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The subject of this article is a class of measure-valued Markov pro-
cesses. A typical example is super-Brownian motion. The Laplacian A plays
a fundamental role in the theory of Brownian motion. For super-Brownian
motion, an analogous role is played by the operator Au — (u), where a
nonlinear function ¢ describes the branching mechanism. The class of
admissible functions ¢ includes the family ¢(z) = u%, 1 <a < 2.

Super-Brownian motion belongs to the class of continuous state branch-
ing processes investigated in 1968 in a pioneering work of Watanabe. Path
properties of super-Brownian motion are well known due to the work of
Dawson, Perkins, Le Gall and others. Partial differential equations involv-
ing the operator Au — ¢(u) have been studied independently by several
analysts, including Loewner and Nirenberg, Friedman, Brezis, Véron, Baras
and Pierre. Connections between the probabilistic and analytic theories
have been established recently by the author.
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Introduction.

1. A prototype of Brownian motion is a chaotic movement of one particle.
Super-Brownian motion describes a cloud arising as the limit of a system of
independent Brownian particles which die at random times, leaving a random
number of offspring. The limit is taken as the mass of each particle tends to 0
but the expected total mass at each time ¢ does not change.

Denote by &, the position of the Brownian particle at time ¢. To every open
set D in the state space E there corresponds a random point &, where
7 = inf{¢: ¢, & D} is the first exit time from D. More generally, to every open
set @ in S =[0,x) X E there corresponds a random point (7, ¢.) € S, where
7 = inf{t: (¢, &,) ¢ Q). These random points play a key role in the theory of
Brownian motion. In particular, they are crucial for the probabilistic approach
to elliptic and parabolic differential equations involving the Laplacian.

For super-Brownian motion, an analogous role belongs to random measures
X_ on S describing the mass distribution of the cloud at the first exit time
from @ (more precisely, we freeze, before passing to the limit, each particle at
its first exit time from @). The mass distribution X, at time ¢ is a particular
case corresponding to @ = [0,¢) X E. In contrast to £, which can be defined
through ¢,, it is impossible in general to define X, in terms of X,. For this
reason, we consider the family {X } rather than {X,} as our principal subject.

The stochastic process X, is a Markov process with transition probabilities

. The family X, also has a Markov property. However, to state this
property, it is necessary to extend the set {P,,} to a set {P,} indexed by
measures on S: while P, describes the evolutlon which starts from the mass
distribution v at time r, the probability measure P, corresponds to the initial
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cloud spread in time and space (in the discrete approximation, particles—
“immigrants” —appear at various times and various points of E).

We introduce the family X = (X, P,) by describing the joint probability
distribution of X_, ... XT relative to P for every finite collection 7,,...,7,
and every pu. The construction is apphcable to an arbitrary right Markov
process ¢ and to first exit times from finely open sets in the global state space
S. Besides ¢, a superprocess X is characterized by an additive functional K of
¢ which describes the branching intensity and by a function ¢ which deter-
mines the branching mechanism.

2. This article consists of three parts and an Appendix. References outside
each part include the part number. For instance, we write (I1.3.1) for formula
(3.1) in Part II (Theorem A.1.2 means Theorem 1.2 in the Appendix). Within
Part II, we write (3.1), not (I1.3.1).

Part I is devoted to the general theory of superprocesses. We construct them
in two different ways. The first is based on an explicit formula for the
finite-dimensional distributions and it involves solving certain integral equa-
tions (cf. [96], [21], [23] and [35]). The second construction uses a passage to
the limit from branching particle systems (cf. [24] and [26]). The proofs are
moved to the Appendix. We also discuss the Markov property, regularity
properties and the concept of a part of a superprocess.

In Part II, we concentrate on the case when ¢ is a diffusion determined by a
second-order elliptic differential operator L. We call the corresponding X a
superdiffusion. Parabolic and elliptic partial differential equations involving
the operator Lv — ¢/(v) can be investigated in terms of the corresponding
superdiffusion.

In the elliptic case, L and ¢ are independent of time, and both ¢ and
X are time-homogeneous Markov processes. We put P, = P, , and X (B) =
X (R, X B) for every Borel set B in E. For a broad class of domains D and
functions f > 0, the solution of the first boundary value problem,

(1) Lv =¢(v) in D,

(2) v=Ff ondD,

can be obtained by the formula

(3) v(x) = —log P;_ exp{—ff(x)XT(dx)},

where &, is Dirac’s measure at x.
An analogous problem for the parabolic equation

(4) U+ Lv=y¢(v) inQ

can be solved with X, substituted for X,. The solution of a more general
nonhomogeneous parabolic equation can be obtained by using the part of X in
@ (see Theorem I1.3.1).

Most results in Part II are stated for ¢(2) = 29, 1 < a < 2. We only sketch
the proofs and refer the reader to [25] and [28] for details. In contrast to the
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linear equations, the problem (1), (2) can be solved for functions f with values
in [0, +]. For instance,

(5) v(x) = —log Psx{Xf = O}

is the solution corresponding to f= +o. The maximal solution of (1) in an
arbitrary domain D can be obtained by the formula

(6) v(x) = ~log P,{R c D},

where R is the range of X, that is, the minimal closed set in E which
supports all measures X, (it also supports, P, -a.s., X, for all  and all u). We
call a set B R-polar if P,S (RNB=g}=1 for all x GE B. Clearly, a closed set
I' c E is R-polar if and only if (1) has no solutions in D = E \ T except 0. We
prove that an analytic set B is R-polar if and only if the condition

fBg(x, y)v(dy) belongs to L*( E)

implies that »(B) = 0. Here g(x,y) is Green’s function of the Brownian
motion with a positive constant killing rate (see Theorem I1.12.3). (This is
equivalent to the following statement: B is R-polar if and only if B, ,(B) =0
where o' = a/(a — 1) and B, , is a Bessel capacity; see [70].) We also give a
test of R-polarity in terms of the Hausdorff measure (Theorem 11.12.5).

All these results follow easily from their parabolic counterpart. The maxi-
mal solution of (4) in an arbitrary open set @ C S is given by the formula

(7) v(r,x) = ~log P, ;{G c @},

where G is the graph of X, that is, the minimal closed set in S which supports
all measures X, (it supports, P,-a.s., every measure X,). The class of analytic
G-polar sets A can be characterized by the property

fp(r, x;s,y)v(ds,dy) belongs to L*(S)
A

only if »(A) = 0 [p(r, x; s, y) is the transition density of the Brownian motion
with a positive constant killing rate]. The characterization of this class in
terms of the restricted Hausdorff measure was obtained recently by Sheu [84].

Section II.5 can be considered as a step toward the Martin boundary theory
for equation (4). All solutions v of (4) are described in terms of the behavior of
“the cloud” near d@. More precisely, we approximate @ by an increasing
sequence of regular bounded domains @,, and we put

(8) v(r,x) = —log P, ; e_Z,

where Z depends on the limit behavior of X_ (7, is the first exit time from
Q,). Formulae (3), (5), (6) and (7) are special cases of (8).

A new concept of G-regularity is introduced in Section II1.6. It is motivated
by the probabilistic definition of regular points of @ for a diffusion &. Recall
that a point (r°, x°) of 3@ is called regular if a particle which starts at time r°
from point x° has probability 0 of staying in @ during any time interval (r°, ¢).
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Analogously, we say that (%, x°) € 9Q is G-regular if P, 5, {GEo%¢tlc@ =0
for every ¢t > r, where G(r%,t] is the intersection of G with (r°%t] X E. We
prove that (r°, x°) is G- regular if and only if the maximal solutlon v of (4)
tends to « at (r°, x9).

Part III contains a survey of the literature and general comments. An early
look through this part can be useful for understanding our motivation and the
relation of the present paper to the previous work.

3. Notation. For every measurable space (E, &), we denote by .#(E) the
set of all finite measures on &. We consider .#( E) as a measurable space with
the measurable structure generated by the functions fz(u) = u(B) with
B € 4. The expression ( f, u) stands for the integral of f with respect to u,
and |u| means (1, u).

We write fe€ & if f is a #H-measurable function. Writing f € pZ (b H)
means that, in addition, f is positive (bounded). We put

bpB = (bB) N (pB), bB={f feB, —c=<f=c}
bp%# = (b.#) N (p%#).

If E is a topological space, then &5 stands for the Borel o-algebra in E.

We set R, = [0,»), S = R, X E. We say that a function f on S is supported
by an interval [0,a) if it vanishes on [a,~) X E, and we put fe # if
f € bp %y is supported by some interval [0,a), a > 0. If {#} is a family of
o-algebras indexed by subsets A of R,, then ¥_, = #[0,¢t]and &, = F[t, ).

Following Dellacherie and Meyer ([14], III, 16), we say that a metrizable
topological space is Luzin if it is homeomorphic to a Borel subset of a compact
metrizable space. A measurable space (E, &) is called Luzin if it is isomorphic
to (L, #,), where L is a Luzin metrizable space. A kernel from a measurable
space (E, #) to a measurable space (E, %) is a function k(x, B) such that
k(x, ) is a measure on & and k(-, B) is a #-measurable function on E.

Part I. Superprocesses.

1. Definition and fundamental properties. A superprocess X is de-
termined by three parameters: a Markov process ¢, which describes the spatial
motion; an additive functional K of &, which defines intensity of branching;
and a function ¢, which determines the branching mechanism.

1.1. Markov processes. A Markov process ¢ = (¢,,11, ,) on the time inter-
val R, = [0, ) with a random birth time a is a combination of the following
elements:

(a) a measurable space (Q° % °) (the sample space);
(b) a measurable function a: Q° — R, (the birth time);
(¢) a measurable space (E, &) (the state space at time #);
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(d) for every pair w € Q°, ¢ € [a(w), + =), a point ¢,(w) in E (the state at time
t>a)

(e) for every r € R,, x € E, a probability measure II, , on (Q° Z°) (transi-
tion probabilities).

We consider a one-point extension E U {0} of E and we set ¢(w) =9 for
¢t < a(w). Denote by % °(A) the minimal o-algebra in (° which contains all
sets {w: £(w) € B} for t € A, B € &, and all sets {0: {(w) =3} for t € A. We
assume that #° > F°R,) and that the following hold:

1.1.A. For every Z € &9, the function f(r,x) =11, ,Z is measurable with
respect to B X @

1.1.B. Forevery(rx) O, la=r, & =x}=1

1.1.C. (Markov property.) Forevery r <t e R, FepFl, ZepFl,

r,x(FZ) = r,x(FHt,ﬁtz)‘
The transition function of ¢ is defined by theA formula
(1.1) p(r,x;¢t,B) =1, (¢, €B}, forr<teR,,x€E,BEA.
It follows from 1.1.C that
Hr,x{ftl €B,,...,¢ € Bn}

(1.2)
= [ [ p(rxitndy) Pl Yactita dYa),
B, B,

forall n>2,r<t; < -+ <t,€R,, By,...,B, € #. Formulae (1.1) and
(1.2) can be used for constructing a Markov process starting from a Markov
transition function p.

We put S =R, X E, &5 = B X #, and we call (S, Zs) the global state
space. [Sometlmes it is useful to consider a variable state space (E,, %,); then
the global state space is a measurable subset of R, X E.]

Condition 1.1.A makes it possible to introduce the measures

(1.3) M, = [1, .u(dr,dx), forue.#(S),
S

(1.4) m,,= /1, v(dx), for v € #(E).
E

1.2. Right processes. We say that a process ¢ is right if the following
hold:

1.2.A. The global state space S is a metrizable Luzin space.

1.2.B. All paths of ¢ are right-continuous.

1.2.C. For every r <u € R,, every v € .#(E) and every Z € pF.°,, I, ¢ Z is
right-continuous on [r, ») II, ,-a.s.

An important class of right processes is diffusions, which we consider in
Part II.
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1.3. Exit times. To every set @ C S there corresponds the first exit time
(1.5) r=inflt:t > a, (¢, &) € Q).

If ¢ is right, then there exists an increasing family of o-algebras o7, > %2,
such that the following hold:

1.3.A. The first exit time 7 from any set @ € %y is a stopping time relative to
the filtration .

1.3.B. The Markov property 1.1.C holds for every F € p&/, and every Z €
P*%Ot'

1.3.C. (Strong Markov property.) For every stopping time 7 and for all u €
H(8), Z € pFT,

(1.6) N{Zle} =1, ,Z T,-as.on{r <t}.

[The family &7, can be constructed as follows. Consider the intersection %2
of #2°, over all u >t and the completion (F°)* of & relative to u, and
denote by &/* the minimal o-algebra which contains %, and all sets
A € (F°* such that P(A)=0. & is the intersection of 27" over all
u € #(S).]

Let 7 be the first exit time from Q. Put (r,x) € Q° if II, {r > r} = 1. A set
Q € H is called finely open if @° = Q. We denote by 7 the set of all exit
times from finely open sets @ € %y. (Restriction to finely open sets is justified
by the fact that the first exit time from an arbitrary set @ € % coincides, a.s.,
with the first exit time from QO.) Suppose that 7 and 7 are the first exit times
from finely open sets @ and Q. Clearly, 7 < 7 if and only if @ C Q.

1.4. Additive functionals. An additive functional K of a Markov process ¢
is a measure K(w,dt) on [a(w),~) depending on w € Q° in such a way that
K(-,(r, s)) is measurable relative to the universal completion of % °(r,s). In
this paper, we consider only additive functionals of the form

(1.7) K(B) = ka(s,fs)dS, Be %,

where k € p % is the subject of the following condition:

1.4.A. For every a € R, there exists a constant ¢, such that k(s, x) < ¢, for
all r €[0,a), x €E.

[We set k(s,d) = 0.] Superprocesses corresponding to a more general class of
additive functionals are constructed in [24] (see Section 111.2.2).]

