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CONVERGENCE RATE OF EXPECTED SPECTRAL
DISTRIBUTIONS OF LARGE RANDOM MATRICES.
PART II. SAMPLE COVARIANCE MATRICES

By Z. D. Bal

Temple University

In the first part of the paper, we developed certain inequalities to bound
the difference between distributions in terms of their Stieltjes transforms
and established a convergence rate of expected spectral distributions of
large Wigner matrices. The second part is devoted to establishing conver-
gence rates for the sample covariance matrices, for the cases where the
ratio of the dimension to the degrees of freedom is bounded away from 1 or
close to 1, respectively.

1. Introduction. Basic concepts and literature review in this area have
been given in Part I of this paper, and will not be repeated in this part.
However, for convenience, a basic inequality needed in the proofs is cited in
Section 2. Also, in Section 2, we shall establish some lemmas needed in the
proofs of the main theorems. In Section 3, we shall establish the convergence
rate for empirical spectral distributions of sample covariance matrices.

Note that the density function of the Marchenko—Pastur law [see (3.2)] is
bounded when y, the ratio of the dimension to the degrees of freedom (or
sample size), is different from 0 and 1. We may expect to have a similar result
as that for Wigner matrices, that is, the order of O(n'/*). We prove this result.
However, when y is close to one, the density function is no longer bounded.
The third term on the right-hand side of (2.12) of Theorem 2.2 in Part I is
controlled only by Av'/2, This shows that we can only get a rate of the order of
Vv, if we establish similar estimates for the integral of the difference of
Stieltjes transforms of the empirical spectral distribution and the limiting
spectral distribution. Moreover, its Stieltjes transform and the integral of the
absolutely squared Stieltjes transform are not bounded. All these make it more
difficult to establish an inequality at an ideal order when y is close to 1. In
fact, the rate we actually established in this part is O(n ~5/8),

2. Preliminaries.

2.1. A basic inequality from Part I. We shall use Theorem 2.2 proved in
Part I to prove our main results in this part. For reference, this theorem is
now stated.
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650 Z.D. BAI

THEOREM 2.2 OF PART 1. Let F be a distribution function and let G be a
function of bounded variation satisfying [|F(x) — G(x)| dx < «. Then we have

1 A
IP=Gls gy |/ sl
(2.1) +21Tv’1f |F(x) — G(x)|dx
) |lx|>B
+v~ ! sup |G(x +y) — G(x)|dy]|,
x lyl#2vr

where vy, k, 7, A and B are positive constants satisfying A > B,
4B

T EA-Byy -1

(2.2)

and

1 1 d 1
> —.
‘rrf|u1<,u2+1 “7

2.2. Stieltjes transforms of Marchenko—Pastur distribution. Assume that
0 <y < 1. In a similar manner as we did for the semicircular law in Part I, we
obtain

1 (¢2 - 1)*d¢
Sy(Z) == . ¢ 2 ’ 2 ’
4miy Ng=14(L% + 200 + 1)(£% + 2af + 1)
where a = (1 + y)/2y/y and ' = a@ — z/2y/y . The function
(€2 = 1)’ /¢(¢% + 2oL + 1)(£2 + 2a + 1)
has five singular points:

L=0, L=—Vy, =-1/y

and

L= —((L+y-2) £V +y -2 - 4y)/2/y.
It is obvious that |{;] > 1. By the convention (8.1) for the square root of a
complex number given in Section 3.1 of Part I, both the real and imaginary

parts of \/(1 +y - z)2 — 4y have the same signs as those of z —y — 1,
respectively. Hence, the absolute value of {; is greater than that of {,. Since
{445 = 1, we have |{;| > 1. By elementary calculus, -one finds that the residues

of {; ,4arel, —(1 —y)/z and — \/(1 +y- z)2 — 4y /z, respectively. Hence,
by the residue theorem, we obtain
y+z-—1—\/(1 +y—2z)° -4y

- 2yz '

(2.3) s,(2) = —
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Because Marchenko-Pastur distributions are weakly continuous in y, let-
ting y 11, we obtain

04 z— V2?2 — 4z
(‘) sl(z)— 22

Similarly, one may prove that (2.3) is still true when y > 1.
Now, we shall find bounds for s,(2) for both cases when 0 < 6 <y <® <1
and when ® <y < 1, respectively. Note that

(sy(z) + —z-)(s;‘(z) + %) = —1—2

yz

1
s(2)s5(2) = o,
where
2
y+z—1—\/(1+y—z)2—4y .

Recalling the convention for the square root of a complex number given in

Part I, we find that the real part of \/(1 +y — 2)* — 4y has the same sign as
v — 1 — y. We conclude that

sy(2) =

. 1
sy(z) + P

|
sy(z) + ; <
for all z, and

s,(2)| <|s3(2)]

for all z such that u > 1 + y or u < 1 — y. Therefore, we have

oy

(2.5) |s,(2)] < | i for all z

and

(2.6) |s,(2)] < -i—, for z with lu — 1| 2 y.
Vylzl

Forthecaseof 8 <y < ® < 1,if |ul < (1 —y)1 + V¥)/@ + 3y/y), then by
the fact that

2
y+z—1+]/(1+y—z)2—4y’

(2.7) s,(2) = -
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we obtain
2
sy < T3 =
(28) 1+ 3y
SVHha-»n
From (2.5) it is easy to see that (2.8) is still true if |ul = (1 —y)(1 + )/
(1 + 3y/y).

