shall
confuse the class &7, Wlth the class of indicator functions of the elements of
&,. Then the uniform control on &, of the above inner products is ensured
via the geometrical assumption (1.1) on the boundaries of elements of . and
the perimetric properties of the mapping o.

LEMMA 1. Assume that ” is a class of subsets of the unit cube fulfilling
the condition (1.1) for some constants 0 <8 <1 and K > 1. Then, for any
element f in %, 11, f takes values in [—1,1] and

#{p e N: 11, f(i) # 0 for somei € I; )} < 2Ky?7°27/47%/D,
Proor. First, we note that, for any function f taking its values in [0, 1],

Jj
(4.2) ij_ f= - E 2_l(el|f)el - Z 2_J(ej,p|f)ej’p.
=1 p>0

Hence, f — II; f takes its values in [—1,0] and the first assertion of Lemma 1
holds true.

Let [i — 1, i] denote the unit cube of R? with upper-right vertex i. For each
integer p, we define the closed subset C; , of R from I, —]p2 (p + 1271
by

Cj,p= U [l_]].,l].
el ,

For each element f of &7, there exists an integer m smaller than v and an
element S of the family / such that f= 1,,,s,. If the boundary of mS does
not meet the box C; ,, then f is a constant function on the interval I; , and,
us1ng (4.1), we get H f(z) = 0 for any i in I; ,. Now, we may assume that IRd
is provided Wlth the norm of the supremum. Recall that a‘l(I ) is exactly a
dyadic box Cj , [cf. (8.6)] for some g in R;. So, if the boundary of m.” meets
the box C; Cj p 18 included in the Borel set (m 38)%, where a = 2/¢. Recall
that the 1nter10rs of the boxes C; , are disjoint. Hence the cardinality of the
set of integers p such that IT,(f )(z) # 0 for some i in I; , is no more than

277AM(m 38)*). We complete the proof by combining this inequality
and (1.1). O
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Now we pass to the control of the random vector X(f) — Y(f). Here, we
need further notation and definition. Let (X;),., and (X,),., be the se-
quences defined from the sequence (X)), . o by

lei = II'(ngl,‘lSML)XZli and X~l = XL - IE(XZ),

for any integer I, for any odd integer i in [2%,2X*Y[. Now, let n = 2% where
N is the smallest integer such that 2V > v. Clearly,

(4.3) fsu§lX(f)—Y(f)| le Xl+fsup|X(f)—Y(f)|

So, it will be enough to control each of the terms on the right-hand side. First,
the control of the sequence X7_,|X, — X,/ is ensured via the following lemma.
The proof will be carried out in Appendix B, being straightforward and using
only the moment assumptions (2.2)(i) and (2.2)(ii).

LEmMa 2. X7 IX;, — X,| = oy~ Yn)) a.s.

In order to obtain an exponential bound on the random vector Y(f) — X(f),
we will use the dyadic decomposition previously introduced in KMT (1975). If
f is any function of <2(]0,2™%]), we set y,(f) =2 J(fle) and v; (f) =

27(f1é; ,). Then the orthogonal expansion of the function f with respect to
.%' has the following form:

f=f(1)eg o+ h Yj( f)é + )> 'Yj,p(f)éj.p
0<j<Nd 0<j<Nd
0<p<2Nd-i

We now introduce further notatlon Let the random sequences (€));5 0 and
(£)); - o be defined by £ = (M <I%i< 50 X and ¢ = & — E(&/). Let

[jj,p =X(é p) - Zf ( p) [jj =X(éj)’ V; = Y(éj)

and
‘71',17 = Y(éj,p)'
Let
D)= X %NV, U,) - €0f),
0<p<2Nd=j
fq}j any positive j, and
Nd-1

Do(f) = L %NV~ G) + (% - X,).
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Noting then that X'(é'j,p) = U'j,p + Elzjfl(éj,p), we get
Nd-1

Y(F)-X(F)=Do(f)+ ¥ L %.(DV,-U.,)

Jj=1 o<p<2Nd~

Nd—-1
(4.4) = L X (NE(E,)
I=1 j=<l
Nd-1

=D0(f) + '21 Dj(njf)~
j=

Now, for any function f with values in [-1,1], ly,(f)l < 1. Hence, setting
Dy = 1Y, — X;| + TN TU; — V|, we have |Do(f)l <D,. Now, let D, =
sup, c o |1D;I1; f)I. Clearly,
3 Nd-1

(4.5) sup |¥(f) - X(f)l< L D,

fes, Jj=0
The control of D, and D, is based on the following normal approximation
lemma, which is a straightforward consequence of Einmahl’s results on multi-
variate transformations of smoothed partial sums of smoothed random vectors
(the proof is carried out in Appendix A). Let us define the random vectors ij’p
and Tj0 [the upper index 0 is related to the construction—see (*)—and I} is
defined by (3.5)] by

Tj?p =LV, - Uj?p and Tjo =LV, - Uj?l + [E(Uj?l)‘
Then the following control on the above random vectors is available.