1.5. Parameter . The branching parameter i is a transformation from
bp Bs to Bs. We assume that the values of (z2) at time s depend only on the
values of z at the same time, that is, ¢(2)(s, x) = ¥*(z°)(x), where z5(x) =
2(s,x) and ¢° is an operator from bp % to #4. In the most important case of
local branching, the value of ¢(z) at (s,x) depends only on 2(s,x) and
therefore (2)(s, x) = ¢ls, x; 2(s, x)], where (s, x;¢) is a function from S X
R, toR.
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1.6. Definition of a superprocess. Fix a measurable space (), #). A ran-
dom measure on .#(S) is a measurable mapping from Q to .#(S). Suppose
that to every 7 € J there corresponds a random measure X, on S, and to
every u € .#(8S) there corresponds a probability measure P, on (Q, 5). We

say that (X, P,) is a superprocess with parameters (¢, K, tﬁ) if the following
hold:

1.6.A. Forevery fe #,7€ I, u €.#(S),

(1.8) P exp{ —f,X,) =e ®,
where
(1.9) o(r,x) + 10, , [w(v)(s, &) dK, = 1N, , f(7,£,).
1.6.B. For n > 2, the joint probability distribution of X.,..., X, 1isdescribed

Tn

as follows. Let
(1.10) "I={1,...,n}, 7=min{ry,...,7,}, A =min{i:7, =1,]}.
For every f, € #,i € I, put
(1'11) <f1,X1> = Z<fi’Xf,~>-
Then
(1.12) P, exp[—{f;, X;)] = exp{ — v}, u),
where the functions v; are determined recursively by the integral
equations

(113) vI(r’x) + Hr,x[nlp(vl)(s’ ‘fs) sz = Hr,xGI’

with
(1.14) Gr=1[f+ UI_A](TA’ ‘fn)'

[Note that 1.6.B with n = 1 and v, = 0 coincides with 1.6.A.]
We say that two superprocesses X = (X, P,) and X=(X, #) are equiva-
lent if, for every u € .#(8S), the finite- d1mens10nal distributions of X relative

to P coincide with the finite-dimensional distributions of X relatlve to P

1.7. Existence. The existence of a superprocess is proved for a local
branching defined by the function
(s, x5t) =a(s,x)t + b(s,x)t?

+ e — 1+ ut)n(s,x;du
(1.15) [0, 1)( ) )

+ (e™ = 1)A(s,x;du),
[1,)
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where a € %y, b € p%q, n is a kernel from S to [0,1) and 7 is a kernel from
S to [1, ») such that the following holds:

1.7.A. For every finite interval A,

1.16 a, b, u?n(s,x;du) and un(s,x;du
( ) '/['0,1) ( ) '/;1,m) ( )

are bounded on S, = A X E.

A more general (nonlocal) branching is described by the formula
Yi(2)(x) = a(s,x)z(x) + b(s, x)z(x)2

(1.17) +f01[e—uz<x> — 1+ uz(x)|n(s, x;du)

—ny(s,x;dy)z(y) + [/(e_“"” = m(s, x;dn).

Here .#=.#(E); a, b and n are as in (1.15); y is a kernel from S to E; m isa
kernel from S to .# such that the following holds:

1.7.B. For every finite A,

(1.18) y(s,x;E) and [llnlm(s,x;dn)

are bounded on S,.

Formula (1.15) is a particular case of (1.17) with y = 0 and m(s, x;dn)
concentrated on the set n = u§,, where « > 1. (The measure m is the image
of 7 under the mapping u — u4d, and it satisfies 1.7.B if and only if 7
satisfies 1.7.A.)

In addition to 1.7.A and 1.7.B, we need to impose one of the following
assumptions:

1.7.C. For every finite A, [1,,, . 4lnlm(s, x;dn) — 0 uniformlyon S, as B — 0.
1.7.C". For every finite A, [fu®n(s, x; du) — 0 uniformly on S, as g —'0.

THEOREM 1.1. The following conditions are sufficient for existence and
uniqueness (up to equivalence) of a superprocess with parameters (¢, K, ):

(a) ¢ is a right Markov process.

(b) K satisfies condition 1.4.A.

(¢) ¥ is given by formula (1.17) with a, b, v, m and n subject to conditions
1.7.A and 1.7.B and one of conditions 1.7.C or 1.7.C'.

Condition (c) holds if ¢ is given by (1.15) with a, b, n and 7 subject to
condition 1.7.A.

Theorem 1.1 follows immediately from Theorems A.2.3 and A.3.2.
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REMARK. A superprocess X can be constructed for an arbitrary Markov
process ¢ in a Luzin state space (E, B). However, in general, the first exit time
7 from a set Q € %y is not necessarily a stopping time, and the index set I~
must be restricted accordingly.

1.8. We will concentrate on superprocesses with local branching. Formula
(1.15) can be rewritten in the form

(1.19) ¢(s,x;t) =a(s,x)t+b(s,x)t + _/:O(e_“‘ =1+ ut)n(s,x;du)

with modified @ and n. Note the following:
1.8.A. For every finite A, [5(u A u?®)n(s, x;du) is bounded on S,.

This condition replaces 1.7.A for n and 7.
Note that, for every f € bp %,

(1.20) PLf, X, = n#{f(f,gf)exp[_f’a(s,gs)sz } «

Indeed, the left-hand side is equal to the derivative of P, exp{ — A f, X,) with
respect to A at A = 0, and (1.20) follows from (1.8), (1.9) and Lemma A.1.6 if
f € #. A monotone passage to the limit leads to the general formula.

If a>0 in (1.19) (we call this case subcritical), then ¢ is monotone
increasing in £ On the other hand, it follows from (1.8) that v is a monotone
increasing functional of f. By the monotone convergence theorem, (1.8) and
(1.9) can be extended to all functions f € p%y and the same is true for (1.12)
and (1.13).

Suppose that a = 0. Then, by (1.20),

(1203) Pp,<f’ X7-> =H;Lf(7’§‘r)’

for all u, + and f. We call this case critical. In particular, by setting
a=0b=0,n(x,du) =éu"'"*du with é = cala — 1)/T'(2 — a), we get

(1.21) ¥ = cz°, l<a<2.

1.9. Properties of superprocesses. These properties are stated in Theorems
1.2-1.4. The first of them was proved in [30], Section 1.5.

THEOREM 1.2. Suppose that ¢ is given by formula (1.19). We have the
following:

1.9.A. For every B € %5, X, € #(B) [i.e., X(B°) =0] P,-a.s. if (1,¢{,) €EB
II,-a.s.

If 7 is the first exit time from Q, then the following hold:

1.9.B. X, € #4(Q°) P,-a.s. for every u € #(S).
1.9.C. P{X, =pu} =1 forall p €.4(Q°).
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THEOREM 1.3 (Markov property). Forall € I, p € #(S)andZ € p &, ,
(1.22) P(Z|F.,} =PxZ P,a.s.

Here #_,. is the o-algebra in Q) generated by X, 7" <7, and %, is the
o-algebra generated by X ., 7' > 1.

Proor. By the multiplicative systems theorem, it is sufficient to prove that
(1.23) PYZ = PM(YPXTZ )

for 'Y =exp{—<{f,, X;) — {fo, X))} and Z = exp{—<h, X,> — {f;, X0},
where 7 =71p, 7, <7 <7, and i <0 <j fori €l and j €J, and { f}, X;) is
given by (1.11). By 1.9.C, P, expl{ — h, X,)F] = exp{ — h,n)P,F, for every
n € #(Q°) and every F. By 1.9.B, we can apply this to n = X, and therefore
we can assume that & = 0 (otherwise, we replace f, by f, + k).

For every 7 € 7, we set

(1.24) (T) (%) = v'(x) + 11, , [ 4*(v°)(4,) dK,.
Equation (1.13) can be written in a shorter form:
(1.25) (o) (x) =10, ,G;.

For every set K, we put

vg(r,x) = —log Pr,8x exp{ — fx, Xk,
7(K) = inf{7,: k € K}, AMK) = min{k: 7, = 7(K)}.
By (1.12), (1.13) and (1.25), vy satisfies the equation

(1.26)

(1.27) \I,T(K)UK(r’ x) = Hr,x[ f)\(K) + vk _A(K)(TA(K)’ ‘fn(K))]
and, for every u,
(1.28) P, exp{ — fx, Xg) = exp{ — vg, ).

We prove (1.23) by induction on |I|. First, suppose that I = & and take
K = {0} U J. Clearly, A(K) = 0 and 7(K) = 7. Note that

(1.29) P,LYPXTZ =P, exp{ — f, X ) =-exp{—0,u,
where f=f, + v, and
o(r,x) = ~log P, ;< ~ f, X,

satisfies the equation ¥,5 =TI, , f(7,£,). By (1.27), vy satisfies the same
equation and therefore vy = 0.

Now let I # & and let 7; be the first exit time from @; € Q. Then o = 7(I)
is the first exit time from the intersection U of all @,, i € I. By applying the
already proved particular case of (1.23) to o, we get

(1.30) P,YZ=P,PyYZ, PYPyZ=PX,[YPyZ].
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Consider disjoint Borel sets I; c @ such that U° is the union of T}, and
denote by N; the restriction of X, to I}. By (1.12), 1.9.B and 1.9.C,

Py YZ = []{exp< ~ f;, N> Py, exp| —( f; _i» X; i) = {fo, X 2},

el

PXU[YPXTZ] = H{exp( _fi’]vi>PN,~ 9XP["< fI_i’XI_i> - <fo,XT>]PX,Z},

iel

and (1.23) follows from (1.30) and the induction. O

THEOREM 1.4. Let 7y,...,7,,... € S andlet 7,17 or 7, | 7. If a sequence
f, € #s is uniformly bounded and if f(r,,¢ ) - f(7,€) Il,-a.s., then
(fus X, ) > <f,X,) P,-a.s.

This follows from [30]: In the case 7,17, we can apply Theorem 4.1; the
case 7, | 7 can be covered by a slight modification of the proof of Theorem 3.1
or Theorem 4.1.

1.10. Markov process (X,, P, ). To every superprocess X, there corre-
sponds a Markov process (X, P, ,) in the state space .#(E) defined by

X,(B) =X, [1(B)], forBe &,

(1.31) s _p

oy Sy

forreR,,v e #Z(E),

where 7, is the first exit time from S_, and (,(x) = (¢, x) is an imbedding of E
into S. By 1.9.A, X,=X, P, ,-as. for all r<¢ and v € .#(E) because
II, {r,=1t} =1 for all r <¢ and x € E. The Markov property of (X,, P, ,)
follows from Theorem 1.2.

THEOREM 1.5. There exists a right version of the process (X,, P ). It can
be chosen in such a way that the following hold:

1.10.A. The function P, x Z is, P,-a.s., right-continuous in ¢ on [r,u) for
every Z € p&, , and every u € #(S_,).

1.10.B. {f*, X,) is, P,-a.s., right-continuous on [r,) for all u € .#(S_,)
and all f € b%g such that f*(¢)) is, I1,-a.s., right-continuous on [r, «).

This follows from Theorems 2.1 and 3.1 in [30].

Since ¢,(E) coincides with S, = {¢} X E, we can interpret X, as the restric-
tion of the measure X, to S,. With this interpretation, we have the following
lemma.

LemMA 1.1.  For all measurable subsets B of S, and all v € 7,

(1.32) X,(B) <X,(B) a.s.
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Proor. Put U= X, (B) and V = X,(B) = X, (B). We claim that for every
bounded Borel functlon f on R? and for every v € .#(S),

P, f(U,V) =P f(U,V),

where 7 is the restriction of » to S _,. By the multiplicative system theorem, it
is sufficient to prove this for f(u,v) = e " 7%¥ with r, s > 0, in which case the
left-hand side is equal to P, f(U,V)P,_,f(U,V) and P,_{U =V =0} = 1 by
1.9.A. By taking f(u,v) =1,.,, we get P{U >V} = P{U > V}.

Let o = 7 A 7,. By Theorem 1.3,

(1.33) P{U>V}=P,Py{U>V)=P,Ps(U>V}.

P,-as., X, is concentrated on (@ N S_,)°; therefore X',, is concentrated on

@NSH)u(@° NS.,) and Pz{U >V} =0 by 1.9.A. Clearly, (1.33) implies
(1.32). O

1.11. Parts of a superprocess. We define two versions X and X for a part
of X in a finely open set @ € %s. Let 7, be the first exit time from
Q.. =@ N S_,. We denote by X, the restriction of X,, to the ¢-section @, of
Q. The family X = (X,, P, .,) is a Markov process in #(Q,). The process
(X,, P.,) of Section 1.10 can be considered as the part of X in @ =S.
Theorems 2.1 and 3.1 in [30] imply the following generalization of Theo-
rem 1.5.

THEOREM 1.6. There exists a right version of X which satisfies the following
conditions:

1.11.A. The function P, 4 Z is, P,-a.s., right-continuous in t on [r,u) for

every Z Ep? and every u € #(Q_,).
1.11.B (f4, X,) is, P, -a.s., right-continuous on [r,») for all u € .#4(Q_,)
and all f € b@Q such that f*(¢,) is, I1-a.s., right-continuous on [r, 7).

REMARK. Analogous results have been proved in [30] for more general
increasing right continuous families 7,.

The second version of the part of X is defined in the next theorem.

THEOREM 1.7. There is an .#(S)-valued process X, such that, for every
M E H S),

(1.34) P{%X,=%}=1
and {f4 X,) is, P -a.s., right-continuous on R, if f is a bounded Borel

function on R, X S and if f(t A 7, ,,) is, I1,-a.s., right-continuous on R,.
(Here 7 is the first exit time from Q.)
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(Cf. Theorem 5.2 in [30].)

Clearly, any two versions of X are P, -indistinguishable for each u € .#(8),
and every version of X, is P -1nd1st1ngu1shable from X, on [r,«) if u €
#(Q . ,). Moreover, for arbltrary p Ep%Bs and p € .#(8), (p X' ) is P, -indis-
tinguishable from a % X Hmeasurable function and therefore for every
measure y on R_, the integral

[, (o' Reyv(de)

+

is defined up to P,-equivalence. Besides,

(1.35) [ (o, X)v(d) = [ (5, X)y(dt) Pas.forallpec.s(Q.,),
where p'(x) = pi(¢, x).