For the case of ® <y <1,if (1 — /y) <u<1+y then (1 +y—u)?<
4y. Hence, by (2.7) we obtain

2
|5,(2)| <
Im(\/(l +y—z)2—4y)
2v/2
\/\/(w2 -v? - 4y)2 + 4v?w? — w? + 4y + v?
2.9
(2.9) o3
=7
\/(w2 - 4y)2 + 4v2w?
2v2 2
< < ’
N 8yv? Vo

where w=1+y—u. If u <1 - \/37)2 or u> 1+ y, the estimate (2.6) is
true and hence the inequality (2.9) is still true.

2.3. Integrals of the square of the absolute value of Stieltjes transforms.
Applying Lemma 3.1 of Part I to Marchenko—Pastur (for 0 < y < 1) laws, we
obtain

(2.10) [ls(2)[" du < L —
Vy(1-9)

since the density function has an upper bound 1/(m/y (1 — y)).

It should be noted that this bound tends to infinity when y tends to O or 1.
This is reasonable for the case that ¥ — 0 because the distribution tends to be
degenerate. For the case y — 1 or'even y = 1, the distribution is still continu-
ous, although the density for y = 1 is unbounded. One may want to have a
finite bound (probably depending on v). We have the following inequality.
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LEmMA 2.1. For any y < 1, we have

(2.11) [ls,(2)| du < %@

Proor. Using the notation and going through the same lines of the proof
of Lemma 3.1 of Part I, we find that

b (b 1
I=47rvj;fa((u_x)2+4v2)¢(x)¢(u)dxdu

1
= SWULbj;b( TR )¢(x)¢(u) dxdu (by symmetry)

o 1
< 4Uy_1\/?;];) j;b(ﬁ(x)(mz—)) dwdx

L, [2b e 1
=2y \/;j;) (_—\/E(w2+1))dw

3 217'(1 + \/37)
= —__ﬁy .

Here we used the fact that 7

® 1 du = T
fo(\/;(w2+l)) YR

which may be computed by using the residue theorem and the equality

® 1 1 o 1
fo(mwzﬂ))dw: 1—i/-w(¢2(z2+1))dz

This completes the proof of Lemma 2.1. O

LEmMMA 2.2. Let G be a function of bounded variation satisfying
[1G(w)l du < . Let g(2) denote its Stieltjes transform When z = u + iv with
v > 0, we have

(2.12) [le(2)* du < 20v=W(G)IGl,

where V(G) denotes the total variation of G and ||G| = sup,(IG(x)).



654 Z.D. BAI

ProoF. Going through the same lines of the proof of Lemma 3.1 of Part I,
we may obtain

1
I= 4170/[( TEP e ) dG(x) dG(u)
(u —x)G(x)dx

= 8
v/ /((u -x)2+ 402)2
< 2 W(@)IIGI. m]

dG(u) (integration by parts)

2.4. Lemmas concerning Lévy distance.

LEmMma 2.3. Let L(F, G) be the Lévy distance between the distributions F
and G. Then we have

(2.13) L¥(F,G) < [|F(x) - G(x)|dx,

Proor. Without loss of generality, assume that L(F,G) > 0. For any
r € (0, L(F, @)), there exists an x such that

F(x—r)—r>G(x) [orF(x+r)+r<G(x)].

Then the square between the points (x — r, F(x — r) — r), (x, F(x — r) — r),
(x—r,F(x —r) and (x, F(x — r)) [or (x, F(x +7r)), (x +r, F(x + r)),
(x, F(x + r) +r) and (x + r, F(x + r) + r) for the latter case] is located be-
tween F and G (see Figure 1a, b). Then (2.13) follows from the fact that the
right-hand side of (2.13) equals the area of the region between F and G. The
proof is complete. O

Lemma 2.4. If G satisfies sup,|G(x + y) — G(x)| < Dly| for all y, then one
may prove that
(2.14) L(F,G) <|F-Gl<(D+1)L(F,G), forallF.

Proor. The inequality on the left-hand side is actually true for all distribu-
tions F and G. It can follow easily from the argument in the proof of Lemma

2.3. To prove the right-hand-side inequality, let us consider the case where for
some x,

F(x) > G(x) + p,
where p € (0, |[F — G|). Since G satisfies the Lipschitz condition, we have
G(x+p/(D +1)) +p/(D+1) < G(x) +p < F(x),
which implies that A

L(F,G) >

P
D+1°
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F(x+r)+r

F(x+r)

]

0 X X+

(b)
Fic. 1.

Then the right-hand-side inequality of (2.14) follows by making p — ||F — GIl.
The inequality for the other case, that is, G(x) > F(x) + p, can be similarly
proved. O

Lemma 2.5. Let F,, F, be distribution functions and let G satisfy
sup,|G(x + u) — G(x)| < D|ul®, for all u and some B € (0,1]. Then
IF, - GI'"'/? < 2l F, - GII'PIIF, - G|l

(2.15) +2(2D)" [|Fy(x) - Fy(x)| dx.