LEMMA 3. There exists a positive constant ¢, and a summable sequence
(a;); . o of positive numbers each bounded by 1/2 such that the following two
inequalities hold:

(a) [E(exp(cl(llog ajla//‘l(2f))_1|fl’j°|)) <3;
(b) [E(exp(cl(llog ajlq/;‘l(2j))_l|{f’1.?p|)) < 3.

Now, Lemma 3 and Property 1 of the construction allow us to prove
exponential bounds on the r.v.’s D;(f).

ProposITION 1. Let n = 2V, There exist a constant ¢, and a summable
sequence (B;); ., of positive numbers each bounded by 1/2 such that, for all
positive t and u, .

(4.6) P(Dy > co(y 1 (n)t + o(n)u)) < 4k((Bya)' + exp(—2u2LLn))
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and, for any mapping g from 7, into [—1,1], for any positive v > 27/(glg),
P(|D;(g)] = exVv (w~1(27)t + e(27)u))
(4.6b) < 4k exp(¢3(1 + v1/%) " log ;)
+ 4k exp(—2u®log(1 +j)).

REMARK. An immediate consequence of (4.6a) is
(4.7) 0= 0(e(n)) as. and D, = O0p(y~1(n)).

ProOF oF PROPOSITION 1. We prove only (4.6b). The proof of (4.6a) uses the
same arguments and will be omitted. In order to prove Proposition 1, we need
the following large deviation lemma. Let a and r be positive reals and let
H(a, r) be the class of real-valued random variables Z such that Eexp(tZ2)) < r
for all |¢| < a. We denote by H(a, r) the class of random variables Z — E(Z),
with Z in H(a,r).

LEmMA [Massart (1989)]. Let a be a positive real, let (r,),.; be a finite
family of positive reals and let (T;),.; be a family of independent random
elements of H(a,r;). If (w Dic1 is any family of real numbers each bounded
by 1, setting T(w) =1L, ;w,T;, we have, for all positive v such that

ll’

E,elwz(r -1 <uv, forall tin 0, al,
log(E(exp(¢T'(w)))) < vt?a~2.
Hence the usual Cramér—Chernoff calculation yields, for any positive u,

P(IT(w)| = u/a) < 2exp(—u?(4v + u)_l).

REMARK. This lemma is slightly more general than Massart’s. However,
the proof of this result is exactly the same as in Massart’s paper.

Now, let us introduce the followmg notation. For any / in [0, j — 1], define
the random sequence X' by X' = 1121(2,\. +1)X and the random sequence X'
from the already defined sequence X' by X} = X} — E(X}) for any positive
integer i. We also set V!, = Y!(¢, ), where Y’ is the sequence of Gaussian
random vectors already deﬁned in Sectlon 3, and

Uiy = Y E,) + X (& ) lx<m, ),
where (IX| < M;_,) denotes the set of integers i such that |X;| < M ;- Let

Ti-1_ ¥(s. .. Fl_ 71 _ [l
Uin = X(ejyp]lw‘lNﬁ(lesMﬁ) and Ty, =T0; Vi, - Uy,
and define the sequences (7/);. , and (1}, , by

ni] = ﬁ{ —_ E(”—n]) and 7_7{ = ‘]]'(M‘(j_l_l)++1<|)_(i|SMj)Xl’
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for any integer i in 2/(2N + 1). Let A; = I, — T;. By definition of the above
random vectors,

‘71‘, ; ( tA4;- lVl ) - nj(éj,p)'
We set

j-1
D},l(g) =4, Z Yj,p(g)le,p’ Dj,l(g) = E:OD}J(E)

o<p<2aNd—~
and
.
Diyg)= L v.,(&)T}, D; (&) = L Dj(8)-
0<p<2Nd-i =0
By definition of D;(g),
(4.8) Dj(g) = Dj,l(g) + Dj,2(g) - Z ‘Yj,p(g)nj(éj,p) - fj(g)-
0<p<2Nd-y

Relation (4.6b) of Proposition 1 follows from classical Cramér—Chernoff
calculations. So we have to bound the Laplace transforms of each component
of the above random vectors. So, throughout the proof of Proposition 1, we
may assume w.l.o.g. that £ = 1. Let h 2 be the Laplace transform of D z(g)
and h, ; be the Laplace transform of D 2(g) By convexity of x - exp(tx) for

any sequence (u,;); < j; of positive numbers such that uy+ -+ +u;_; =1,
for any real x,
(4.9) hy(x) < sup hy (x/u;).

lelo, jl

- Recall that the sequences (T"Jl p)p>o and (T’jo_l,p)pw have the same joint
distribution. So, for any [ in [0, j[, it follows from Property 3.1 and from
Lemma 3 that the r.v.s ITJl ,| are independent random elements of
H(c,llog a; /¥~ 1(277%),8). Furthermore, since & is a dyadic orthogonal
bas1s of £2(10,27?]), the real numbers y; ,(g) are each bounded by 1, and
(g) < v. So, by Massart’s lemma,

log hy, (%) < cqo(4~(27) /llog a;_ )’

for any x satisfying [xly %2/7)) < ¢/llog a;_;|. Now we set u, =
uo(l + 1)27%/7, where u, is the positive number such that uy + -+ +u;_; =
1. Let the sequence (B,); s o be defined by

B, = supa‘t].
l<j

P‘yJ D

1

Clearly, the sequence (B;); » , so defined fulfills the conditions of Proposition 1.
It follows from (4.9), (2. 2)(11) and the above upper bound on k, ; that

log hy(x) < ce(v1(27)/Ilog Bj|) x?
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for any x fulfilling |c, x|y~ (27) < |log B;|, where ¢, is some positive constant.
The usual Cramér—Chernoff calculation then yields

(4.10) P(|D; 5(&)] = e v1(27)¢) < 2k exp(£2(1 + v=1/2) " log B;).