TueoreM 1.8. Suppose that y(z,) < Y(2,) if 2, < z,. For all p €.#(S)
and all f, p € pHs,

(1.36) P, exp{f[R ( =0, R)y(dt) - (f, X,>} =exp{ — v, n),

+

where

o(r,x) + 11, [(v)(s,,) dK,
(1.37) “

- Hr,x[j:ﬁt(gt)‘y(dt) +1(r, 51)]'

Proor. We can pass to the limit in (1.36) and (1.37) along any monotone
increasing sequences vy, and p,. Therefore it is sufficient to prove the theorem
for y concentrated on a finite interval [a, b] and for bounded p.

STep 1. Let y be concentrated on a finite set {¢, < -+ <¢,}. Then, by
(1.34),

/;5 o', X)y(dt) = %( f,X,) as,

where f; = 1y{t;}p", 7, = 7,. The equations (1.36) and (1.37) follow from
(1.12) and (1. 13)

STEP 2. Let p be continuous on [a, b] X (@ U d@). Take a partition A =

{a =ty <t, < -+ <t,=0>}and put
b i 5
Y= (o' R)v(dt) + (£, X)), Y= X (p" R Wt t)] + {f, X,).
a 1
By Step 1,

(1.38) P, exp(—Y,) = exp{ — v, u),
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where
u(r,x) = —log P, s, exp(—Y,)
satisfies
UA(r7x) + Hr,xf ‘1’(”1\)(3’ gs) sz
1.39 .
(1.39) = 1| [0 e) (@) + 15,8,
B(t,) =t;, fort,_,<t<t¢,.
Suppose A; C -+ CA, C -+ and the union of A, is everywhere dense in

[a,b]. Then Y, — Y, v, — v, and we get (1.36) and (1.37) by passing to the
limit in (1.38) and (1.39).

STeEP 3. It is easy to see that, if (1.36) and (1.37) hold for p, and if p, = p
boundedly, then they hold for p. It follows from Step 2 that they hold for all
bounded p. O

1.12. Historical processes. The historical process £ for & is a process
whose state space at time ¢ is the path of ¢ before ¢. The corresponding
superprocess X (called a historical superprocess) will be used in the next
section for proving the S property of X.

We start from a Markov process ¢ in a metric space E. We assume that Q°
consists of all right-continuous paths and that ¢(w) =w, € E for ¢t > a,
w e O° Let w_, stand for the restriction of w to [0, ¢]. By setting

gt(w) = Weys

we define a stochastic process with the same QOA and « and with a variable
state space E_,. The transition probabilities for ¢ are defined by the formula

(1.40) [Py )L, . (dyo) = [F(xop 56,1, (dYe, )

(cf. (1.31) in [26)).

The global state space S of £ can be identified with the union of E <, over
all ¢t € R,. With every set @ C S we associate a set Q c S defined by the
condition w_, € Q if, for every s € [0, ¢], (s, w,) € Q or w, = 4. If Q is a finely
open set for £, then @ is a finely open set for £. Moreover, if 7 is the first exit

time of ¢ from @, then {t < 7} = {£, € Q) and therefore the first exit time of é
from @ is also 7.

LEMMA 1.2. Let C be a finely open set for £ which contains with every path
w_, its restriction to any interval [0,s] with s <t. To every partition A =

{0=¢,< -+ <t,} there corresponds a finely open set

n
C, = U (wogiti_1<s<g, W, € C}
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which contains C. Let T and 7, be the first exit times of ¢ from C and C,. If
Ay C -+ €A, C -+ and if the union A of A, is everywhere dense in R_,
then 7y | 7.

Proor. C, D C because {w_, € C} c {w, €Cclw,, e} for
t; ,<s<t,. Hence 7, o >7. On the other hand for every s€ A,
{fw_, € CA}c{wss e C} and therefore, for s €A, {s <o} c{s <TA}C
{steCA}C{stEC}C{s<T}

1.13. S property. This property is stated in the following theorem.

THEOREM 1.9. Suppose that f € bp By and that (¢, ¢,) is, a.s., right-con-
tinuous in t. Then, for every r € 7,

(1.41) {{f,X)=0 forallt} c {f,X,) =0} a.s.

ProoF. Let £ be the historical process for £ Formula j(w_,) = (¢, w,)
maps the global state space 8 of £ onto the global space S of ¢ and it induces
mappings from bpgs to bpHs and from (8 ) to #(8S) such that (f, i) =
(f,wyand @, ¢)=fG, ¢,). The superprocess X with parameters (£, K, ¢) is
connected with X by the formula JX = X, and therefore

Q,={{f,X,)=0forall ¢} = {(f, X,> = 0 for all t}.

Let @ be the finely open set associated with 7. By Theorem 1.4 and Lemma 1.2
with C = @, (1.41) will be proved if we show that

(1.42) <f, TA> 0 as.on Qy,

for every A={0=¢t,< -+ <t,}. By 1.9.A, X is concentrated, a.s., on
S OREENV] S and (1.42) follows from Lemma 1.1, O

Only small adjustments are needed to prove the following, more general,
result:

TueOREM 1.10. Let X be the part of a superprocess X in a finely open set Q.
Suppose that f € bp By and that f(t, ¢,) is, a.s., right-continuous in t on [0, ],
where 7 is the first exit time from Q. Then, for every finely open set U C @,

(1.43) {({f, X)) =0 forallt) c {(f,X,)=0} a.s.,

where o is the first exit time from U.
2. Branching particle systems.

2.1. Branching. The first stochastic model of branching appeared in 1874
in the problem of the family name extinction posed by Galton and solved by
Watson [96]. The branching mechanism is determined here by the probabilities
g, n=20,12 ..., thata father has n sons.
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The next step—branching with several types of particles—was made in
1947 in [54] (an output of a seminar of Kolmogorov held at Moscow Univer-
sity). Here the branching mechanism is defined by the probabilities
q(i; ky, ..., k,) for a particle of type i to generate &, particles of type 1,...,%,
particles of type a.

In general, the type of a particle can be described by a point of an arbitrary
measurable space (E, &). A particle located at x € E generates a random
number n of particles, with a probability distribution q,(x;dy,,...,dy,). An
offspring configuration y,,...,y, can be interpreted as a measure v =
o, + - +95,, where 8, is the Dirac measure at y.

Let Z2,=1{0,1,2,...}, and let .#=.#Z(E,Z.) be the space of all Z_ -valued
finite measures on E. A probability measure q on .# is defined by a sequence
of symmetric measures q,(dy;,...,dy,) on (E", #") such that Lq,(E") = 1.
In particular, to every finite measure u on (E, %) there corresponds the
Poisson measure on .# with intensity u given by

(2.1) @u(dyy, ..., dy,) = X*(n!) 'eT*m(dy,) -+ m(dy,),

with A = w(E), m = u/A.

Denote by b,pZ the set of all functions z € p4 such that z < 1, and put
2" =z2(y) - 2(y,) for v =4, + -+ +3, . A probability measure g on .# is
uniquely determined by the generating function

o(2) = [ a(dr)z*
(2.2)
= ¥ [au(dys, s dy)z(01) o 2(3,), 2 €00,

or by the Laplace transform

(2.3) L(f) =¢(e)(x) = [q(dv)e™ "™,  febpad.
For the Poisson measure, we have
(p(Z) = eXP<z - 1’/"'),

L(f) =exple/ = 1,p).

The general branching mechanism can be described by a stochastic kernel
q(s,x;dv) from S =R, X E to .#. It defines the probability distribution of
offspring given that the act of procreation takes place at time s at point x. We
associate with g a transformation in the space b,p%s, given by the formula

e(2)(s,x) = fq(s, x;dv)z”

(2.4)

(2.5)
= qun(s’x;dyl""7dyn)z(s7y1) Z(S,yn).

In the case of a local branching, the offspring is born at x and ¢(z)(s, x) =
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ols, x; 2(s, x)], where

(2.6) o(s,2;2) = Lp,(s,x)2"

is the generating function for the number of children.

2.2. Branching particle systems. A branching particle system is a system
of particles moving in the space E, dying and producing at their death times
random offspring. The particles alive at time ¢ are indistinguishable. The only
interaction between the particles is that the birth time of offspring coincides
with death time of their parent. The motion of each particle is described by a
Markov process ¢, the branching mechanism by a generating function (2.5)
and their death time by a continuous additive functional K of ¢: The probabil-
ity of surviving during time interval (r, t) and of dying between ¢ and ¢ + dt is
equal to H(r,t) dK,, where

(2.7) H(r,t) = e X0,

Consider an .#valued stochastic process X,, where X,(B) is the number of
particles at time ¢ in a set B. Denote by P, , the probability law for X given
that the process starts at time r from v €.#. We have two fundamental
equations: If f€ p%# and Z; = exp( — f, X,), then

(2.8) P, .. Z=P ,Z/P,  Z,

r,vi+tvy
for all v,,v, € .#, and

Pr,stf= H,,x[H(r,t)exp(—f(gt))
(2.9)
+ftH(r,s)szf/q(s,fs;dv)Ps,,,Zf

Equation (2.8) follows from the independence of the evolution of any two parts
of the population living at time r. In (2.9), we deal with a process started at
time r by one particle located at x: The first term corresponds to the case
when this particle is still alive at time ¢; the second term corresponds to its
death at time s € (r, ).

Put
(2.10) h(r,x) = —log P, ; exp{ —f, X,).
Clearly, (2.8) and (2.9) imply that
(2.11) P, exp{ —f,X,) = exp{—fh(r,x)v(dx)}
and

(2.12) e "® =TI, | H(r,t)exp[—f(&)] + j;tH(r,s) dK, go(e"‘)(s,fs)].
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2.3. Enriched model. X =(X,,P,,) is a Markov process in .# in the
sense of Section 1.1. We enrich the model by expanding the family of random
measures X,, t € R,, to a family X_, r € 7, and the class of probability
measures P, ,, r €R,,v € #(E,Z,),toaclass P, n €.#(S,Z,).

Every n € .#(S,Z,) has the form n = X8, , . The corresponding P, is the
probability law of a particle system initiated by a finite number of ‘“im-
migrants’’: (r;, x,) is the time and the place of entry for the immigrant i.

For every particle a, we trace backward its historical path (s, w,), which
consists of the path of a and all its ancestors starting from an immigrant i.
Consider all historical paths which exit from @ and identify those that coincide
till the first exit time 7 from @. The ends of these paths form a configuration

(t,y),J=1,2,..., in S. We put
XT = Zatj,yj'

Note that X, = n P, -a.s. (a is the first exit time from @ = ).
The same arguments as in Sections 2.2 lead to the equations

(2.13) P exp{ — f, X)) = exp{ — h,n),

he0 11, | Ha,myespl 1)
(2.14) )
+ [ H(r,s)dK, ¢(e *)(s,&,)|-

Using the notation of Section 1.6, we can describe the joint probability
distribution of X, ,..., X, by

(215) P,uexp[_<f17XI>] =exp<_h17/-L>,
where
(2.15a) h7(x) = —log P, 5, exp| — < f1, X)]

is determined recursively by the equations
exp[—h,;(r,x)] = H,,x{H(a, ) F

(216) -I-fTIH(r,s) szgo[eXp(_hI)](s’ fs)},

F= exp{—( fi + hI-A)(TI’gn)}‘
(By definition, Ay = 0.)

2.4. Poisson initial data. To every measure q on .#(S,Z ) there corre-
sponds a measure

P, = fq(dn)Pn.
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If g, is the Poisson measure with intensity u, then
(2.17) ' P, exp[ —{f7, X)] = exp{ — u,, u),
where u; = 1 — exp(—h;) satisfies
(2.18) wi(®) + 1, . ["6(u)(s,6) dK, =TI, ,Gy.
Here

o(2)=¢e(l—2)—1+2,

Gr=[1+ (u;_, — L)exp( _f)\)]("')nfn)

(we set u; = 0 for I = ).
Formulae (2.17) and (2.18) follow from (2.15) and (2.16) and Lemma A.1.5
(cf. proof of formulae (1.9) and (1.11) in [24]).

3. Superprocesses as the limit of branching particle systems.

3.1. Heuristic passage to the limit. If the mass of each particle is 8, then
the mass distribution BX, belongs to .#(S, BZ.). To get a superprocess with
parameters (¢, K, §), we replace the initial intensity u by u /B, the functional
K by oK for some constant o, > 0, the generating function ¢ by ¢g and we
pass to the limit as B — 0. It follows from (2.17) and (2.18) that

(31) PqM/B[_B<fI7XI>] =exp< _Uf,l,b>,

32)  of(r,x) + 1, [Us(vf)(s, ) dK, =TI, ,GF,

where vf =u,/B,

1
(33)  Gf - [E(l — exp(~B1)) + exp(~BAYVF | (7.
and
l/fﬁ(z)(sa x) = B_IO'BQEB(BZ)(S’ x)
(3.4)

%[%(1—&) - 1+pBz], for0<pz<1.

Suppose that ,(2z) — ¢(2) as B — 0. Then by passing to the limit in (3.1),
(3.2) and (3.3), we get equations (1.12), (1.13) and (1.14).

3.2. Rigorous results. Some restrictions are needed to justify the passage
to the limit in Section 3.1. It is convenient to state them in terms of the
operators ;: & — % connected with the functions (3.4) by

(3.5) Up(2)(5,%) = Y3(2°)(x), for2*(x) = 2(s, %)

(cf. Section 1.5). We introduce into 8% the uniform norm ||z|| = sup,|z(x)l.
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THEOREM 3.1. Suppose that ¢ is right and K satisfies condition 1.4.A. The
passage to the limit described in Section 3.1 is legitimate if the operators i3
given by (3.4) and (3.5) and the mappings &° from bp%# to b# satisfy, on
every finite interval A, the following assumptions:

3.2.A. There is a function A(c) such that, for all z,Z € b,p# and all s,

lw*(2) — ()l < A(e)llz - 2l

3.2.B. There is a function a(B,c) such that, for every ¢ > 0, a(B,c) - 0 as
B0 and

lvs(2) — ¥(2)| < (B, ¢),

forallz € b,pAB.
3.2.C. There is a constant C such that

Wg(2) + C(llzll + 1) = 0,
for all B > 0 and z subject to the condition 0 < Bz < 1.