Proor. Let 0 <p <||F; — G|. Then, we may find an x, such that
Fyxy) — G(xy) > p [or Fy(x,) — G(x,) < —p, alternatively]. By the condition
on G, for any x € [x, — (p/2D)'/B, x,] (or [x,, xo + (p/2D)'/#] for the other
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case), we have |F(x) — G(x)| > (1/2)p. But for any x in this interval, we have
zp <|Fy(x) — G(x)| < IF; = Gll +| Fy(x) — Fy(x)].

Integrating the above inequality over this interval and then making p —
|F;, — Gll, we obtain (2.15). The proof is complete. O

3. Convergence rates of spectral distributions of sample covari-
ance matrices. Let W, =(w,;;(n)) =n"'X,X,: p X p, where X, = (x,,(n),
i=1...,p,j= , n). Throughout this section, we shall drop the index n
from the entries of Xp and those of W, and assume that X;,’s are indepen-
dent and the following conditions hold:

(i) Ex;=0, Ex}=1, foralli,j;
(3.1) (i) supsupEx{Iy, . —0, as M - .
n t,J

The matrix W, is known as a sample covariance matrix. It should be noted
here that the notation W, is no longer the same as used in the last section.
Denote by F, its empirical spectral distribution. Under the conditions in (3.1),
it is well known that F, — , F, in probability, where y = lim, ~{p/n) €(0,)
and F, is the hmltmg spectral distribution of F,, known as the
Marchenko-Pastur (1967) distribution, which may have a mass of1—y lat
the origin if y > 1 and has a density

(3.2) F)(x) = —\/ 4y — (x —y — 1)’ I, (%),

with a =a(y) =1 —y)? and b=5b(y) =1 + y)% If X, is the p Xn
submatrix of the upper-left corner of an infinitely dimensional random matrix
[x;;, i,j =1,2,...], then the above convergence is true a.s. (almost surely)
[e.g., Wachter (1978) who actually proved the a.s. version of the convergence
under the uniform boundedness of the (2 + ¢)th moments of the entries of
X1

To consider the rate of the convergence, we shall establish the following
theorem.

THEOREM 3.1. Under the assumptions in (3.1), we have
(3.3) |EF, — F;pll = 0(n~%),
fory,=p/n €(6,0), where 0 < <O <1lorl1<f<0<cw

THEOREM 3.2. If 0<6 < y < O < «, then under the assumptions in (3.1)
‘we have

(3.4) |EF, - F, |l = 0(n=%*),

where 8 <1 < 0.
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REMARK 3.1. Because the convergence rate of |y, — y| can be arbitrarily
slow, it is impossible to establish any rate for the convergence of |EF, — F, |l if
we know nothing about the convergence rate of |y, —y|. Conversely, if we
know the convergence rate of |y, — yl, then from (3.3) or (3.4), we can easily
derive a convergence rate for ||EF, — F, | This is the reason why F, , instead
of the limit distribution F,, is used in Theorem 3.1. :

For simplicity, we shall drop the index p from ¥p- We need only to prove the
theorems for the cases where § <y <® <1 and ® <y < 1. For the case of
y > 1, since the first n largest eigenvalues of the matrix X, X,, are identical
with those of X, X, the theorem then follows by considering the analogous
result for the matrix (1/p)X, X,. For simplicity, these two cases are referred
toas y < ® and y < 1, respectively.

To begin with, we shall establish two propositions applicable to both cases.

ProposiTION 3.3. Under condition (3.1) and the following additional as-
sumption:

(3.5) lx; ;| < Vnm, withn -0,
we have
(3.6) [B |EF,(x) — F,(x)|dx = o(n™%),

where B=0b + 1, b = b(y) is defined below (3.2) and the constant t > 0 is
fixed but can be arbitrarily large.

REMARK 3.2. For any rate of n =, — 0, Proposition 3.3 is true. In
application of this proposition, the choice of 7 in (3.5) involves a truncation
and normalization procedure described at the end of this section [see (3.62)].

ProoF. In Yin, Bai and Krishnaiah (1988), after truncation and normaliza-
tion, it is actually proved (their arguments still work even without the assump-
tion of identical distributions of the entries of X ») that,

(3.7) EA)" <(+0",

for some sequence of constants { = {, > 0 and some sequence of integers
m = m, such that log n/m — 0, under condition (i) of (3.1), (3.5) and

(3.8) Elx;;|* < dn®=3/2) forall k > 3,

where A, denotes the largest eigenvalue of n™'X, X and b is defined in (3.2).
Note that (3.8) is implied by (3.5) and (ii) of (3.1).
Note that

(3.9) 1= F(x) <l ., forx>0.
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We have

f:|EFp(x) - F(x)]dx < ]:P(AP > x)dx

(3.10) </ (b+§)

= 0((9—;—{)"‘— ) =o(n™t),

for any fixed ¢ > 0. Proposition 3.3 is proved. O

Theorem 3.1 can be proved via Theorem 2.2. From the above results and
the fact that F,(x) = F(x) = 0 for all x < 0, we need only estimate s,(2) —
s (2)forz=u + iv,v >0, |u]l < A, where A is a constant chosen accordmg to
3.2).