Now we pass to the control of the r.v. £,y; ,(g)n/(¢; ) + £/(g). First, for each
positive p, we decompose this random vector as follows: By definition of the
sequence 7,

Jj-1
E 'Yj,p(g)n‘](é’j,p) = Z Z 'Yj,p(g)gj_l(]lZ’Néj,p)'
0<p<2Nd_J =1 0<p<2Nd_J

We now prove that, for each j > 0, the random vectors (£/), ., are indepen-
dent and such that, for some sequence (a;);., of positive reals satisfying
E > 0@ j <1 / 2,

(4.11) [E(exp(c5|log a,l |§{|/¢'1(2j))) <1427
Proor oF (4.11). Clearly, the random vectors E{ are independent. More-
over, by (2.2), there exists some sequence (a;);. ; of positive numbers satisfy-

ing the above condition and such that P(¢/ # 0) < 27a;. Since &/l <M,
a.s. [recall that M, = Y~ U27%2)], we get

E(exp(llog a;l &/l /M) < 1+ py(a;' = 1) <1+ 27,

and (4.11) follows immediately from the above inequality. Next, by (4.11) and
the first part of Massart’s lemma, the random variables &/7!(1yé; ,) are
independent elements of the class H(c;lloga;_l /Yy~ 1(2771), 3). So, using ex-
actly the same arguments as in the proof of (4.10), we get, for any positive ¢,

d

for another sequence (B;);., of positive reals fulfilling the conditions of
Proposition 1. Since #2(]0, 2V?)) is equipped with the canonical inner product,
it also follows from (4.11) and Massart’s lemma that

P(1£7(g)| = ceop™1(27)t) < 2k exp(t2(1 + v‘l/zt)_llog aj).
Both (4.10) and the two above inequalities then yield, for any positive #,
P(|D;(&) — D;,u(8)| = vy~ (2)t)

< 4k exp(t2(1 + v'l/zt)_llog Bj),

> csﬁ«p-l(zf)t) |

Z‘. 'Yj,p(g)"lj(éj,p)

0<p<2Nd—~

<2k exp(t2(1 + v'l/zt)_llog Bj)

(4.12)

for some constant c; large enough, for another sequence (B;);. , of positive
reals fulfilling the conditions of Proposition 1.
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It remains only to bound the Laplace transform of D; (g). Now, for each [,
DJ{ (g) is a centered Gaussian random vector fulfilling

Var(D} (g)) < 27'14,_,1%(glg).

where || - || denotes the matrix norm associated to the usual Euclidean norm on
R*. Then an easy calculation [see Einmahl (1987), (5.3)] ensures that

1A,1l = 0(27 (s~ 1(2)))?).
Hence, we have
(Var D}’l(g))l/2 _ 0(‘/’0"2(j—l)/2(¢—1(2j-l))2).

Let h, be the Laplace transform of D, ,(g) and let k,, be the Laplace
transform of DJ{ (). By convexity of x — exp(#x), for any sequence (u;); <o, j
of positive numbers such that uy + -+ +u;_; = 1, for any real x,

(4.13) hy(x) < sup hy ,(x/u;).
ielo, jl

Now, by (2.2)(iii), either

(w‘l(x))z/\/;=0(t//‘1(x)/\/m—) or x‘sl(df‘l(x))z/\/; is increasing

for some positive real s'. In the first situation, setting u, = uo(1 + 1)27//" and
using (4.13), we get that h,(x) < c.vx®(y~*(x))?/LLx, for any positive x, for
some positive constant c;. In the second situation, setting v, = uy(1 + 1 27,
we get h(x) < c.wx%(¢(x))?/LLx. Now, using these inequalities, the usual
Cramér—Chernoff calculation and inequality (4.12), we get (4.6b) of Proposi-
tion 1. O

ReMARK. Let Di(g) = D(g) + £/(g). As a by-product of the proof of
Proposition 1, we have the following: There exist some constant cg and some
sequence (B)); o of positive reals satisfying L; . (8 < 1/2 such that, for any
function g fulfilling |y; ,(g)| < 1 for any positive integer p, for any real x in
[07 1/ Cs],

(4.14) [E(exp(x|DJ'~(g)| |log B}|/<p(2j))) <2k exp(ch2 Eoyﬁp(g)).
P>

Proor oF THEOREM 1. By Proposition 1, with u = ¢%1 + tv~'/%)"! and
¢(x) = c.x", there exists some constant ¢y such that’

(4,15) P(|D;(£)] < €927/ "(1 + ulo + u?)) < 8k exp(—u?).