More precisely, if f; € # for all i € I, then the solutions vf of (3.2) and
(8.3) converge, as B — 0, to the unique solutions of (1.13) and (1.14), and the
Laplace transforms (3.1) converge to the Laplace transforms (1.12).

Theorem 3.1 is proved in Section A.3.1.

3.3. Interpretation of ¢ in terms of branching particle systems. Possible
values for the branching parameter ¢ of a superprocess are described in
Section 1.5. To understand the heuristic meaning of the coefficients which
appear in formulas (1.15), (1.17) and (1.19), we investigate how various values
of ¢ can be obtained by the limiting procedure in Theorem 3.1.

We say that constants o, and generating functions ¢, form an approximat-
ing family for ¢ if i, defined by (3.4) and ¢ satisfy conditions 3.2.A-3.2.C. It
is easy to check that, if (¢’, ¢*) is an approximating family for *, i = 1,..., %,
and if c!,..., c* are positive constants, then

. 1 Co
o= ZCLO_L’ o= —ZCLO'LQDL
ag

is an approximating family for ¢ = Lciy'.

This remark allows us to construct an approximating family for any ¢ of
the form (1.17) with time-independent coefficients subject to conditions
1.7.A-1.7.C, starting from a few examples (Examples 3.3.A-3.3.E). (This will
be used in the proof of Theorem A.3.2.)

ExampLE 3.3.A. The functions

(8.6) =1, o(2)(x) = fEexp[Z(y) —1y(x,dy) +1-y(x, E)
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(independent of B) form an approximating family for

(3.7) W(2)(x) =2(x) = [v(x,dy)z(3),

assuming that y(x, E) < 1 for all «x.
This is clear from the formula

1
Up(2)(x) = 2(x) = 5 [ [1 = e Py (x, dy).

ExampLE 3.3.B. For

(3.8) P(2)(x) =a(x)z(x),
with |a| < 1, an approximating family is given by
1
(3.9) op = B’ eg(2) =z + Ba(l —z) +B(1 -2)%

Indeed, ¢, with 0 < B < § is a generating function and y,(2) = ¢(2) + Bz2.

Note that, in Examples 3.3.A and 3.3.B, ¢ is a linear operator and therefore
(1.9) has a solution of the form

v(r,x) = fv(r,x;dt,dy)f(t,y),

where v(r, x; B) is the solution corresponding to f = 1g. Since the Laplace
functional determines a random measure up to equivalence, we conclude from
(1.8) that, P, -as.,

X,(B) = [p(dr,dx)v(r,x; B), forall B.

ExampLE 3.3.C. The functions

(310) o =8, a(2)(x) = [(exp({z = 1,7)/B) = )m(x,dn) + 1

provide an approximating family for

(3.11) Y(z) = f(exp(—(z,n)) - 1)ym(x,dn),

assuming that m(x, dn) is a kernel from E to .# such that m(x, .#) < 1 and
m satisfies 1.7.B.
Indeed, ¢5(2) = Bz + ¥(2) and, by 1.7.B, ¢ satisfies 3.2.A.

ExampLE 3.3.D. Suppose that ¢ is given by (3.11), and let [In|m(x,dn) <1
and jllm<ﬂln|m(x, dmn) — 0 uniformly as 8 — 0. Then the formula

aﬁ(x) — ﬁl/z’

(3.12) e(z) = 1+ Blﬂf/ (exp({z — 1,7)/B) — 1)m(x,dn),

with #, = {In|® > B}, gives an approximating family for .
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Indeed, (3.12) is a generating function since m(x,.#;) < 8~/2 by Cheby-
shev’s inequality. Clearly,

¥s(2) = BY% + [/(exp(—<z,n>) - m(x,dn)
B
satisfies 3.2.B and 3.2.C, and ¢ satisfies 3.2.A.

The offspring distributions corresponding to ¢p in Examples 3.3.A, 3.3.C
and 3.3.D are the mixtures of an atom concentrated at 0 and Poisson measures
with various intensities n. In particular, in the case of Example 3.3.D, the
intensities n are weighted according to the measure 8/?2m(x, B dn) restricted
to B4,

ExampLE 3.3.E. Put
(3.13)  (2)(x) = b(x)2(2)* + [[e7**) — 1 + uz(x)]n(x, du).
0
If 0 < b(x) and 2b(x) + [qu®n(x,du) < 1, then an approximating family for ¢
can be obtained by the formula
(3.14) = e B%(l_z)
. gg = —, z) =z + —.
A ¥ B

Indeed, ¥z = ¢ for all B, which implies 3.2.B. Conditions 3.2.A and 3.2.C
follow from the inequality

(3.15) 0<e ®“—1+acx<ia? foralla>0.

It remains to show that ¢, is a generating function. We have

0p(2)(x) = épf(x)z(x)k,

where

1
p(x) = B"’w(g)(x), p(x)=1-b— ﬁf‘(1 — e */Byun(x,du),
0

2 uk
pi(x) = Ff (E) e */Pn(x,du), fork > 2.
)
Clearly, ¢4(1) = 1 and p, > 0 for all k.

Appendix to Part I. Construction of superprocesses. Section 1 of
the Appendix contains miscellaneous results which are used in the rest of the
Appendix and in the main part of the article. The existence of a superprocess
with parameters (¢, K, ¢) is proved in Sections 2 and 3 by two different
methods. In Section 2, we solve the integral equations (I.1.9) and (I.1.13), and
we prove that the right-hand sides in (I.1.12) are the Laplace transforms of a
compatible family of probability measures. In Section 3, we get a superprocess
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by passing to the limit from branching processes. By combining the results of
both sections, we arrive at Theorem 1.1.

1. Miscellanea.
1.1. Gronwall’s lemma.

LemMmaA 1.1.  Suppose that Borel functions h, > 0 satisfy, for all r € [0, a),
the following conditions:

(1.1) ho(r) <N,

(1.2) h,(r) 5p+qfahn_1(s) ds, forn=1,2,...,
where p, q and N-are positive constants. Then

(1.3) h,(r) < pet@ 4 W

In particular, if hy = 0 or if h, does not depend on n, then
(1.4) h,(r) < pe?©@™",
Proor. By induction in n, we get

k(a —r) Ng"(a —r)"
n!

h(r)<p Z

k=0

Clearly, this implies (1.3) and (1.4). O
1.2.

THEOREM 1.1. Let (E, &) be a measurable space. Suppose that operators
Ve, r<sel[0,a) in the space b# and a measurable function g"(x) on
[0, @) X E have the following properties:

1.2.A. There is a function A(c) such that
[e2(z) - ¥2(2)] < A(e)llz - 4,

forallr,sand all z,Z € b, #.
1.2.B. There is a constant C such that

¥(z) + C(llzll + 1) > 0,

forallze b@ and all r, s, x.
1.2.C. There is a constant K such that ||g"|| < K for all r.
Then the equation

(1.5) v"+ fa\I’,s(vs) ds=g", rel0,a),
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has a unique solution. More precisely, if
(1.6) vy =0,

a
vp=g"— [(Wi(vi)ds, fornx1,
r

then, for all r €[0,a) and all n,
(1.7) lv,ll < L
and
(1.8) los = o™l < &,,
where L and ¢, depend only on the function A and the constants C, K
and a, and ¢, - 0 as n — «.
Proor. By (1.6), 1.2.B and 1.2.C,
a
ozl < K + ["C(llvg_ll + 1)ds,

and therefore h,(r) = ||lv] || satisfy (1.1), with N = 0, and (1.2), with p = K +
Ca and q = C. By Lemma 1.1, (1.7) holds with L = pe™?¢. By (1.6) and 1.2.A,

a
lvper —vill < df lup = viol ds,
T

where § = A(L) and, by (1.3), llv..; — v.ll < Lg"a"/n!, for all r € [0, a).
Clearly, this implies (1.8). The uniqueness follows easily from Lemma 1.1. O

1.3.

THEOREM 1.2. Let 1.2.A hold for ¥}, r <s €[0,a). Suppose that the
operators Vi(B), r <s €[0,a), B > 0, and measurable functions g"(x) and
g7 (B, x) satisfy the following conditions:

1.3.A. There is a function a(B, ¢) such that a(B,c) = 0 as B0 and
”qer(B’z) - \Prs(z)” <a(B,c),

forallr, sand B and all z € b, %.
1.3.B. There is C such that

v (B,z) + C(llzll + 1) > 0,

forallz € b# and all r, s, x and B.

1.3.C. There is K such that |g"(B, x)| < K, for all r, x and B.

1.3.D. There exists a function 8(B) such that §(8) - 0 as B — 0, and lg"(B)
— gl < 8(B) for all r and B.
If

(1.9) vp + [ V(B v3)ds = gf, forallr,p,
r
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then vj converges, as B — 0, to the unique solution of equation (1.5).
More precisely, for all r € [0, a) and all B,

(1.10) Jvg| <L
and
(1.11) v —v"| < &(B),

where L and e(B) depend only on the functions A, a and & and the
constants C, K and a, and &(8) - 0 as B — 0.

Proor. By 1.3.B and (1.9),
logll < K + [ C(llvgll + 1) ds
and, by Lemma 1.1, (1.10) holds with L = [K + Cale®®. By 1.2.A, 1.3.A and
(1.10),
[w2(8,08) = wo(8, 3| < ACD)|[v; = v + B,
where p = a(B,A) + a(B, L). By (1.9) and 1.3.D, h(r) = llv; — vgll satisfies
(1.2), with ¢ = A(L) and p = ap + 8(B) + 8(B'), and (1.11) follows from (1.4).

1.4. We introduce into the space bp# the topology of bounded conver-
gence. Every probability P on .#=.#(E) is uniquely determined by its
Laplace functional,

(1.12) Lp(f) = f/exp(—<f,v>)P(dv), febpad.

In Lemmas 1.2-1.4 we assume that (E, &) is a Luzin measurable space.

LEMMA 1.2. Let P, be probability measures on #. If Lp converges to a

continuous functional L, then L is also a Laplace functional of a probability P
on A.

A proof can be found in, for instance, [23] (see Lemma 2.1 there).

LEmMmA 1.3. Consider E, € # such that E, 1 E, and put #, = .#(E,).
Suppose that P, is a probability measure on .#, and that the Laplace
functionals L, of P, satisfy the following condition, for all n and all f € bp #:

(1.13) L,(f2) =Ly fusn)s

where f,, = 15 _f. Then there exists a unique probability measure P on .# such
that

(1.14) Lp(f) =L.(1),

for all n and all f which vanish outside some E,,.

Proor. By restricting every measure u € .#,,; to E,, we define a mea-
surable mapping p, from .#, ., to .#,. By (1. 13) P, commdes with the image
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of P, ., under p,. The probability P is the inverse image of the laws P, (see
[14], Chapter III, Theorem 53). O

1.5. A functional L on bp & is called positive definite if

Zn: AML(f +f5) 20,

i,j=1

forevery n =1,2,..., all f;,...,f, €bpF andall A,,...,A, €ER.

LEMMA 1.4. A functional L on bp % is the Laplace functional of a probabil-
ity measure P if and only if it is continuous, positive definite, Lf > 0 for all f
and L(0) = 1.

A proof can be found in the Appendix to [35].
1.6.

REMARK. We need a multivariate form of Lemmas 1.2-1.4. Consider a
finite number of measurable spaces (E;, %,),i = 1,..., k, and put .#, = #(E,)
and G, = #pP,. To every probability measure P on the product space I =
M X -+ X A, there corresponds the Laplace functional

Lp(fiy-eos f) = [imexp Y= fi,v)P(dvy,...,dvy),
fi€Gy, ..., fr €G,.

To apply our lemmas to such functionals, it is sufficient to note that the
measurable space I is isomorphic to .#Z(E), where E is the union of E;: To
every v € #(E) there corresponds an element (v;,...,v,) of M, where v, is
the restriction of v to E,;. Analogously, G; X --- X G, can be identified with
bp 4. After this identification, (1.15) takes the form (1.12).

(1.15)

1.7. Let &£ = (4,11, ) be a right Markov process, and let v be a stopping
time relative to the filtration 7, (we use the notation of Section I.1.3). Put
Ce ° if Ae F° andfif, for each r, {C,7 > r} € F°.

LEMMA 1.5. Suppose that K is an additive functional of ¢ given by (1.1.7),

with k € bpHg. Let w,p € bBs, F € bF°. and let w and 11, ,|F| be sup-
ported by [0, a). Put

H(r.) = exp( = ['(5,£,) dK. .

The equation

(1.16)  g(r,x) = Hr,x[H(a,fr)F + j:H(a, s)w(s, &,) sz]
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implies
(117) g(r,x) + 10, [ (08)(5,,) dK, = H[F + [w(s,€) sz].
If g is bounded and supported by [0, a), then (1.17) implies (1.16).
Proor. Put
dK, =p(t,¢&) dK,,  Y,=1,..H(s,7)F,
z,= 1, [H(s,u)w(u,£,) dK,.