From (2.3), the Stieltjes transform of the limiting spectral distribution F, is
given by

1
(3.11) 5,(2) = —2—y—z—{z+y—1—\/(z+y—1)2-—4yz>.
Set
1 i
(3.12) s,(2) = ;E tr(W, — zl,)

PropPoSITION 3.4. Choose v = (10Cy(A + 1)/n)"/8, where C, is a constant
which will be specified in (3.32). Then, if (3.1) and (3.5) hold, we have that

(3.13) J* Isp(2) = s,(2)| du < Cv,
-A
where C is a positive constant.

Proor. By the inverse matrix formula [see (3.8) in Part I], we have

()=~ L E -

s S

P S s — 2 — (W) (W (k) — oI, 1) a(k)
1 2 1

(3.14) - ) g g, +1—y—2z—yz,(2)

1
- - +,
z+y—1+yz5,(2)

where W,(k) is the matrix obtained from W, by deleting the kth row and kth
column, a(k) denotes the vector obtamed from the kth column of W, by
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removing the kth element, and

5=25 Ly g i
P P2t (2+y—1+yzs,(2))(z2+y -1 +yzs,(2) — &)
1 2 &
=-—YE
(8.15) Pr=1 (z+y-1 +yz.<>'p(z))2

2
12 £}

Pr=1 (z+y-1 +yzsp(z))2(z +y—1+yzs,(2) —¢,) .

Solving s,(2) from (3.14), we get two roots

1
(3.16) s34y 2)(2) = — E(z +y—1-—y26 + \/(z +y—1+y28) - 4yz).

Comparing (3.16) with (3.11), it seems that the Stieltjes transform s,(2)
should be the solution s,(2), for all values of z with v > 0, that is,

1 2
(3.17) s,(2) = _Z—yz(z +y—1-—y26 — \/(z +y — 1+ y28) —4yz).
Now, we prove (3.17). First, we note that
pxdF (x)
Im(z+y—1+ =Im|lz-1+y[ —2—=
m(z +y yzs,(2)) m(z y[a P )

(3.18)

b xdF,(x)
=v|l+ —_— | >
( y]; (x —u)® + 02
It follows immediately from (3.18) that
1

-1
|z +y - 1+ yzs,(2)| =v

(3.19)

It is obvious that |s,(2)] < v™!. Therefore,
(3.20) 15l < 2/v.

For any fixed u, when v — », we have s,(2) > 0, 8@2(2) = 0 and s;,(2) -
—1/y. This shows that (3.17) is true for all large v.

As in Part I, one may easily see that both s;,(2) and s, (2) are continuous
functions on the upper-half plane. Thus, to prove that (3.17) is true for all z
on the upper-half plane, it is sufficient to show that s,(2) # s4,,(2) for all z on
the upper-half plane. Otherwise, there would be some z on the upper-half
plane such that s,(2) = s,,(2) = s5(2). Then the square root term in (3.16)



660 Z.D. BAI

would be zero. Hence, we have
‘ y+z—1—y28

sp(2) = = 2yz

Substituting the expression derived for & from (3.14) into the above expres-
sion, we obtain
l-y—-=z 1

sp(2) yz * y+z—1+yzs,(2)

However, this is impossible, since the imaginary parts of the two terms are
obviously negative [for the second term, see (3.18)]. This contradiction proves
that (8.17) is true for all z on the upper-half plane.

Comparing (3.17) with (8.11), we need to show that both § and the integral
of the absolute value of 6 with respect to u on a finite interval are ‘“‘small.”
Then, we begin to find a bound for |s p(z) — sy(z)l in terms of &.

We now proceed to estimate |5|. First, we note that, by (3.11) of Part I,

1
<v™ L
|z +y—1+yzs,(2) - ekl

Then, by (3.15) and (3.21), we have

(3.21)

1 2 _
(322) 1ol<— ¥ (1Bei + v Els2l)(|z +y — 1 +yz5,(2)|)
k=1

Denote by X,(k) the (p — 1) X n matrix obtained from X, by eliminating
the kth row, and denote by x(%) the n vector of the kth row of X,. Then,
a(k) = (1/n) X, (k)x(k) and W,(k) = (1/n)X,(k)X,(k). Recalling the defini-
tion of ¢,, one finds that

E®Q (B)(W,(k) = 2I,_;) (k)
= n2EWx' (k) X,(k) (W, (k) — 2I,_,) " X, (k)x(k)
(3.23) = n=2 tr Xy(R) (Wy(k) = 2l,) " X, (k)
= n e (Wy(k) — 2L,_,)" W, (k)

1 _
=y =~ 4 ir(Wy(k) 2, ),

where E® denotes the conditional expectation given {x;;, i # k}. Then by
(8.10) of Part I, for all z with |u| < A we have

|z] ‘ - ‘ _ 1
|Eeil = — | E[te(W,(k) = 2T, 2) " = tr(W, - 21,) ]| + ~
C ~
<—,
nv
where the constant C may take the value A + 1.