Let us now apply (4.15) with g =II; f. By Lemma 1, one can choose v =
9 K 2(Nd-jXd-8)/d Hence, by (4.4), there exists some constant c,, such that, for
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any f in &,

-X = pa/r u? p(d=8)/2,,
(4.16) P(fgﬁly(f) () = eo(v?/7(1 + u?) + @3/ ))

v

< 8kNd#%7, exp(—u?).

It remains to majorize the cardinality of <7 . Recall that, for any finite subset
B of [0,1]¢ with cardinality ¢ > 2, #(B N *) < q¢P“", where D(.) is the
entire density defined by (2.1). [This assertion follows from the Vapnik-
Chervonenkis lemma; see Assouad (1983), Section 1.9.] Hence,

#o, < T #(p 1290 ) < 1D,
p=1
Now, the end of the proof is straightforward, using (4.16) with u? =
(dD(#) + 3)log v and the Borel-Cantelli lemma. O

Proor oF THEOREM 3. We will prove only (c). The proofs of (a) and (b) use
the same arguments and will be omitted. Theorem 3(c) follows clearly from
(4.3), Lemma 2, (4.5), and (4.7) and from the following proposition.

PROPOSITION 2. Almost surely in {(j, N) € 7%2: 0 <j < Nd},
sup |D,(I1; f)| = O(p(27)2Ne~/xd-dr2d\/Ng — j),
fed,N

Proor. Clearly, it is sufficient to prove Proposition 2 for each of the
components of D;(II; f). So, throughout the proof, we may assume without
loss of generality that 2 = 1. Let

(417)  Di(g) =Dy(g) +&(8) = ¥ v, ,(&)(Vip - Uj,)-
p>0

Clearly, D;(I1; f) = D)(f) — fj(l'[j f). First, we prove that
(4.18) fsm;g |Di(F)| = O(o(27)2MNd=Xa=0/CDINT = F) as.in (j, N).

PrOOF OF (4.18). For convenience, let v = 2. Let D'(A) = D'(1,) for any
subset A of ]0,27?]. In order to prove (4.18), it will be necessary to use the
entropy properties of VC classes of sets. So, we need to recall some well-known
results on VC classes of sets.

Let P be a probability law on R? with finite support and let ¥ be a VC
class of subsets of R? with entire density D(?) [cf. (2.1)]. Take on ¥ the usual
pseudometric d, associated with P: For any (S, S") in 7'X 7, dp(S, S') =
P(SAS’), where A denotes the symmetric difference, and let N(e, 7, P)
denote the minimal cardinality of a collection 7(¢) of elements of 7 such that
for any S in 7 there exists S(¢) in 7(¢) with dp(S, S(¢)) <e. Then
log N(e, 7, P) is called a metric entropy. When 7 is a VC class, the following
nice result holds. .
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LEMMA [Dudley (1978)]. There exists a constant C depending only on D(¥")
such that for any probability P with finite support, for any ¢ in 10,1/2],

N(s, 7, P) < Cle~'log s[””".

Now, from the assumption (2.3) and from the definition of 7, it follows
that &/ is a VC class of subsets of Z N 10,2"¢] satisfying D(«,) < D(¥),
where 7 is the VC class of subsets of R? defined in (2.3). Let D = D(¥) + 1.
Applying Dudley’s lemma to the uniform distribution on ]0,2¥9] N Z*, we
obtain that, for each j in ]0, Nd[, there exists a finite net .27; 5, of elements of
&, such that the following hold:

(i), #2 y < C2PN?7D) for some positive constant C.

(4.19) (i) Foreach A € o7, there exists A; in & 5 such that
#(AAA,) <2/,

Let the neighborhood %; 5 of the diagonal of & X ., be defined by

(4.20) U.n={(AA) e xo: #( AL A) <27}

Clearly, we have

(4.21) sup |D'(A)| sup |D’(A)| sup |D’(A) - D’(A’)[
Acy, At y (A, A)e%

Let

(4.22) v, = 2K .2/47%/d),

Using Lemma 1, inequality (4.14) and (4.19X1), we get for any x < 1/cg,
[E(exp(x sup |Dj(A)log B}|/cp(2j)))
(4.23) Aes,
< 2C.2PN4=D exp(2cquyy_;x*).
The usual Cramér-Chernoff calculation then yields

P sup [D(4)]2 cup(®) o

AE‘Q{J’N

(4.24)

D(Nd —j)
<22 /) exp 1 xvﬁ,}/f

x? log B; )
Applying (4.24) with x = ¢y/Nd — j for some ¢ large enough, we obtain

P(ASUP |D’(A)| > cy;0(27)x(Nd - J)l/zv}\,{i_J) < (ﬁJ)Nd_j’
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Using the Borel-Cantelli lemma, we then get