Since {s < 7} € &, and Y,, Z, € F.°,, we have, by 1.1.1.C,
O, .1, (kp)(s, €)Y, + Z,) =11, 1, . (kp)(s, )], (Y, + Z)

and, therefore,

Hr,xf‘rgs(fs) sz = Hr,x'[THs,Q(I’s + Zs) dks

(1.18)
=1, [ (¥, +2,)dR,.
Note that
[H(s,t)dR, = 1 - H(r,2).
Therefore, '
(1.19) n,,[Y,dR, =1, F[1 - H(a,)]

and, by Fubini’s theorem,
(1.20) n,,xfzs dK, = n,,xfwu(gu)u — H(a,u)] dK,.
Clearly, (1.17) follows from (1.18)-(1.20) and (1.16).
Suppose that g is bounded, supported by [0, a) and satisfies (1.17), and let g

be given by (1.16). Then h(r) =|lg” — &7l is bounded and satisfies the condi-
tion

h(r) <q[ h(s)ds, forre[0,a),
where g is an upper bound for ||p°£°| on [0, a). By Lemma 1.1, ~ = 0. O
1.8.

LemmA 1.6. Suppose K is as in Lemma 1.5, f € bp %y is supported by an
interval [0, b] and operators ¢°, s € [0, b], in bp B satisfy the following condi-
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tions:

1.8.A. ¥°(0) = 0.

1.8.B. [[y*(2) — ¢*(D)| < cllz — 2|, for all s, z and 2.

1.8.C. ¢°(2) = a°z + R*(2), where a® are uniformly bounded, R*® are mono-
tone increasing [i.e., R°(z;) > R(z,) if z; = 2z, > 0] and R*(A)/A — 0
as A]0.
If v] € bp # satisfy

v =0, forr > b,

2D @) + 1, [0 (u9)(£) K, = ALL, , f(7,%,), forr <b,
then
()
(1.22) }tli% =11, H(a,7)f(7,§,),
where

H(r,s) = exp{—frsa‘(f,,) th}.

Proor. Without any loss of generality, we can assume that 7 <b. It
follows from Lemma 1.1 that v is determined uniquely by (1.21). By applying
Lemma 1.5to p = a, g = v and w = av — (v), we get that (1.21) is satisfied if

(123) vf(x) + 10, [ H(a,s)R*(v})(£,) dK, = AT, ,H(a,7) f(7,£,).

Hence (1.21) implies (1.23). It follows from (1.23) that |[v]ll/A < ¢, for all r
and A. By 1.8.C, R*(v{)/A < R*(cA)/A — 0 as A — 0, and (1.22) follows from
(1.23) by the dominated convergence theorem. O

2. Direct construction.

2.1. A real-valued function v on an Abelian semigroup G is called negative
definite if

n
(2.1) P /\i/\jv(gi +g;) <0,
i, j=1
for every n > 2, all g,,...,8, € G and all A,,..., A, € R such that XA, = 0.
It is known (see [3], page 74) that the following holds:
2.1.A. If v is negative definite, then L(f) = e ") is positive definite.

We deal with the case when G = bp #. We also consider G = G, X - X G,,,
where G; = bp %;, but this more general case can be reduced to the previous
one by identifying G with the space of bounded positive measurable functions
on the union E of E; (cf. Section 1.6.). Denote by 9(G) the class of all
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negative definite functions v such that v(g) = 0 for all g and v(0) = 0.
Clearly, it contains all positive additive functions and it is closed under
addition and pointwise convergence. We also use the following property:

2.1.B. If v, € N(G) for every u in a measure space (U, %, n) and if v, (g) is
n-integrable in « for each g, then

v(g) = [vi(g)n(du)
also belongs to N(G).

2.2. We denote by R ;(G) the set of all mappings v from G to bp# such
that v(g)(x) belongs to N(G), for every x € E.

THEOREM 2.1. Suppose that ¢ is a right Markov process in (E, &), k €
bp%Bs and §°, s € R, are operators from bp % to # such that the following
hold:

2.2.A. If v € Np(G), then —y°[v(g)(x) is negative definite in g, for every
x€E.

2.2.B. For every s, ¢°(0) = 0 and ¢° is continuous relative to bounded conver-
gence.

Suppose that, in addition, the following conditions hold on every finite
interval A:

2.2.C. y%(2) < Az, foralls € A and all z € bp B.
2.2.D. |ly*(2) — (Dl < Az — Zll, foralls € A and all 2,52 € b,pB.
22.E. y°(2) + C(lzll+ 1) = 0, foralls € A and all z € bp &B.

Then there exists a unique (up to equivalence) superprocess with parameters

(§’ K7 '1[/)

Proor. We continue ¢° to b%, preserving conditions 2.2.B, 2.2.D and
2.2.E by setting ¢°(2) = ¢°(|z[)). We fix a and restrict ourselves to functions f;
supported by the interval [0, a).

Let A be a positive constant. By Lemma 1.5 (applied to p = A and g = v;),
equation (I.1.13) follows from

(22) of(x) =T, H(a,7)G; + 11, ["Hy(a,5)®(v})(£,) dK,,

where H|(r,s) = e *K9 and ®%(2) = Az — ¢°(2) if we show that G, is
bounded and v} is a bounded solution of (2.2).
Define a sequence v; , by the recursive formula

UI,O = 0,

2.3 T
( ) v;,n(x) = Hr,xH/\(a’TI)GI + Hr,x/ Hz\(a’s)q)s(v;,n—l)(gs) sz'
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We shall prove that there exist constants K, and L,, and functions

e,(m) — 0 as n — o such that, if |I| = m and ||f;l| < ¢, for i = 1,..., m, then
(2.4) G/l <K,

(2.5) |vill<L,,, forallre][0,a)

and

(2.6) lvf . —vill <e,(m), forall re[0,a)andalln.

Clearly, v; , are supported by [0, a) and they satisfy (1.6) with
Vi(z) = —I0, 1, ., H\(a,s)®°(2)({)k(s, &),
g"(x) =11, Hy(a,7,)G;.

Conditions 1.2.A and 1.2.B follow from 2.2.D and 2.2.E.

Note that (2.4) and 1.2.C hold for m = 1. Therefore (2.5) and (2.6) for
m = 1 follow from (1.7) and (1.8). Suppose that (2.4)—(2.6) are true for m — 1.
Then (2.4) holds for m, with K,, = ¢ + L,,_;. Hence 1.2.C holds with K = K,
and, by (1.7) and (1.8), conditions (2.5) and (2.6) are satisfied for m. Clearly,
(2.2) follows from (2.3)-(2.6).

Let us show that G; and v; are positive if f; > 0, for all i € I. Take A to
satisfy 2.2.Con A =[0,a). If G; _; > 0, for all i € I, then G; > 0 and v; , > 0
for all n, by (2.3) and 2.2.C. It follows from (2.6) that v; > 0 on [0, a).

Put &, = Hp,,) X #. Let I ={1,..., m}. We consider G; as a function of
(fi, -5 [n) € (bp#B,)™ with values in b.% °. Analogously, we interpret v; as a
function from (bp#,)™ to b#,. We prove, by induction on m, that these
functions are negative definite. If our statement is true for m — 1 and if
lIl = m, then, obviously, G; is negative definite. If v; , _, is negative definite,
then, by (2.3), 2.2.A and 2.1.B, v; ,, is negative definite. By (2.6), v; has the
same property.

In the same way, by using 2.2.B, we prove that v; are continuous relative to

the bounded convergence in (bp#,)™ and vanish for f;, = --- =f,, = 0.
Hence,
(27) LI(fly"'yfm)=exp<_vI’#‘>

satisfies all conditions of Lemma 1.4 and, by this Lemma, there exists a unique
probability measure on .#(S,)™ with Laplace transform given by (2.7). By
Lemma 1.3 and Section 1.6, there exists a unique probability measure P, on
#(S)™ such that (I1.1.12) and (I.1.13) hold for all f; € J#. It is easy to see that
L(fy,...sfm)=Ly(f1,eocs fopif J={1,...,m — 1} and f,, = 0. There-
fore the existence of the stochastic process (X,, P,) subject to conditions
I.1.6.A and 1.1.6.B follows from Kolmogorov’s theorem.

2.3.

THEOREM 2.2. The conclusion of Theorem 2.1 is true if there exist operators
¥g, B > 0, which satisfy conditions 2.2.A through 2.2.D and such that, for
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every finite interval A the following hold:

2.3.A. IY3(2) — *(ll < a(B, ¢), foralls€ A, B> 0,0 <z <c with a(B,c)
- 0as B —0.
2.3B. y3(2) + Clzll + 1) > 0, foralls € A, B > 0, z € B_(E).

Proor. By Theorem 2.1, there exist stochastic processes (X?, Pu) which

satisfy 1.1.6.A and 1.1.6.B with ¢ replaced by ¢,;. By Theorem 1.2, the
corresponding solutions of (I.1.9) and (I.1.13) converge to the solutions v,
corresponding to . It follows from Lemma 1.2 that exp{ — v;, u) are the
Laplace transforms of a compatible family of finite-dimensional distributions
of a stochastic process (X,, P,). O

24.

THEOREM 2.3. Suppose that ¢ is right, K satisfies conditions 1.1.4.A and
is given by formula (1.1.17) with a, b, y, m and n subject to conditions 1.1.7.A,
I.1.7.B and 1.1.7C'. Then there exists a unique (up to equivalence) superpro-
cess with parameters (¢, K, ).

Proor. To simplify notation, we consider only the case when a, b, v, m
and n do not depend on time. For z € bp &%,

(2.8) 0< j//(1 —exp(—{z,7)))m(x,dn) < (lzll + 1)[1 A Inlm(x,dn)
and
(29) 0< fl[exp(—uz(x)) -1+ uz(x)]n(x,du) < %z(x)zfolu2n(x,du),

0
and, therefore, (z) € b#. Put
U (2)(x) = a(x)2(%) = [ y(x,d)2(y) + [ (exp(=(2,m)) = D)m(x,dn)
and note that

Y(2)(x) = §(2)(x) + [ F(x,u)N(x,du),
[0,1]

where

[e7##® — 1 + uz(x)]u~2, foru >0,
F(x,u) =1
2

z(x)2, for u = 0,
and .
N(x,du) = u®n(x,du) on(0,1], N(x,{0}) = 2b(x).
Denote by N; the measure concentrated on [, 1] such that N, = N on (B, 1]
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and N(x,{B}) = 2b(x). Consider

Up(2) (%) = §(2)(2) + [ Fu(x,u) Ny(x, du)

=92 + [ [ = ng(x, du) + ap(x)2(x),
where
ng(x,du) = u=2Ny(x,du), az(x) = j;o,llunﬁ(x,du).

Suppose that v € N (G). It follows from 2.1.A that ®(v) = 1 —
exp(— (v, 1)) belongs to N(G) for every finite measure n. By 2.1.B, ¢, satisfies
2.2.A. Since ag(x) is bounded, ¢, satisfies 2.2.B also. It is easy to check
conditions 2.2.C, 2.2.D and 2.3.B by using (2.8) and (2.9). Condition 2.3.A
holds because

[Ys(2) — ¥(2)] < 2B(x)| Fy(x, B) — Fy(x,0)| + %nznzfo”uzn(x, du) + mP(z, E).
Therefore Theorem 2.3 follows from Theorem 2.2. O
3. Passage to the limit.
3.1.
Proor or THEOREM 1.3.1. Conditions 1.3.2.A-1.3.2.C hold for all z € b#
and all 8 > 0 if we set
¥o(2) = ¢ (l2l),

ys(lzl), if Bzl <1,

ve(2) =1 if 1182l > 1.

We fix a and assume that all functions f; are supported by [0, a). Clearly,
all functions v;(B) have the same property, and (1.3.2), restricted to [0, a), has
the form (1.5) with

(31) wi(B,2) =, 1, v5(2)(&)k(s, &),  gf(x) =11, ,GF.

If, in addition, v; is supported by [0, a), then (I.1.13), restricted to [0, a), has
the form (1.5) with

(3.2)  Wi(2) =1L, 1, 4°(2)(&)k(s, &),  g'(x) =11, .Gy

The conditions 1.3.2.A-1.3.2.C of our theorem imply 1.2.A and 1.3.A.
We prove, by induction on m = |I|, that if || f;|| < ¢ for all i € I, then

(3.3) IGfl <K,,, forall B> 0,
(3.4) lvi(B)| <L,,, forall B> 0andallre[0,a),
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where K,, and L,, depend only on ¢ and a. Moreover, the unique solution v,
of (I1.1.13) satisfies the condition

(3.5) lv;(B) — vi|| < e,(B), forall B> 0andall re [0,a),

where ¢,(8) — 0 as B — 0 and they depend only on ¢, a, « and C.

If (3.3) and (3.4) hold for m — 1, then (3.3) holds for m, with K, =c +
L, _,. Hence 1.3.C holds with K = K,, and, by (1.10), (3.4) is true with some
L,,. If (3.5) is satisfied for m — 1, then 1.3.D is satisfied and (1.11) implies
(3.5).

Let I={1,...,m}. For any fixed 8, r and x, vj(B,x) is a continuous
functional of (fy,..., f,,) € (bp#,)™ (relative to bounded convergence). By
(3.4) and (3.5), the same is true for vj(x) and for the functional (2.7). The
concluding part of the proof is almost identical to the corresponding part of
proof of Theorem 2.1. The only difference is that now we use Lemma 1.2
instead of Lemma 1.4. O

3.2.

THEOREM 3.2. Suppose that ¢ and K satisfy the conditions of Theorem
1.1.1 and that ¢ is given by (1.1.17), with a, b, y, m and n subject to conditions
1.1.7.A-1.1.7.C. Then there exists a unique (up to equivalence) superprocess
with parameters (&, K, ).

Proor. If the coefficients are independent of the time parameter s, then
Theorem 3.2 follows from Theorem 1.3.1 and Section 1.3.3. The arguments in
Section 1.3.3 are applicable also to the case when conditions 1.1.7.A-1.1.7.C are
satisfied on a fixed interval A and the coefficients a, b, ... vanish for s € A. In
the general case, we consider functions a;, b;, v;, m; and n; which coincide
with a, b, vy, m and n on the interval A, = [0, i) and vanish outside A;, and we
obtain Theorem 3.2 by applying Theorem 2.2. O

Part II. Superdiffusion and partial differential equations.
1. Diffusion and PDEs.