. (3.24)



SPECTRUM CONVERGENCE RATE. II 661
Next, we proceed to estimate E|e,|*>. We have
2 M » 2
(3.25) Ele?| < -t R, + R, +|E(&) |,
where

R, = E|a/(k)(W,(k) = 2l,_1) (k) = E®(a (k)(W,(k) - zlp_l)'”la(k))f,

|2|2 2

R, = TEltr(Wp(k) 2, )" = Ete(Wy(k) — 2, ;) |

and M is the constant in (3.1).
Let

1 -1
I, = (rij(k)) = ;Xj,(k)(Wp(k) - zIp_l) X, (k).
Then, we have

2M o 2M -
Ry < — LE|rj(k)| = — Etr(L,T})
,J -

M g k) —2l,_;) W (k
“FEG|(Wy(k) = 2L, 1) 'Wy(k)

X(Wy(k) = 21, ,) " W,(k)]

2M -1
Bt WER)((W,(R) — ul, )" + 0L, )

< 4n—1;4E te[(W,(k) — u,_,)" + u?I,_]
X ((W(k) = ul,_,)" + vzlp_l)_l
(3.26) < t—]g[p =1+ ul’E tr((Wy(k) — ul,_y)’
+v21p_1)_1]
(3.27) <4Mn~' + AMA?n "% < Cn~ v 2.

Here, the constant C can be taken as 4 M(A? + 1).
Define y,(d) = 0, and define for d + &,

-1 ' _
Ya(k) = E;_ tr(W,(k) —2l,_;) — E tr(W,(k) — 2I,_,)
=E;_104(k) —Ego,(k), d=12,...,p,

1

(3.28)

where

og(k) = te(W,(k) —2I,_,) = te(W(d, k) —2l,_,) ",
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W(d, k) is the matrix obtained from W, by deleting the dth and %th rows and
the dth and kth columns, a(d, &) is the vector obtained from the dth column
vector of W, by deleting the dth and kth elements and E, denotes the
conditional expectatlon given{x;,;,,d+1<i<p,1<j<n}

Again, by (3.11) of Part I, we have
(3.29) log(k)| < vt
Therefore, we obtain

A+1)?2 »
(3.30) R, < (—nz—) Y Ely2(k)| < Cn~'v 2
d=1

Then by the definition of ¢, and (3.24)-(3.30), we obtain that for some
positive constant C,
9 C
(3.31) Ele,l* < —.

Throughout the paper, the letter C denotes a generic positive constant which
may take different values at different places. From (3.19), (3.22), (3.24) and
(3.31), it follows that for some positive constant C,,

3.32 1] %
. < —
(3-32) "
Choose v = (10C,(A + 1)/n)Y®. By (3.31), we know that
v
3.33 18l <« —— .
(3.33) 10(A + 1)°

By (3.22) and (3.33), for large n, we have

C -
f::lBI du < m/_AAlz +y—1+yzs,(2)| *du
Cl,a 2 A o
< n—va[/Alsn(z)] du+f_A|5| du]
C A 2 A
— 1)
<—3 [f |s.(2)]" du + vf_AI Idu]

(3.34) C

< — du

<~ [* )P

s du|dF,(x

[[ °°(x-u)+2 ] )

< Py s Cv2.
Here, in the derivation of the fourth inequality, we have used the fact that
(3.35) a<c+ba=>c+ba<c/(1—b)

for any positive a, ¢ and b < 1.
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Now, we are in position to estimate |s,(z) — s,(2)l. By (3.11) and (3.17), we
have

|s5(2) = 5,(2)|
(3.36) 5

B ]
2 N(z+y—1)2—4yz+\/(z+y—1+y26)2—4yz’
As done in Part I, we need to find the condition guaranteeing that the real

parts of \/(z +y- 1)2 —4yz and \/(z +y-—-1 +yz§)2 — 4yz have the same
sign. We claim this is true for [u —y — 1| > y/[2(A + 1)]. In fact, if |u —y —
1| > y/[2(A + 1)], then (8.33) implies that

v + Im(yz28) > 0,
lu —y — 1] > |Re(y29)|

[2(z +y — 1) — y28]

and
|(x —y — 1 — Re(y28)) (v + Im(y28))| — 2y* Im(23)|
y vy v vy?
> (2(A+ )  10(A+1D) )(” TT0(A+1D)) T0(A+D)
From the above estimates it follows that the sign of the real part of
\/(z +y—-1 +yz8)2—4yz is
sign[2((u +y — 1 + Re(y28)) (v + Im(y28)) — 4yv]
(3.37) = sign((u —y — 1 — Re(y28)) (v + Im(y28)) +2y Im(y28))
= sign(u —y — 1).
Since the sign of the real part of \/(z +y - 1)2 — 4yz is
sign(2v(u —y — 1)) = sign(u —y — 1),
for lu —y — 1> y/[2(A + 1)], by (8.37), the real parts of both

\/(z +y - 1)2 —4yz and \/(z +y—-1 +y26)2 — 4yz have a common sign.
Hence for large p, (3.36) implies that

2

0.