(4.25) sup |Dj(A)| = O(p(2/)2N¢~Xd=0/@d/Nd —j) as.in(j,N).
Acd

Using (4.21), the proof of (4.18) will be achieved iff we prove that

(4.26) sup  |Di(A) — Dy(A)| = O0(e(2/)(Nd - j)) as.in(j,N).
(A, AV, y

PROOF OF 4.26. By definition of %; y, for any (A, A) in %; y, the follow-
ing inequality holds:

Y |ymp(la- Ly <1

0<p<2Nd—~

It follows that

Vj,p - U

Jsp |

(4.27) sup |Dj(A) - Dj(A)|< sup
(A, A)eZ, 5 0<p<2Nd-i

Now, using (4.27), inequality (4.14) with g = €, , and the same arguments as
in the proof of (4.25), we obtain (4.26). Hence (4 18) holds. O

Second, we prove that

(4.28)  sup /(11 ]lA)|— O(y=Y(2') w2, VNd —j) as.in(j,N).

(S 2N

Proor oF 4.28. Using (4.19) and the definition of %; y, it is easily seen
that

up |€/(T, L)|= sup |&/(ILL,)]

Ae g, /N
+  sup &((Id-11,)(1, — 1)
(4.29) (A’A,)E%Nl ((1d - 1,)(1, - 1,))|
+ sup  |&(A) - E(A)].
(A, AVe%; N

The control of the first term on the right-hand side uses (4.11), Massart’s
lemma, (4.19)(i) and the same arguments as in the proof of (4.25), so it will not

be detailed.
We now control the second term on the right- hand side in (4.29). By (4.2)

and by definition of the sequence &,
(M -T)(L)) = X 27(e;,l1a)87(e5,)-

0<p<2aNd-i
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Note then that, for any (A, A) in %; y,
Z lej,p(]]'A - ]]-A’)l <1,

0<p<2Nd—~

where e; , = Ly,5, ,11y2,) Hence,

(4.30) sup |&/(([d—-1;) (1, - L)) < sup |€/(e; )| .

(A, Ve, N 0<p<2Nd~

Now, it follows from (4.11) and Massart’s lemma that the r.v. &/(e; )
belongs to the class H(cllog a;l/¢~(27),3) for some positive constant c,
where a; is defined in the proof of (4.11). Hence, applying Markov’s inequality
to exp(clloga 1€7Ce; )/ H(27)), we get
(4.31) P(c|£/(e; )| = 2(Nd - j)y~1(27)) < 2.(a,/2)
Combining (4.30) and (4.31) with the Borel-Cantelli lemma, we then obtain

sup  [£/((1d — T1,)(L, = Ly))|
(4.32) (A, ANe%, §
=O0(y~(2)(Nd - j)) as.in(j,N).

It remains only to give an upper bound on the third term on the right-hand
side in (4.29). This is the purpose of the following lemma.

Nd —j

LeEmMMA 4. Almost surely in (j, N),

sup  [&/(1, — 14)| = O(w =12 vy, VNd = ).

(A, Ve §

- Proor. As the first step of the proof, note that there exists some positive
constant c;, such that, for any (A, A) in %; y,

P(|&/(1y — Lo)| 2 crqp74(27)) < 1/2.

[This inequality follows from (4.14), (4.20) and Massart’s lemma.] Hence, by
Lévy’s symmetrization inequality [see Pollard (1984), page 14, for a proof], if
£7 is an independent copy of the sequence &/, there exists some constant c,,
such that

IP( sup Igf(llA—ﬂﬂ)lzt+c14«/r1(2f))
(A, ANeZ, N

s2ﬂ3’( sup |(§j—gfj)(]lA - ]lA,)lzt).
(A, AVeZ, N

Now, we will use the following representation for the symmetric random
variables ¢/ — £7. If the probability space is rich enough there exists some
sequence (B,), . , of i.i.d. random variables with Bernoulli distribution B(2!~)
and some sequence (m ), . , of symmetric i.i.d. random variables each bounded
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by 2M;,, with P(m; # 0) < a; [the sequence (a;);., is defined in (4.11)]
satlsfylng The sequence (m;); ., is independent of the sequence (B,);., and
§J - 51 1 = B;m;. Let B denote the random set of integers i such that B; = 1.
We want to majorize the Laplace transform of the random variable deﬁned in
Lemma 4. First, we will control the conditional Laplace transform, given the
set B. Since &7, is a Vapnik—Chervonenkis class with D(&Z) = D — 1, we
have

(4.33) #{(B x B) n %; v} < (#B)*".
Let n(B) = sup4 aye, , #(B N AA A), and let

D= sup |(& - &)(1, - Ly)l.
(A, )% y

From (4.33) it follows that
[E(exp(xD}")) < Y E(exp(x(m(C) — m(C"))))

(C,Che(BXBINY, y
< 2k(#B)* exp(n(B)aj(cosh(ZMij) - 1))
Let n;(B) = supg <, <gne~ #(I; , N B). Using Lemma 1 and (4.20), we get
(4.35) n(B) < 4vyy_;jn;(B) and #B <2Nn,(B).

Let #(x) = exp(4vy,_;a (cosh(2M,, ;x) — 1)). From (4.34) and (4.35) it follows
that

(436)  E(exp(xD})) < 2k.22PNE(n,;(B)*P(2(x)) 7).