1.1. Diffusion. We start from a differential operator
d

d
L= T
Z Lja a + Zblaxl

i,J i

in § = R, X R? with coefficients which depend on (r,x) € S and satisfy the
following conditions:

1.1.A. (Uniform ellipticity.) There exists a constant y > 0 such that
Zau 7y szu” forall (r,x) €S, u,,...,uys €R.
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1.1.B. a;; and b; are bounded, continuous in (r, x) and they satisfy Holder’s
conditions: There exist constants A > 0 and 0 < a < 1 such that

|la;;(r %) —a;;(s,9)| < Allr = 1% + e = y1°],
Ibi(r’x) - bi(",y)l <Alx —y|a,
for all r, x and y.

Under these conditions, there exists a function p(r,x;# y) such that, for
every bounded continuous function f,

u(r,x) = pr(r,x;t,y)f(y) dy

satisfies the equation
u+Lu=0 inS_, =[0,¢) x R?
and the condition
u(r,x) - f(x) asrtt.

(p is called a fundamental solution of the equation 1 + Lu = 0.) (The exis-
tence of a fundamental solution is proved, for instance, in [37], Chapter 1.)

The diffusion with generator L is a Markov process in E = R? with
continuous paths and with the transition function p(r, x;¢, dy) =
p(r,x;¢t,y)dy. For the existence of such process, see, for example, [87] or [17].
Clearly, all diffusions satisfy conditions I.1.2.A-1.1.2.C.

1.2. Maximum principle. Let @ be an open set in S. Let C(Q) denote the
set of all continuous functions in @. Put y € CX(Q) if u and du/dx;, i =
1,...,d, belong to C(®), and put u € C*Q) if u, & and du/dx,,i =1,...,d,
and 8°u/dx;0x;, i,j =1,...,d, belong to C(Q). Let C*> = C*(S) and let C§
stand for the class of all y € C2 which vanish outside a compact set.

LEmMMA 1.1 (Maximum principle). Suppose that @ is a bounded open set
and that u € C%(Q) satisfies the conditions
u+Lu>0 inQ,
limsupu(r,x) <0 as(r,x) > (t,a) €9Q.
Then u <0 in Q.

[See, e.g., [37], Chapter 2.]
1.3. Perron solution. We consider classical solutions of the equation

(1.1) t+Lu=0 ing@,

that is, we assume that u € C%Q) and that (1.1) holds at every point of @.
The proof of the following result is based on the maximum principle.
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THEOREM 1.1. Let @ be bounded and let f be a bounded continuous
function on 3Q. Then there exists a unique function u in @ such that the
following hold:

@u<vif

veC*(Q), v+Lv<0 inQ, liminfu(z)>f(c),

(1.2)
forall c €9Q;
b)) uz=vif
veC?(Q), v+Lv>0 inQ, lim sup v(2) < f(c),
(1.3) 2mve

forall c €9Q.

The function u is a solution of (1.1).

We call u the Perron solution. [The pioneering work of Perron appeared in
1923. The general result (in the elliptic setting) is due to Wiener and Brelot.
For the parabolic setting (and L = A) see [15].]

THEOREM 1.2. Let (£,11, ) be a diffusion with generator L. The Perron
solution of (1.1) is given by the formula
(1.4) u(r,x) =1L, . f(7,¢,),
where 7 = inf{t: 7 > a, (¢, £,) & Q) is the first exit time from Q.

Proor. (i) Suppose that h € C2, F[r,t] is the o-algebra generated by &,,
s €[r,t], and

(1.5) M, =h(t,&) — [((h+Lh)(s,£)ds, t=r.

Then (M,, #r,t],11, ) is a martingale. (This follows immediately from It6’s
formula if we describe the diffusion ¢ by a stochastic differential equation.)
Since 7 is bounded, by the optional sampling theorem,

h(r’x) = 1—Ir,acMO = Hr,xMr

(1.6) ST, h(rE) - Hr,xfT("l + Lh)(s,¢,) ds.

(ii) Consider a sequence of open sets Q 1@ such that @, c@Q,, . Let v
satisfy (1.2). Consider a function &, € C2 which coincides with v on @,. Let
7, be the first exit time from @, . By (1. 6)

ho(r,x) =10, h,(7,,& ) - n,x[ (h,+Lh,)(s,&,) ds

and, therefore,

(L7 u(r,x) =1, u(7,,¢, ) = Hr,xff”(,; + Lv)(s, &) ds = 11, ,u(7,, €, ),
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for (r, x) € @,. Clearly (7,,¢, ) — (7, £,) and, by Fatou’s lemma,
v(r,x) =10,  liminf v(7,, £ ) =10,  f(7,¢,) =u(r,x).
Analogously, v < u if v satisfies (1.3). O
1.4. The improved maximum principle. We say that a subset T of 4Q is
total if
(1.8) I, {(r,¢,)€T}=1, forall(r,x) € Q.
THEOREM 1.3. Let @ be bounded and let G be a total subset of Q. If
u € C%Q) is bounded above and satisfies the conditions
(1.9) t+Lu>0 inQ,
(1.10) limsupu(r,x) <0 as(r,x) - (t,a) €T,
thenu <0 in Q.

Proor. Set f= ¢ V 0, where ¢(c) = lim sup u(r, x) as (r, x) — c. Clearly,
u satisfies (1.3) and, by Theorem 1.2, u(r,x) <1II, , f(r,£)). The right-hand
side is equal to 0 because (7,¢,) € T 11, ,-a.s.,and f=0on T.

1.5. The mean value property.

THEOREM 1.4. Suppose that Q is a bounded domain and T is a total subset
of Q. If u is a bounded continuous function on @ U T which satisfies (1.1),
then

(1.11) u(r,x) =11, ,u(r,£.), foral (r,x)€q.

Proor. Let @, and 7, be the same as in the proof of Theorem 1.2. Then
u(r,x) =1, ,u(r,, & ) lcf. (1.7)]. Since (7,, ¢, ) - (7,¢,) € T 11, ,-as., we get
(1.11) by the dominated convergence theorem.

CoRrOLLARY. The set of all solutions of (1.1) is closed under bounded
convergence.

Indeed, if (1.11) holds for u, and if w, — u boundedly, then (1.11) holds
for u, which implies (1.1) by Theorem 1.2.

1.6. Regular points. Put 7, = inf{t: t > a, (¢, £,) & Q). We say that a point
¢ = (¢, a) of 4Q is regular and we write ¢ € 9,.Q if
(1.12) M, (r.=t)} = 1.

This definition is equivalent to the following: A point (¢, a) € 4@ is regular if,
for every t' > ¢,

(1.13) I, {r>¢} >0 as(r,x) > (t,a).
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We refer to [17], Chapter 13, for the proof, which is based on the following
properties of ¢:

1. (Strong Feller property.) The function

u(r,x) =1, f(&) = [p(r,%:6,9) f(y)dy, r<t,x€<E,

is continuous for every bounded Borel f.
2. For every B > 0,

SupHr,x{ sup |§s - §r| > B} - 0 as h > 0.

r,x r<s<r+h

The role of regularity is revealed by the following theorem.

THEOREM 1.5. If (¢, a) is a regular point of dQ and if f is a bounded
function on dQ which is continuous at (¢, a), then

u(r,x) = Hr,xf(T’ff) - f(¢t,x) as(r,x) - (t’a):

To prove that ¢ = (¢,a) € 9Q is regular, it is sufficient to construct a
barrier at c, that is, a continuous function z on @ such that

(1.14) 2+ Lu<0 in@, u(e) =0, u(z) >0 forz+#c.

Indeed, for every t' > ¢, the infimum B of u on the set @ NS, is strictly
positive and, by Chebyshev’s inequality,

Hr,x{T > t,} =< Hr,x{u(T’ xr) = B} = Hr,xu(T’ fr)/B

The arguments in the proof of Theorem 1.2 show that II, ,u(r, £) < u(r, x)
and (1.14) implies (1.13).
By using a barrier of the form

(1.15) u(r,x) =& % —|(r,x) - (r,x")| "%,

we prove the regularity test: A point ¢ = (¢, a) € dQ is regular if there exists
¢ =(r',x'), with x’ # a, such that

I(r, %) = (7, 2)[>](¢, @) = (', x") ],
for all (r, x) € @ sufficiently close to ¢ and different from c.

[If e =|c —¢'| and p is sufficiently large, then the function (1.15) is a
barrier at ¢ in the intersection of @ with the ¢/2-neighborhood of c.]

By applying this test to a simple rectangle (r, ry) X (ay, b;) X -+ X (ag4, by),
we get that every point (¢,a) €9Q with r; <t <r, is regular. [Clearly,
(¢,0) €0Q is regular if ¢ =r,, and it is irregular if ¢ =r;, a € (a,, by) X
e X (ag, by).]

1.7. Regular domains. We say that an open set Q is regular if the set 3,Q
of all regular points is total in 4Q. All simple rectangles are regular domains.
An example of an irregular open set is given by @ = {(r, x): r # 1}. (Indeed,
every point of 4@ = {1} X E is irregular.)
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LEmMa 1.2.  If U is a regular open set, then U N Q is regular for every open
set @ such that U N dQ c4.Q.

Proor. Note that d(U N @) = N, UN,, where N, = UNdQ and N2
U N Q. Clearly, N; and N, N d,U are contained in 3 (U N @). Their union is
total in 3,(U N @) because 4,U is total in dU. O

Theorems 1.2, 1.3 and 1.5 imply the following theorem.

THEOREM 1.6. If Q is a bounded regular open set, then the first boundary
value problem.,

t+Lu=0 inQ,
u=f ondQ,

has a unique bounded solution for every bounded continuous function fon 9.Q.
Moreover,

(1.16)

u(r,x) = Hr,xf(7"§r)‘

We introduce a special class of regular open sets and we prove that every
open set can be approximated by these sets. We start from compact sets of the
form [a, bo] X [a4, b;] X - -+ X [a4, b,], which we call cells. A finite union of
cells is called a simple compact set, and the totality of all its interior points is
called a simple open set.

The boundary dC of a cell C = [a,, by] X [a,,b,] X -+ X lay, by] consists
of 2(d + 1) d- d1mens10na.l faces. We dlstlngulsh two horlzontal faces the top
{bo} X [ay, 0,0 X -+ X [agy, byl and the bottom {a o} X [a,, b,] X -+ X [ay, byl
We call the rest vertical faces.

LemMma 1.3. If F is a (d — 1)-dimensional face of a cell C, then
o(r,x) =11, {(t,¢) € Fforsomet>r} =0, forall (r,x)eS8S.

Proor. If the face F is horizontal, then F c {a} X H for some a € R,
and a (d — 1)-dimensional affine subspace H of E = R?. Therefore, ¢(r, x) <
IT, {¢é, € H} = 0. If F is vertical, then F cR,X H, where H is a (d — 2)-
d1mens1onal affine subspace of E. Therefore (p(r x) <II, (¢, € H for some
t>r}=0.0

THEOREM 1.7. Every simple open set is regular. For an arbitrary open set
Q, there exists a sequence of simple open sets @, 1 Q such that @, C Q, . ;.

Proor. Let @ be the set of all interior points of a simple compact set
K = U[K;. We can assume that the intersection of every two cells K,NK;is
either empty or it is a common face of both cells. Note that 4@ = U} Fk, where
F,,..., Fy are d-dimensional cells which enter the boundary of exactly one of
the K We denote by F;? the set of all points of F}, which do not belong to any
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(d — 1)-dimensional face of K;. By Lemma 1.3, to prove that @ is regular, it is
sufficient to show that, for every k, either II, Al ¢) € Fko} =0 for all
(r,x) € @ or F? c 9,Q. Clearly, the first case takes place if F, is the bottom of
K,.If F, is the top of K, then F? c9,Q. If F, is vertical, then F? c 9.Q by
the regularity test.

To construct @,, consider a partition of S = RZ*! into cells with vertices in
the lattice 27"7%%! and take the union K% of all cells whose ¢,-neighbor-
hoods are contained in @. The set @, of all interior points of K" satisfies the
requirements of Theorem 1.7 if ¢, = (d + 1)'/227". O

1.8. The parabolic potential is defined by

(L17) F(r,x) =11, .| p(s,&,)ds =f pr(r,x;s,y)p(s,y) dsdy,
where p is a Borel function in S.

THEOREM 1.8. If p is bounded and vanishes outside a compact set, then
F € C'. Suppose, in addition, p is continuous in (r,x) and locally Holder
continuous in x uniformly in r [i.e., for every (r°, x°), there exists a neighbor-
hood U and constants A > 0 and 0 < a <1 such that |p(r,x) — p(r,y)| <
Alx — y|* forall (r,x),(r,y) € U]. Then F € C? and

(1.18) F+LF=—p inS.

A proof for the case L = A is contained in [15], Section I, XVII.6. For the
general case see [37], Theorem 1.9.

2. Parts of a diffusion.

2.1. Definition. Denote by @, the t-section of an open set @ € S and by
%, the Borel o-algebra in @,. Put
(2.1) po(r,x;t,B) =11, {¢(,€B,7>t}, forr<t,x€Q,, Be %,

where 7 is the first exit time from @. The Markov property of ¢ implies that
forall (r,x)e @, r<¢ < - <t,,Bi€%,,....,B, €%,

I, {¢ €By,...,¢ €B,,7>t,)
(2.2)
= r,x;t;, dyy) - by 1y Vn—13tn, Ay,).
fBl anpQ( 1 @y1) " Pe(tn 1, Va1 tns AY2)
By applying this formula to n = 2, ¢, = s, ¢, = ¢, B; = @, and B, = B, we get
(2.3) po(r%it, B) = [ Pa(r: %3, dy)pq(s,it, B),

for r <s <t and B € %,. Hence pg is a Markov transition function in Q,,
and the restriction £, of £, to the interval [, 7) is a Markov process with the
transition function p,. We call £ the part of the diffusion & in Q.
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By the strong Markov property of ¢,
I, {r<t&eB) =11, {r<t1I {¢,ecB}}

and, therefore,

(24) pe(r,x;t,B) =p(r,x;¢t,B) — 11, .1 _,p(7,¢,;t, B).
Since p(r, x;¢, dy) = p(r, x;t, y) dy, we conclude that

(2.5) po(r,x;t,B) = fBPQ(r,x;t,y) dy,

where

(2.6) po(ryxst,y) =p(r,x;t,y) — I, .1 _,p(7,€&5¢, ).