(3.38) |s,(2) —s,(2)] < %I&I[l + 24 + 2 }

Viw -y - 1) - 02 - 9]
If lu—y— 1 <y/[2(A + 1)), then for all large p, we have
lz —y—1°

V(z—y-1)" - 4y +2iy]

V(z—y - 1P -4y - 2ify] -

1 y?2 Ly
< v
2y | 4(A + 1)*
1

Sgy
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and

’\/(z+y— 1+y26)2—4yz —2i\/3—/|
_ l(z —y — 1 +y28)% + 4y225]
‘\/(z+y- 1+y28)2—4yz +2i1/37’

1 2 2 2
SW—[(u—y—l) + v + y28|° + 4y IzBI]

1 y? ) 1 2 4y2y
*Wlaarn " ° (“, 10(A+1)) " 10(A+1)]

1
S—z-y.

Therefore, for |[u —y — 1| < y/[2(A + 1)], we have

l\/(z+y—1)2—4yz +\/(z+y—1+y26)2—4yz’24\/§-y>2\/§.
Combining the above and (3.38) together, for |u| < A, we have

1|3| 14 2A + 2
2 Ve +y-1* -0 —agul |
(3.39) |su(2) —s,(2)| < oy — oy — Y
y I if lu —y 1|>2(A+1)’
. . y
C1|8|7 if lu —y 1|S-2—(X:—1—),

where C; = C(y) is a positive éonstant depending upon y; for example, here
we may take C = (A + 2)/2yy.
By (3.34) and (3.39), one finally gets

[_AA|sn(z) —5,(2)|du

{"/[‘Iu —y—1>y/[2(A+ D], lu|<A]

(3.40) ¥ |s.(2). — s,(2)|du

llu—-y—1l=<y/[12(A+1)], IulsA]}

A 1

<Cv -
L VI(u +y - 1)° - v? - 4yu

< nu + Cv?,

du+CfA|6|du
~-A
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where

du
Csup[
o<1?-afJ(u +y - 1)? 2 - dyu

The proof of Proposition 3.4 is complete. O

Proor oF THEOREM 3.1. Since the density function of the Marchenko—
Pastur distribution is bounded when 6 <y < ® < 1, applying Theorem 2.2
and Proposition 3.4, we obtain a preliminary bound

(3.41) |EF, - F,| = O(n~¢),

under the additional restriction of (3.5). Next, we shall improve the result as
we did in Part I.

Assume that [|[EF, — F,|l < A; = nn~"%, for some n > 1. We shall refine
the estimates of L, Elrz(k)l and ZdEIyﬁ(k)I Assume that A; > v > n~ 14,
The exact value of v w1ll be chosen later. Noticing that y < ® by (3.26), we
get

L o (x—u)®+v?

4M(p -1) [ E[m(u2 -v?) de(’i)l(x)}

< S v B2
n o (x—u)"+?
_ 4M;42 . +/w dey(zx) +E/.oopd(Fp(x)2—Fy(x))
n 0 (x—u)” +0v? 0o (x—u) +0v?
_ k
(3.42) e /wd (p — DE®(x) - pF(x))]
(x —u)®+v
§ 41sz2 nyy +E[oo2p(x—u)(F(x) —F(x)) x
n "(1_3’) ((x —u)® +v)
o [wz(x —)((p = DEL() ~pFy(2)) ds
((x —u)* +v?)
< %:12 y + n_\/37_ +2nyAp2 + 2v‘2]
n v(l-y)

(343) <Cn 'Ap2

Here, in the derivation of the third inequality, the first integral in (3.42) was
estimated by the upper bound 1/(my/y (1 — y)) of the density of F,, the second
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by |F, — F,|l < A, and the third by the fact that (p — DFE®(x) — pF,(x) < 1,
estabhshed in Lemma 3.3 in Part I.
Now, we estimate E|y,(k)|>. Rewrite o,(k) as

1+a/(d, k) (W(d, k) - 2I,_;) "a(d, k)
G Wag — 2 — o/ (d, k)(W(d, k) — 2I,_,) "a(d, k)
1+ (1/n)trT® (1/n)x,T®x; — (1/n)tr I'®
T1-2z- (1/n)tr T® * 1-z-(1/n)trT®
(14 (1/n)x;T®x,)((1/n)x; T2y — (1/n)tr TO — w,, + 1)
(1-2-(1/n)tr TO)(wyy — z — (1/n)x,TDx,)
=0g(k) +o5(k) + 07 (k),

where

1 —
o = ;X'(d,k)(W(d,k) -zl _2) IX(d’k);

r® = —X’(d E)(W(d, k) —2I,_,) "X(d, k),

X(d, k) is the (p — 2) X n matrix obtained from X, by eliminating its dth
and kth rows, and x; is the n vector of the dth row of X,. It is easy to see

that
(3.44) E; 105(k) — Ezo5(k) = 0.
Similarly to the proof of (3.18), we may prove that

1
Im(l —z— —tr F‘l)) > v.
n

We may also derive that
tr TOT® = trW2(d, k) ((W(d, &) - ul,_,)" + v21p_2)_1
< 2tr(W(d, k) - ul,_,)" +u?1,_,)
-1
X ((W(d, &) - ul, )" + v, _,)

p

< 2tr[I o+ A((W(d, k) - ul, ;)" + u21p_2)_1J

<C(p—-2v2<Cnv?
and

tr TOT® = trWw2(d, k)((W(d k) —ul, ;)" + ”2117-2)—2

v 2 trW2(d, k)((W(d k) — p_2)2 + UzIp_z)—l

< Cnv™%.
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Thus, we have

-2 2

l(x{,I‘(z)xd — trI'®)
n

-2

1
E|E, 04(k) — Eou(k)|* < E‘l —z— —trT®
n

(3.45) <Cn %E tr TOT@

1
1—-2z— —trT®
n

-2

1
1—2z— —tr D
n

<Cn W™ E

and by (3.29),
-2 2

1
—x, T Wy, — tr TO
n

1
1-z——tr '
n

E|E;_,04(k) — Ego (k)|" < v °E

-2

(3.46) <n %%l -z - ltr r®|  tr TOT®
n1 .
<Cn Yw™Ell -z - —tr re
Summing up (3.44), (3.45) and (3.46), we obtain
(3.47) E|yy (k)| < Cn ' 4E|l — z - %tr ro ’
By (3.10) of Part I, we have
(3.48) |t (W, (k) — 2L,_,) " = te(W, = 21,) | <v~?

and

(3:49)  |tx(W,(k) —2l,_,) " — tr(W(d, k) —2l,_5) "] <v™.