Now, let n; ,(B) = #(I; , N B). Clearly, the random variables n; »(B) have as
common dlstrlbutlon the b1nom1a1 distribution B(27,2'7/). Slnce n;(B) is the
supremum of these random variables, it follows that

(4.37)  E(exp(xD})) < 2k.20+2DXNI-DE(n \( B)*P(¢(x))"P).

Let ¢ = #(x). For any nonnegative integer n,
§2Dyn+2D

(4.34)

n2Dtn < __é_tz_D__
Then, using (4.37), we get

%P
E(exp(xD})) < 2k.20+2PXN Doy

(£22(1 + 2179z - 1))¥)

< k(2D)120+2DX2+Nd=)42D exp(2t)

< k((2D)!1)"20+2PX2+Nd =D exp(3t).
Heénce, setting x = x; = (2M, ;)" 'argcosh(1 + (Nd — j)/(4vy,_;a;)), we get
(4.38) log E(exp(xD})) < ¢(D) + (4 + 2D)(Nd —j),



SET-INDEXED PARTIAL SUM PROCESSES I 783

for some constant c(D) depending only on D. By Markov’s inequality applied
to exp(xD}), it follows that

(4.39) P(Dj = x;'(Nd - j)(4 + 2D)log(e/a;)) < exp(c(D)).a)* ™.
Noting that log(e/a;) = O(argcosh(1 + e/a;)) and that, for any a in 0, b],
(argcosh(1 + a)) ‘argcosh(l + b) < Va~1b,

and using inequality (4.39) and the Borel-Cantelli lemma, we obtain Lemma 4.
Proposition 2, (4.3), (4.5), (4.7) and Lemma 2 then yield Theorem 3(c). O

5. Lower bounds for the approximation. In this section, starting
from a paper of Beck (1985) on lower bounds on the approximation of the
multivariate empirical process indexed by the class of Euclidean balls, we
prove that our Theorem 1 is nearly optimal. So, .~ shall be the class

BALL(d) = {G n [0,1]%: G is an arbitrary Euclidean closed
ball of radius r, r < 1},

which was previously used by Beck (1985).

Now, we define the following Wasserstein-type distance W(F,G) of the
distributions F and G. Let Z(F, G) denote the class of random vectors on R?
with respective marginals F and G. We set

W2(F,G) = inf E((X-Y)?.
( ) (X,Y)ler.l/(F,G) (( ))

From a result of Bartfai [see Major (1978) for a proof], it follows that

(5.1) W2(F,G) = fl(F—l(u) - G Y(u)) du.
0
Now we prove Theorem 2. Let M, be defined by
M,=sup | ¥ (X;—Y)|
SeSievsS
Throughout this section, | - | denotes the Euclidean norm on R?. Define an

empirical measure p associated with the arrays (X)), ;¢ and (Y;); 22 by
Hn= Z (X; = Y))8,-.

i€lo, vl

As Beck does, we set
~ 2 (0 2
() =Ly &) =X(2) and h(p,?) =~ f/zlg(r,t)l dr,
p

for any p in [0, 1] [note that h(p,t) depends only on p and [¢[]. Using the
Parsgval-Plancherel identity, we get

2 d 2y _ [ n ) 2
;—/;/2 rfRdl(Xr*,u)(x)| x—[Rd (p, t)|A(2)]" dt.
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According to Beck’s calculus [Beck (1985), inequality 29], there exists some
positive constant ¢ depending only on d such that, for any ¢ in R?, h(1,¢) >
c2v?'h(1/(2v), t). Hence, using (5.1) and the above inequality,

2
1 c
2f dr[ [(xrm()fdez— T (X -Y)"
17z °R Vi, v
From this it follows that there exists a ball B(x, r) with radius r € [1/2,1]
such that

2 c2
6 [ £  x-w]=5 L @-n
i€ B(x, N0, 119 Y oielo, v
Now, by definition of W(F,G), E(X, — Y,)?) > W(F, @) for any i in Z¢. So,
the first part of Theorem 2 holds.
Let F, be the empirical distribution function of (X,), <y ,¢, and let G, be

the corresponding empirical distribution function associated with Y. By
(5.1,

M?> c2vd‘1f1(F;1(u) - G;l(u))2 du a.s.
0

We then complete the proof of Theorem 2 by combining the Glivenko-Cantelli
theorem, the above inequalities and standard arguments of measure theory. O

APPENDIX A

Multivariate quantile transformations. Let X =(X,,..., X,) be a
random vector on some P-space with law @,. Our aim is to define a random
vector Y = (Y,,...,Y,) from X such that the following hold:

1. Y is a N(0, I,)-distributed random vector.
2. For each [ < s, for given (X,,..., X,_,), the random vector (Y},...,Y) is
conditionally N(O, I, ,_,)-distributed.

Let F, denote the distribution function of X, and, for any [ in 11, s], let
F,(-1X,,..., X,_,) denote the conditional distribution function of X, for given
(X,,..., X,_,). Define the random vector U = (U, ..., U,) from (X,,..., X;)
by U, = F(X,) and, for each [ > 1, U, = F(X,|X,,..., X,_).