2.2. The parabolic potential in @ is given by the formula
(2.7) Fy(r,x) =10, [ p(s,¢&,)ds = [QpQ(r,x;s,y)p(s,y) dsdy,

where p is a Borel function in @. [We set py(r, x;¢,y) = 0 for ¢ <r.]

THEOREM 2.1. If @ and p are bounded, then Fy € CY(Q) and, for every
(¢,a) €0.Q,

(2.8) Fo(r,x) >0 as(r,x) — (t,a),(r,x) €Q.

Suppose, in addition, that p is continuous in (r,x) and locally Hélder
continuous in x uniformly in r. Then Fy € C*Q) and

(2.9) Fo+LFy= —p inQ.

Proor. It follows from (2.4) that Fy(r, x) = F(r,x) — II, . F(, £,), where
F is given by (1.17), and our statement follows from Theorems 1.2 and 1.7. O

3. Superdiffusion and PDEs.

3.1. Probabilistic solution of a nonlinear PDE. A superprocess X with
parameters (£, K, ¢) is called a superdiffusion if ¢ is a diffusion. Recall that ¢
is a mapping from bp %y to Hy (see Section 1.1.5). We assume that dK, = dt
and that the following hold:

3.1.A. y(2) € C! for every'z € CL.
3.1.B. (2.)(s, x) < p(2,X(s, x) if 2,(s, x) < 25(s, x).

In particular, 3.1.A holds if (2)(s, x) = ¢ls, x; 2(s, x)], with a continuously
differentiable function (s, x;#). 3.1.B holds if (s, x;#) is given by (I.1.19),
with a > 0 (the subcritical case).

THEOREM 3.1. Let 7 be the first exit time from @ and let X be the part of X
in Q. If p >0 is bounded and belongs to CY(Q) and if f > 0 is a bounded



1226 E. B. DYNKIN

Borel function on 9Q, then

G o) = log By e [ (= K)a~(£, %)

+

belongs to CA(@) and is a solution of

(3.2) v+ Lv=y¢(v) —p inQ.
In particular,
(3.3) v(r,x) = —log P, ; exp( —f, X))
is a solution of
(3.4) v+ Lv=y(v) inQ.
If v is defined by (3.1) and if f is continuous at ¢ € 9,Q, then
(3.5) v(z) > f(c) asz—c.

Proor. The proof is based on Theorem 1.1.8. Formula (3.1) is a particular
case of (1.36), with u = 8, . Formulae (3.2) and (3.5) follow from (1.1.37) and
Theorems 1.2, 1.5 and 2.1. For details we refer the reader to [28], Section 1.3,
Proof of Theorem 1.1. (Theorem 1.1 in [28] is stated for a special class of
functions ¢ but the proof does not need any change.) O

3.2. Comparison principle.

TuHEOREM 3.2. Let ¢ satisfy 3.1.B, let @ be bounded and let T be total in
Q. Suppose

(36) wu,veC*Q), uv+Lu—y¢(u)<v+Lv-y(v) inQ
and
(3.7 u — vis bounded below, liminf(x —v) >0 onT.
Then u > vin Q.
Proor. Let w = v — u. If the theorem is false, then Q: =QN{w>0}+dJ.
By 3.1.B, ww + Lw > (v) — ¢(u) > 0 in Q. Note that T =9dQ N{Q U T} is a

total subset of 3Q. If ¢ € T, then either ¢ € @ and then w(c)=0orce T
and then limsup w < 0 at c. This contradicts Theorem 1.3. O

3.3. Upper bounds. It follows from Theorem 3.2 that if
(3.8) @+ Lu® - ¢(u%) <0 in@Q,
then ©° is an upper bound for every solution v of (3.2) for which
(3.9) v —u®isbounded above and limsup(v —u°) <OonT.
We say that u° is an absolute barrier in @ if u° satisfies (8.8) and
(3.10) limu®= +® onT,
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for a total subset T of dQ. Clearly, u° is an upper bound for all bounded
solutions of (3.2). [We remind the reader that u° is positive, as are all
functions in the domain of .]

From this point on, we assume that

(3.11) ¥(z) = 2%, l1<acx<2.

The following results are proved (in a slightly different but equivalent form) in

the Appendix to [28].

3.3.A. There exist constants a; > 0 and a, > 0 (which depend only on « and
bounds for the coefficients a;;, and b; of the operator L) such that

(3.12)

ijs
ul(r,x) = [(alR +a,)R3(R +r° - r)_l(R2 —|x - xolz)_z] e
is an absolute barrier in the cylinder
(3.13) Ur(r® x%) ={(r,x):0<r—-r°<R,Ix —x° <R}.
3.3.B. If v is a bounded solution of (3.2) and if
{(r,x):0<r—-r°<R,lx —x° <R} CQ,
then
(3.14) v(r%x°) < [a,R™! + ay RV,

Indeed, by the comparison principle, (3.12) is an upper bound for v in
Ug(r® x°) and v is continuous at (r°, x°).

It follows from 3.3.B that the class of all bounded solutions of (3.2) is locally
uniformly bounded. Clearly, 3.3.B also implies the following:

3.3.C. There exist no solutions of (3.2) in S except v = 0.

By using Theorem 3.2 and 3.3.B, we deduce an upper bound near the
boundary:

3.3.D. Suppose that B is a relatively open subset of Q. For every b € B and
every A > 0 there exist R > 0 and N < o such that

(3.15) v(z) <N forall z €@ n Ugx(b)
if
(3.16) v+Lv=v*ing and limsupv(z) <Aforall b€ B.
z—b

Proof can be found in [28], page 961.

3.4. The first boundary value problem. We are prepared now to discuss the
problem

v+ Lv=v* inQ,

(3.17) v=f onoQ
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in a bounded regular open set @. We only sketch the proofs and refer the
reader to [28], Section 1, for details.
It follows from Theorems 3.1 and 3.2 that the following hold:

34A. If f>0 is a bounded continuous function on 9,Q, then the unique
bounded solution of (3.17) is given by (3.3).

3.4.B. (The mean value property.) If T C 9,@Q is a total subset of /@ and if a
bounded continuous function v in @ U T satisfies (3.4), then

v(r,x) = —log P, ; exp( —v,X,) in@Q.
The mean value property and upper bounds (3.14)-(3.16) and Theorem 3.1
yield the following:

3.4.C. Let v, — v pointwise in an arbitrary open set @. If v, + Lv, = v% in @,
then v € C%Q) and © + Lv = v® in Q. Suppose, in addition, that
B cd,.Q is relatively open in dQ and [ is a bounded continuous
function on B. If v, =f on B, then v =f on B. [Here, as in (3.17),
writing “v = f on B” means “for every (¢,a) € B, v(r,x) - f(t,a) as

(r,x) > (t,a),(r,x) € Q.1

In contrast to the linear case, the first boundary value problem (3.17) can be
solved for functions f with infinite values.

3.4.D. Let f be a continuous function from 9,@ to [0,=]. Then (3.3) is the
minimal solution of (3.17).

To prove 3.4.D, we apply 3.4.A to bounded functions f;, = f A k& and pass to
the limit using 3.4.C and 3.4.B.
Another passage to the limit is needed to prove the following:

3.4.E. For every closed I' 9@,
(3.18) v(r,x) = ~log P, ,{X(T) = 0}

satisfies (3.4) and v = » on the set of all interior (relative to Q) points
of I'. If, in addition, A =9Q \ T € 9,Q, then v = 0 on A.

For every u € .#(S),
(3.19) P{X (T) =0} = exp(—{v,u)).

4. Graph of a superdiffusion.

4.1. Random closed sets. Let w — F(w) be a map from () to the space of
all closed sets in S. We say that F is a random closed set relative to a
o-algebra & in Q if

(4.1) {0: F(o) NK + &} € &, for all compact sets K.
This is equivalent to the condition
(4.2) {0: F(w) N U # &} € &, for all open sets U.
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The following general result is based on the Choquet theory of capacity. It is
proved, for instance, in [69], Chapter 2.

THEOREM 4.1. Let F* stand for the universal completion of &. If F is a
random closed set relative to &, then

(4.3) {o: F(w) NA+ O} € F*, forall analytic sets A,
and, if P is a probability on (Q, &), then
(44) P(FNA#Q}=supP{FNK=+J}=inf P{FNU+# J},

where K runs over all compact subsets of A, and U runs over all open sets U
which contain A.

4.2. Graph of X. Let X, be a right version of X. (As in Section 1.1.10, we
interpret X, as a measure on S, = {¢} X E.) The graph of X is the minimal
closed set G C S such that, for every ¢t € R, X, is concentrated on G. Clearly,
G is defined uniquely up to equivalence relatlve to the family of measures {P,,
w € A(S)}. The graph Gy of X in an open set @ is defined analogously
through the part X of X i 1n Q. Clearly, G, C Q.

For every open set U, there exists a bounded continuous function f> 0
such that U = {f > 0}, and Theorem 1.1.6 implies the following:

4.2.A. For every open set U and an arbitrary subset A everywhere dense in R,
{Gon U # @} ={X,(U) > 0 for some ¢t € R, }
= {X(U) > 0 for some ¢t € A} a.s.

It follows from 4.2.A that G, is a random closed set relative to the
o-algebra ? generated by X_, ¢ E . We have the following:

4.2.B. G, coincides with the support of the measure Y(dt, dx) = y(dt) X (dx),
where y is an arbitrary Radon measure on R such that suppy = R,.

4.2.C. If o is the first exit time from an open set U C @, then the restriction
of X, to @ is, a.s., concentrated on Gy,

42D. Gy =D P,as. if (@) =0

We get 4.2.B from 4.2.A. To prove 4.2.C, note that, by Theorem 1.1.10, for
every open set V,

{GonV=0}={X(V)=0forall t} c {X,(V) = 0}
={supp X, NV =0} as.
If w(@) =0, then, by 1.1.9.C, X ,(Q) = u(@) =0 P,-as., which implies
4.2.D.
4.3.

LEMMA 4.1. Let o be the first exit time from an open set U C Q. Then
(4.5) {(X,(Q) =0} c {Goc T} as.
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Proor. By the Markov property (Theorem 1.1.3),
P;J.{Xal\t(Q<t) > O’ X(T(Q) = O}

=P(X,,(Q.) >0, Py

T At

4.6
(£6) [X,(Q) = 0]}.

Since X ., is concentrated, a.s., on U¢, and since US, N Q. ., c U° N @, we
have X, , (@ NU° >0 as. if X_,,(Q.,) > 0. Suppose v(@ N U°) > 0 for
some v, and let © be the restriction of v to @ N U*. Then, by 1.1.9.C, P;-as.,
X, (@) = #@Q) > 0 and, therefore, P{X (@) = 0} < P{X, (@) = 0} = 0. There-
fore (4.6) implies {X (@) = 0} c {X_ ., (@, = 0} as.

By applying the Markov property of X once more, we get

P{X,(Q) =0, X(U°) >0} < P(X, ..(Q.,) =0, X(TU°) > 0}
) =Pp,{Xo'/\t(Q<t) =0, F(Xo/\t)} a.s.,

where X is the part of X in @ and F(v) = P{X(U°) > 0}. If »(Q_,) = 0, then
P{X, .,=v}=1and F(») =0 if v € .#(U). Since X, ,, is concentrated on
U_, c U, (4.7) implies that, for every ¢, {X (@) = 0} c (X, € .#4(U)}, and (4.5)
follows from 4.2.A.

4.4. Graph and PDEs. Put u € .#,(Q) if the support of u is compact and
is contained in . Let .Z, = .Z/(S).

THEOREM 4.2. Suppose that @ C Q are two open sets and T is a closed set
such that Q NdQ cT c Q°and A =9Q NT'° Ci.Q. Then

(4.8) v(r,x) = —log P,’ax{GQ NT =g}
is the maximal positive solution of the problem

v+ Lv=v" inQ,

(4.9)
v=0 onA.
For every u € 4,
(4.10) G is compact P,-a .s.,
and, for every p € 4,(Q),
(4.11) PGy NT = B} = exp(— (v, n)).

ProoF. By Theorem 1.7, there exists a sequence of regular open sets
U,1T° such that U, c U, ,,. By Lemma 1.2, the sets @, = U, N @ are

regular. Clearly, @, 1@, @, N Q C @, and dQ N IQ, T A.
The rest of the proof can be found in [28], Section 2.3. We sketch the main

steps here. _
Put B,=QndQ,, I,=B,, A, =dQ,\T, and Z, = X, (I,), where 7, is
the first exit time from @,. By 4.2.C and Lemma 4.1, {GgzC Q, J)c
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{Z,=0c{Ggy C Q) P -as. if u €.#(Q,). Therefore, for every u € .Z,(Q),
(4.12) U{z,=0} = U{G4cQ,} =C P,as,

where C = {G is compact and Gg N ' = &}
By 34.E, P{Z, = 0} = exp{ — v,, u), where v, (r,x) = —log P, ;{Z, = 0}
satisfies the following conditions:

v, +Lv,=v inQ,, v, =0 onA,.
Therefore, by (4.12),
(4.13) lim{v,,u) = —log P(C)

and u(r,x) = limv,(r,x) = —log P, ; (C). By 3.4.C, v satisfies (4.9) and, by
the dominated convergence theorem, (4.13) implies that P,(C) = exp(— v, w)).
By taking @ =S and I' = @ and by applying 3.3.C, we get (4.10), which
implies (4.11). The maximality of v follows easily from the comparison princi-
ple.