Thus, by (3.48) and (3.49), we have

tr(T®) =p — 2 + 2 tr((W(d, k) —2,_;)
=ny+z tr((Wp - zIp)_l) +2R(d, k),

with |R(d, k)| < 4/v. Consequently, we obtain that

(3.50)

-2
Elyg(k)[ < Cn W E|l —z —y — zn ' tr(W, — 2I,) " + 2n'R(d, k)|
-2
= Cn‘lv‘4E|1 —z—y—zn" ' tr(W, - 2l,) 1|
amR(d, k) |
1-z-(1/n)trT®

1+

(3.51) X

4A+1)

2

—2
an‘lv'4E|1—z—'y—zn'ltr(m—zIp)_l| |1+ —

11-2
< Cn‘lv'4E|1 —z—y—zn""tr(W, - 2l) 1’ ,
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for some positive constant C. Therefore, by (3.30) we obtain

(3.52) stCn_2U_4E|1 —z—y-—zn"tr(W, —zIp)_ll
Similarly to the proof of (3.30), we may prove that

(3.53) E 1tr(Wp - zIp)"1 - y5,(2) 2 < —1—2 i Ely,)? < iz,
n n* = nv
where
Yy = By_y tr(W, — 21,) " — Ey tr(W, — 2I,)
= E,_, tr(o) — E, tr(oy,)
and

, -2

_ 1+ ak(VVp(k) - zIP_l) a,
g, +1—y—2z-yz,(2)
with |o,| < v~ . Therefore, from (3.51)-(3.53), we get

O

R,<Cn?v¥l-z-y- yz.sp(z)l_2

an~ttr(W, — zIp)_1 - yzs,(2)

XE|1 + —
1-y—z-—zn""tr(W, - 2l,)

(3.54) <Cn %2 l-z-y- yz.sp(z)l_2
_ 2
x(l + v‘zElzn‘1 tr(W, — 2I,) ! —yzsp(z)| )
<Cn 2 ¥l-z-y —yzsp(z)l—z(l +n v

<Cn W l-z-y- yzsp(z)l_z,

for some positive constant C.
By (3.14), we have

—2 2 2
|1 -2z-y-yzs,(2)] < 3(|i)‘|2 +[s,(2) —s,(2)| +|s,(2)] )
Noting the bounds of s,(z) established in (2.8), we have

A (1+ 3\/5)2)

182 + +
v? Lyl -y)®

|1 -—z2-y —yzsp(z)l_2 <C

(3.55)
A2

< C(I‘él2 + ——21—)
v

Here we used the fact that [s,(z) —s,(2)l <mA,/v, which can be easily
obtained by integration by parts. :
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Substitute (3.43), (3.54) and (3.55) into (3.25) first and then substitute the
result into (3.22). We obtain

1 a1 1
|6|sCn—v+n—v3+n2—05|1—y—z—yzsp(z)| +n2v2
-2

><|1—y—z—yzsp(z)|

A, 1 -2 -2
(356) <C F+W|1—y—z—yzsp(z)| |1—y—z—yzsp(z)|

A, 1 L, A%
(3.57) < CO m + thl 161 + 7 .
Choose v = (40C,n3%(A + 1)%)/6n~1/%, Then, by (3.57) and the fact that
18] < 2/v [see (3.20)], we obtain, for all large p,

8 24, 2A? C,A3
18] < Co n2p8 Tt n2p8 1] + nvb

nv

COA3 2C, A3

< —
nv’

(3.58) _| 5l +

<
10(A + 1)
Then, by (3.55), (3.56) and (3.58), we have

O Y IR
_ nv n“v v
< c(nA—v‘3|1 -y-z —yzsp(z)l_z)
(359 < T8 4 ]s,(2) () +]sy(2)[]
< js,(2) - sy () +lsy()]

A
< C—5{[s,(2) = s,(2) [ +]5,(2)[].
Hence, by Lemma 2.2 and (2.10),

f_w|5| du < C_[f lsp(z) y(z)|2 du + ;[_ley(z)lz du]

CA, A,
< —3 |t 1

nvd | v

Recall that (3.39) holds for |u| < A provided that (3.33) is true. Therefore,
by (3.58) we conclude that (3.39) is true for the newly chosen v and |u| < A.

(3.60)
< Cv.
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By (3.60), repeating the procedure of (3.40), we may prove that
|EF, — F,ll = O(n~'/*),

under the additional assumption (3.5).
To finish the proof of Theorem 3.1, we drop the restriction (3.5). Define

A _ -1 . .
(3.61) £ij = 05 % a2 ym — B Dy < g »
where o/ is the variance of x; iy <mymp M 18 chosen such that n — 0 and
(3.62) squIxijI“xiﬂZm,;] =o(n?).
ij

By the second condition in (3.1), it is easy to select n fulfilling the above

condition. o
Let F, denote the spectral distribution of (1/n)X,X, with X'p = (£;;).
Then, by what we have proved under the restriction (3.5), we have

(3.63) IEF, - F,ll = O(n~%).