Clearly, U, is a measurable function of (Xj, ..., X;). Moreover, if we assume
that @, is absolutely continuous with respect to the Lebesgue measure and
has a strictly positive and continuous density, then, conditionally given
(X4,..., X,_)), the random vector (U, ..., U,) has a uniform distribution over
Is*1=! for each [ > 0. Now, let ® be the distribution function of a standard
normal, and let Y = (Y,,...,Y,) be the random vector defined from U by
Y, = ® XU,) for any I > 0. Clearly Y satisfies the above conditions. Hence-
forth, we call the so-defined transformation the multivariate quantile transfor-
mation. The conditional transformation of (X, ..., X,) given (X4,..., X;_,) is
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called the multivariate conditional quantile transformation of (X,,..., X,)
given (X,,..., X, ;). Now, we recall some recent results on multivariate
quantile transformations of partial sums of smoothed random vectors.

In fact, the proof of Lemma 3 is based on Einmahl’s results on the Gaussian
approximation of a sum of independent vectors, via Rosenblatt’s transforma-
tion. However, we need to modify slightly his main result. We consider a
sequence £,,..., ¢, of independent mean zero random vectors with values in
R® such that

Var(¢, + -+ +&,) =V, I, and E(explts,|) < +o,

for any ¢ in R, for any p < m. Let a, > 0 be the positive number such that

(A1) Y ozolE(prl3 exp(aolgpl)) =V,, andlet a=a,A (1/2).

p=1

THEOREM [Einmahl (1989)]. Let &,,...,¢&, be centered random vectors
with values in R® satisfying the above conditions and let S,, = &, + -+ +¢,,.
Furthermore, assume that there exists some positive v such that the Gaussian
law N(0,vV,, 1,) divides the law of S,,. Let Y be the standard Gaussian r.v.
obtained from S,, via the multivariate quantile transformation. Then, there
exists some positive constant C(v) depending only on v and s such that, if
V., > C(v)a~2, the following holds true:

1S,,?
(A.2) S, — VV. Y| < C(v)a—l( v+ 1),
provided that |S,,| < C(v)aV,,.

REMARK. This theorem is exactly Einmahl’s Theorem 7 [Einmahl (1989),
Section 3]. Note that Einmahl had to assume V,, > ca~2log a~* [cf. Einmahl
(1989), page 43] but this condition comes from exp(— 3c%a?V,,) < B,,: here,
Bn=1 /(2am ). Hence, (A.2) still holds when m > ca~2 Moreover, the
condition v©®*V/2 > @ (2ce) in Einmahl’s result is ensured by @,(2ca) <
exp(—V  a%c).

Now, using Einmahl’s theorem, we prove that T,, = |S,, — /V,, Y| belongs
to H(ca, 3), for some constant ¢ depending only on v. Clearly, if V,, > C(v)a™2,

1S,,I*
-1 m
IT,| <C(v)a (1 t Lis, <cwav,y T 1 Tml Lys,. > cwav,-
m B

Integrating by parts we obtain that m‘IIS,nlz]lI S, |<Cwav, belongs to H(c,,3)
[see Massart (1989), Lemma 4, Section 3]. Now, from the definition of a, it
follows that

E(exp(tlS,,)) < exp(2Ith|2)~ for any |t| < a,
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where (¢/S,,) denotes the Euclidean inner product on R*. Hence, the classical
Cramer—-Chernoff calculation yields

P(S,,] > C(v)aV,,) < 2s exp(—c5V,,a?),
and, by the Cauchy—Schwarz inequality, for any ¢ < a/2,

1/2

o?
[E(exp(tlsml]]'|Sm|>C(v)an)) <1+ exp —c3Vm?)([E(exp(2tle|)))

a2
<1+exp Vm(Bt2 - c3—2—-) .

Hence, |S,,|1;s |- cawav, belongs to H((a/4)/c3,3), and using the convexity
of x — exp(x),

(A.3) IT..| € H(ca,3) for some c > 0.

Now, we prove Lemma 3(b). The proof of (a) uses the same arguments and
will be omitted. From now on we work condltlonally given B; [B; is defined
just before (3.1)]. For given B;, one can write ; p, U 0 ») as a sum of 2/-1
independent random vectors with values in R2*. We set

-1/2 . -
, = (Var(U2,IB;))” UP, and S, , = 2/(W2,, W0,).
Recall that W, is defined by (3.4) and U}, is defined by (3.1). Clearly,
27/ 2V p I8 the multivariate conditional quantlle transform of the last %
components of S; , given the & first components. Therefore, if o satisfies the
condition (A1 of ‘Einmahl’s theorem, we have

(A.4) |22W2, -V, ,| € H(ca,3).

Moreover, it is easily seen that for any B, there exists some symmetric matrix
I' depending on p and B, satisfying I, < 4I' < 161,,, where < denotes the
usual partial order relatlon in the space of symmetric real matrices (i.e., A < B
iff B — A is a symmetric positive matrix), and such that
0 770
8. = T(US,, U2).

.o =

Hence, if {; is the positive number such that
2{j[ k|x|3 exp(|{;x) dQ;(x) = 1

then .the random variable |27/ 2W0 - pI is an element of H(c,{ > 3), for
some universal constant c, (here the Constant v of Theorem 4 satisfies
v > 1/4). Now, the following lower bound on { is the main technical tool for
the proof of Lemma 3.
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LEMMA 5. There exists a sequence (;); . o of positive numbers each bounded
by 1/2 and a positive constant cy such that

(A.5) Y a;<+o and cu;>cs(¢71(27)) og ayl.
j>0

Before proving (A.5), we conclude the proof of Lemma 3. For the sake of
simplicity (throughout the sequel, p is a fixed positive integer), we write

V,,=V=272y, Ul =U U’ =U and W, =W.
Now, recall that we work conditionally given B;: The matrices Var U, Var U,
and Cov(U, U) will refer to conditional varlances glven B;. For convenience,

we also set A = (Var U)~' Cov(U, U). By definition, W = U AU. Hence, the
following decomposition holds:

~

U -1,V = AU + ((Var W) """ = 29721} )y + (W - (Var W)Y ),

where I, is defined by (3.5). By convexity of x — exp(x), it suffices to control
each of the terms on the right-hand side. First we note that the above-defined
matrices are elements of the commutative ring generated by Var @;. Hence, we
have

Var W = Var U — ACov(U, U).

Moreover, by definition of (U, U), Var U > 2/~'I,, and Cov(U, U) =
—b; ,Var @, [b; , and b » are defined in (3.3)]. Hence, we have

(A.6) Al < 22‘jbj’p <2
" from which it follows that, for any B i, [Var Wl < 3.27. Hence, by (A.5), we get

(A7) W — (Var W)’y | € H(c,t,/3,3).
On the other hand, the r.v. T, = (2//*T; — (Var W)/?)Y is conditionally
Gaussian, given B;. Hence, to control this r.v. it will be enough to bound the
norm of the above matrix. Here, a few calculations prove that
27721, - (Var W) < a2 (1 4 8, ).
From this it follows that, for any B,
IT,| < 4|YI+ Y2+ b; »

From the above inequality, it can easily be seen that there exists some
universal constant cg such that |T'| belongs to the class H (cg, 3). It remains to
control the random vector AU. Let V! = Z,EI r12NZ V! is a Gaussian
vector with law N(0,2/~',). Moreover, by definition of U and by (A.6),

|AU| < (2M; + 1)b; , + 21 |V?]%
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Now, recall that b, , has a binomial law B(2/71, p;)- Hence |AU| belongs to
the class H(c,llog a jI /M j,3) for some universal positive constant c,. Then,
we complete the proof of Lemma 3 by collecting the above inequalities
and (A.7). O

ProOF OF LEMMA 5. First, we note that a3 exp(at) < t%(exp(2at) — 1), for
any positive ¢. From this it follows that there exists some constant C,
depending only on ¢ and on % such that

J
(A.8) [ alxPele* d@;(x) < Co|1 + X a,_y(exp(2aM,) — 1)],
R* =1

where the reals a,_ , are defined by (4.11) and M, = ¢~ '(2'*'). Hence, to
prove Lemma 5, it is sufficient to prove that there exist some positive con-
stants C; and C, such that

<

a;_y(af A/~ 1) < Gy,

qu

(A.9)

=1

for some sequence (a;);. , satisfying the conditions of Lemma 3. Now, recall
that there exists some ¢ > 0 satisfying M, <M j2(l‘1 )2, Hence, there exists
some positive constant Cj3 such that

é VM M;' <C; and ‘/Mle_l(i +j—1) <C,.
-1
So, setting a; = sup, . ; @] ' and using the convexity of x — e, we get
éal_l(a}”l/‘c?»MJ) -1) < é (1—a)yMM;' <Cj.
=1 =1
Hence, (4.9) holds true and the proof of Lemma 5 is complete. O

APPENDIX B

Proor oF LEMMA 2. By Kronecker’s lemma, Lemma 2 follows if

+ o0 |X'l —Xi| ‘
Y, —5 - < +® with probability 1.
i-1 ¥ (9)

So it is sufficient to prove that
ik IE(lX‘l - Xll)
i YT

Now, if i’ is the greatest odd divisor of i, it can easily be seen that

< 4o,

(X, - X]) <2 [m >¢_1(i,)|x| dQ(x).
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Hence, we have

+i° E(X; - X,1) 2% | (x)Z

— 5 =< IPESVEDYAY
i=1 ‘-// (l) i odd |x|>¢_l(l) (ll (lz )

By (2.2)(ii), there exists some positive constant ¢ such that ¥, ,1/¢~%(i2%) <
c/¢~(i). Moreover, it is well known that the series

+ o
)y [Rk]llxl =y 1iylx1 dQ(x)
i=1

is convergent iff [p:y(|x]) dQ(x) is finite. Hence, the proof of Lemma 2 is
complete. O
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