Note that, when 6 < y < 0, the density function of the Marchenko-Pastur
distribution has an upper bound D = 1/(}/y (1 — ¥)). Applying Lemma 2.4 and
the triangular inequality, we have

|EF, - F, < (D + 1)L(EF,, F,)
(3.64) < (D + 1)| L(EF,, EF,) + L(EF,, F,)|
< (D + 1)|L(EF,, EF,) + | EF, - F,||,

where L(-, - ) denotes the Lévy distance between distribution functions.
Denote the eigenvalues of the matrices (1/n)X, X}, and (1/n)X, X, by
Ay < -0 <Ajand A < --- <A, respectively. By Lemma 2.3, we have

(3.65) L2(EF,, EF,) < E[|F,(x) - F,(x)|dx = > Y ElA, — Al
s=1
Following the approach of Yin (1986), we prove that

L*(EF,, EF,) < - gEms - &l

< (-';I;Etr(xp +2)(x, + X,,))
(3.66)

1 R oy 1/2
x(;;E tr(X, - X,)(X, —Xp))

1/2
< C(sngxiszHxiﬂZnﬁ]) = o(n"V2).
ij

Then (3.3) follows from (3.63), (3.64) and (3.66), and the proof of Theorem 3.1
is complete. O ’
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Proor orF THEOREM 3.2. Now, we consider the case of 0 <® <y < 1.
When applying Theorem 2.2 of Part I to this case, the reader should note that
the density function is no longer bounded and hence the third term on the
right-hand side of (2.1) does not have the order of O(v). Therefore, we cannot
get a preliminary estimate as good as (3.41), although the estimate of Proposi-
tion 3.4 is still true. However, we may obtain an estimate as follows:

(3.67) sup |F)(x + u) — F,(x)|du < Cv®?,

x “lul<2va
where C may be chosen as v2a (1 + y/y)/(my) and the constant @ is defined
in Theorem 2.2 of Part I. By this and Proposition 3.4, applying Theorem 2.2 of
Part I, we obtain the following preliminary estimate:

(3.68) IEF, - F,| = O(n~1/"2).

Now, based on (3.68), we get an improved estimate by refining the estimates
of £, ;E|r’(k)l and L, E|yi(k)|. Assume that |EF, — F,|| < A, = non~/*2 for
some 71, > 1 and assume that A; > v > n =524,

Corresponding to (3.43), applying Lemma 2.2 to the first integral in (3.42)
[note that (3.42) is true for both the two cases], we find that (3.43) is still true
for the newly defined A; and v, that is,

V2n(1+
Y E|r3(k)| < 24%| ny + ——-—(—-——————‘/;—)— +2nyAw2+ 2072
(3.69) ., \/173‘
<CnAp2

We now refine the estimate of L, E|y2(k)|. Using the same notation defined
in the proof of Theorem 3.1 and checking the proof of formulae (3.44)-(3.54),
we find that they are still true for the present case. Corresponding to (3.55),
applying (2.9), we obtain

2 A2 2

- T A 4 A
(3.70) |1 —z—y —yzs,(2)| 2sC(|6|2+ 021 + E) SC(|5|2+ ;31)

This means that (3.55) is still formally true for the newly defined A, and v.
Consequently, the expressions (3.56) and (3.57) are still formally true.

Choose v = (40C,n3(A + 1)*)6n =524 Corresponding to (3.58), for all
large p, we may directly obtain from (3.57) that

16| < 2C,n~ v~ %A, |20 Y8] + v 2A?
0 1 1

v
(3.711) <4Con WA = ——.
10(A + 1)

By (3.56) we may similarly prove that (3.59) is true for the present case.
Hence, by Lemma 2.2 and (2.11),

fm 18l du < %[[iJs;,(z) - s,(2) |2 du + fjom|sy(z)|2 du]

CA,[A, 1
—5 + —| < Cu.

PR

(3.72)

nv
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By (3.71) and (8.72), repeating the procedure of (3.40), one may prove that

% 55(2) = 5,(2)| du < Cv.
-A
Then applying Theorem 2.2 of Part I and (3.67), we obtain that
|EF, - F,| = O(n~%/%),

under the additional assumption (3.5).

As done in the proof of Theorem 3.1, make the truncation and normaliza-
tion for the entries of X, in the same way. Use the same notation defined in
the proof of Theorem 3.1. By what we have proved, we have

(3.73) I|EE, - F,| = O(n~5/4¢).
In the proof of Theorem 3.1 [see (3.65)], we have proved that

(3.74) [|EF,(x) — EE,(x)|dx = o(n~"/%).

Note that F, satisfies the condition of Lemma 2.5 with g =1/2 and
=1 ++y )/(n-y) Applying Lemma 2.5 and by (3.73) and (3.74), we obtain

(8.75) IEF, - F,I* < O(n=%*)||EF, - F,|I* + o(n"/2),
which implies (3.4). The proof of Theorem 3.2 is complete. O
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