4.5.

COROLLARY. For every open set @ C Q,
(4.14) v(r,x) = —log Pr,ﬁx{GQ c Q)
is the maximal solution of
(4.15) v+ Lv=v* inQ.
In particular, this is true for
(4.16) v(r,x) = —log P, ;{Goc Q) = —log P, ; (G c Q}.
_ To prove this statement, take I' = @° in (4.8) and then put @ = @ and
@ =S in (4.14).
4.6. CB property. We say that the B property holds for Z 9}5 if
(4.17) P, ,.,,Z=P ZP, Z, forall p;,pu, € #(S).
By the definition, the B property holds for a set C if it holds for Z = 1,. We
say that the CB property holds for Z € 3%(, u € .4, if
(4.18) log P,Z = [log P, ; Zu(dr, dx).

In contrast to the B property, the CB property can be destroyed by bounded
passage to the limit. Note that the CB property is equivalent to

(4.19) P,Z = exp(—(v,p),

where

(4.20) v(r,x) = —logP, s Z.
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According to (I.1.8), this equation is satisfied for an arbitrary u € .#(S) if
Z =exp{ — f, X.). By (3.19), the CB property holds for {X, = 0} and every
u € .#(S).

It follows from (4.11) (applied to @ = I'* and @ = S) that the CB property
for {GNT =g} and u holds if T is closed and if supp u is compact and
disjoint from T.

In general, this is not true. For instance, the CB property for C = {G N T =
@} and u does not hold if T'=S_,, u(I') = 0 but T N supp u # . However
we have the following:

THEOREM 4.3. Let A be an analytic set and let B = supp u be disjoint from
A. Then the CB property holds for (G N A = &} and u.

Proor. Arguments in the proof of Theorem 4.2 show that
(4.21) (X, =0}1{Gc@} P,as,

T

if 7, is the first exit time from @, = {z: dist(z,Q°) > 1/n} and if
dist(Q°, supp ) > 0 [cf. (4.12)].
First, suppose that A is compact. By applying (4.21) to @ = A¢, we get

(X, =0}1{GNA=0} P,as.

T

Choose n, such that suppu C @, and put o = ., Since X, is supported by
a compact set {z: dist(z, A) = 1/n,} which is disjoint from A, we have
Py{GNA=0}=exp{ —u,X,) for some u and, by the Markov property,
PM{G NA=g}= P#PXU{G NA = J} = exp{ — v, u) for some v. This equation
is true for every u with support disjoint from A. By applying it to u =4, ,
(r,x) & A, we prove the statement of our theorem. The case of an arbitrary
analytic A can be reduced to the case of a compact A as in [28] (see part (ii) in
the proof of Lemma 2.3 there). O

5. Probabilistic representation for an arbitrary solution.

5.1. Suppose that @ is an arbitrary open set in S and let ¢ satisfy 3.1.A
and 3.1.B. In this section we establish a 1-1 correspondence between the
solutions of

(5.1) v+Lv=y¢(v) inQ

and a class of random variables Z determined by the behavior of the superdif-
fusion near the boundary of Q. _

Fix a sequence of regular bounded open sets @, 1 @ such that Q, c @, ;.
Let 7, be the first exit time from @, . It follows from the Markov property of X
that {X_ , P} is a Markov chain. We claim that, if v is a solution of (5.1), then
F, = exp( — v, X, ) is a martingale relative to (%_ .0 B,) for every u € .#(8).
Indeed, by the mean value property,

(5.2) P F,=e"" in@

ne
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By I.1.9.C, this is true also in @¢. Since the CB property holds for F,, we have
P F, = exp(— (v, u)) and, therefore,

(5.3) P{F|#..}=Px F,=F, P,as,
for all u € .#(S) and all m < n.

The bounded martingale F, converges a.s. and therefore there exists,
P, -as., the limit

(5.4) Z = lim(v, X, )

n—o

in the topology of [0, »]. Clearly, Z is measurable with respect to the intersec-
tion of all o-algebras %, , . We call such a Z a tail functional of {X, }.

THEOREM 5.1. Formulae (5.4) and
(5.5) v(r,x) = —log Pr’axe_z

establish a 1-1 correspondence between the solutions v of equation (5.1) and
the class of positive functions Z with the following properties:

5.1.A. Z is a tail functional of {X, }.
5.1.B. The CB property holds for e % and u € #,(Q).
5.1.C. P, ;{Z <} >0, forall (r,x) € Q.

(We do not distinguish functions Z which are equivalent with respect to the
family (P,, u € #}.)

Proor. Formula (5.4) determines a class of equivalent functions Z subject
to condition 5.1.A. Moreover,
(5.6) P#e_z =lim P F,

and 5.1.B follows from the CB property for F,. Formulae (5.2) and (5.6) imply
(5.5). Since v < o, (5.5) implies 5.1.C.

Now suppose that Z satisfies 5.1.A-5.1.C and let v be given by (5.5). By
5.1.C, v < » in Q. By 5.1.A and the Markov property of {X_ , P },

T T M
(5.7) P“{e_zlﬁfn} = PXme_Z P-as.,

for all u €.# and all n. If u € .#,(Q), then X, €.#(Q) P,-as., by L19.A,
and

(5.8) Py e Z?=exp( —v,X, ),
by 5.1.B. We get from (5.7) and (5.8) that

e Z = lim exp< - v, X7n> P-as.,

n—so

which implies (5.4). By (5.5), (5.7) and (5.8),
e "D =P ;e =P ; exp( -0, X, ).
By Theorem 3.1, v satisfies (5.1). O
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5.2. We say that Z is a shift-invariant functional of {X, } if there exists a
measurable function G from .Z~ to R such that
(5.9) Z=G(X,, X,  ,...) Pras,

7k+1’ Ry LI
for all u € .#(S) and all k. Clearly, this condition holds for Z determined by
(5.4) if we put

G(RiyBaye- s lpy--.) = limsupv,u,).

Therefore Theorem 5.1 holds with condition 5.1.A replaced by the following
condition:

5.2.A. Z is a shift-invariant functional of {X_ }.

Our arguments also show that condition 5.1.B can be replaced by the
following:

5.2.B. The CB property holds for e % and for all u € .Z(S).

6. G-regularity.

6.1. Denote by G(A) the intersection of the graph G with S, = A X E.
Consider an open set @ S and put
(6.1) T,.=sup{t:t >r,G(r,¢t] c @}

(if the set in brackets is empty, then we set T,,=r). We say that a point
(r° x°) € 94Q is G-regular if

(6.2) Po 5 (T, > ) = 0.

[By the Blumenthal 0-1 law, the probability (6.2) is always equal to 0 or 1.]
Clearly, (6.2) is equivalent to the condition

(6.3) P ; 0{G(r t] c Q} =0, foreveryt>r°

LEMMA 6.1. A point (r° x°) € Q is G-regular if and only if
(6.4) Poo 5 {G(r%®) c Q) = 0.

Proor. Clearly, (6.3) implies (6.4). By the Markov property of X,
(6.5) Po 5 fG(r% ®) € Q) = Poo ;5 {Q° Y},
where Q° = {G(r%¢t]c @} and Y =P, x{G © @}}. By Theorem 4.2, for every
w € Q° the CB property holds for {G C @} and X,. Hence Y = exp( v, X,),
where v is given by (4.16). By the Corollary in Sectlon 4.5, v belongs to Cz(Q)
If (6.4) holds, then, by (6.5), exp{ — v, X,> = 0 P,o; ca.s. on the set Q° On

the other hand, v is bounded on a compact set G(r° ¢] N S, and, therefore,
(v,X,) < P,o, ;as. on Q° which implies (6.3). D
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LEMMA 6.2. Let BR(x°) = {x: |x — x°| < R} and let @ = (r° ) X Bp(x°).
Then (r°, x°) is a G-irregular point of Q. In other words,

(6.6) Po, {T>r% =1,
where
(6.7) T = inf{t: t>r° supp X, N BR(xO)C * ®>.

Proor. Let @ = (t,®) X BR(x°) with ¢ < r° Note that {G c @}
{G(r° ») c Q). Therefore
P, [G(r°©) Q) > P, |G C Q) = exp[ —v(r°,2%)],
where v is the maximal solution of ¥ + Lv = v* in Q. By Lemma 6.1, (r°, x°)

is G-irregular. O

LEMMA 6.3. The G-regularity of a poznt (r° x°) depends only on the shape
of the open set Q in a neighborhood of (r°, x°)

Proor. Denote by @ the intersection of @ with the set Ug(r?, x°) given by
(8.13). Let T=T.o, and T =T, be deﬁned by (6.1) and an analogous
formula for Q. Clearly, T = min{T, T, r° + R}, where T is determined by
(6.7). By (6.6), P.o ; T >r°% = Pro,axo{T >r%. O

LeEMMA 6.4. For every (r°, x°),
(6.8) G=(r%x% UG(r’ o) Po;, a.s.
Proor. By4.2.B, G is, P,o ; ;-a.5., the closure of the set (r% x% U G(r°, «).

By (6.6), the intersection of G(r°, ) with S, is contained in By(x°) for every
R > 0. Hence it consists of a single point (r°, x°).

6.2. Test of G-regularity.

THEOREM 6.1. A point (r° x°) € 0Q is G-regular if and only if the maxi-
mal solution v of (4.15) tends to « at (r°, x°).

Proor. (i) Let oj be the first exit time from Ug(r°, x°) given by (3.13).
Put Q°={supp X, c @} and Y = Py {Gc@). By 4.2.C and Lemma 64,

supp X, is contalned P.o 5 -a.s., in G(r ,») and, by the Markov property,
Theorem 4.2 and the Corollary in Sect1on 4 5,

Po 5 f{G(r%, @) € Q} < Pro ;5 {Q°,Y)

(6.9) = Poo s Q% exp( — v, X,,)}
< Po,, ,expl{ — 7, X, Y,
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where 7 = v in @, & = © on Q°. Let N be the infimum of & on Ug(r?, x°). If
v = o at (r% x°), then N —» ©as R 0. By Lemma 5.1, a:s.,, (1, X, ) > las
R 0. By (6.9),

Poo ;s fG(r°,%) C Q) < Poo 5, exp( — Np, XUR> >0

and (r° x°) is G-regular by Lemma 6.1.
(ii) Note that {G[s,©) cQ}={GcQUS_,)>{G cQ} and, therefore,
vy(r,x) = —log P, ;{Gls,») c @} < —log P, ;{G C @} = v(r, x). By the Corol-

lary in Section 4.5, v, is continuous in @ U S_, and therefore, for every

s>r",

(6.10) liminf v(r,x) > liminf v,(r,x) = v,(r° x%)

as (r,x) > (r°% x°). Clearly,

(6.11) vo(r®x%) 1 = log Po ; {G(r° ) c Q).

If (r° x°) is G-regular, then v(r, x) — ® by (6.10), (6.11) and Lemma 6.1. O

6.3. Examples.

ExampLE 6.1. Clearly, the boundary of S _, is G-regular. By Theorem 6.1,
the maximal solution of (4.15) tends to » at 4S _,. This follows also from an
explicit formula

o(r,x) = [(a = 1)t - r)] 777,

which gives a solution of (4.15) such that v » w as r 7 ¢.

ExampLE 6.2. For S., the maximal solution
v(r,x) = ~log P, ,{G c Q) = 0.
Clearly, 9@ is G-irregular.

6.4. Consider a family of domains
(6.12) Q. = {(t,x): lxl* <cp(t),t >0}, >0,

where p is an increasing function such that p(0) = 0. It follows from a result
in [13] (stated as Theorem 9.3.2.3 in [9]) that, if L = $A and if

1/2
(6.13) p(t) = [ t|log tl] ,

then z° = (0,0) is G-irregular for @, if ¢ > 1 and it is regular if ¢ < 1. For
a = 2, this result was obtained earlier in [88].

An interesting problem is to get criteria for G-regularity and G-irregularity
analytically by applying Theorem 6.1 (in the same spirit as was done for the
heat equation in [77]). Let @, be given by (6.12) and put @ = @,. To prove that
2% is G-irregular for Q,, ¢ > 1, it is sufficient to construct, for some a > 0, a

a—1
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function « > 0in U = @ N S_, such that
u+ Lu <u* inU,
u=o0o ondQ NSy,

liminfu < © at 2°.

Indeed, let @ =@, U S, ,. Note that U = A U B, where Ac S, and B =
9@ N'S_,. Moreover, the set T =0U \ {2° is total in 9U. The function
u(r,x) = —log P, ,{G C @) vanishes on A and therefore u — v satisfies condi-
tion (3.7) (with Q replaced by U). Clearly, (3.6) also holds in U By the
comparison principle, v < u in U. Hence v does not tend to « at 2% and, by
Theorem 6.1, 2° is a G-irregular point of . Obviously, this implies that z° is
G-irregular for @,. A similar test can be given for G-regularity of 2° for @,
c <1

6.5. If ¢ €9,.Q, then, for every N € R_, there exists, by Theorem 3.1, a
solution of (4.15) with the boundary value N at c¢. We conclude from Theorem
6.1 that ¢ is G-regular for @. The converse is false. If d < k, = 2a/(a — 1),
then

v(r,x) = [(a ~ 1) Yk, - d)]l/(a_l)lxl'z/(“‘l)

is a solution of ¥+ 3Av —v*=0 in @ = {(r,x) x # 0}. Hence every
¢ € R, x{0} c9Q is G-regular. However, it is irregular for d > 2. Hence it is
G-regular but irregular for 2 <d <k, =2+ 2/(a — 1). (The existence of
G-regular points which are not regular follows also from comparing the results
of [13] and [77].)

7. G-polar sets.

7.1. Denote by .#; the class of all measures u € .# with their support
disjoint from F.

DEFINITION. An analytic set A is called G-polar if
(7.1) P{GNANF =0} =1,
for every closed set F and every u € .#.

Note that all analytic subsets of a G-polar set are G-polar.
[This is not true with a definition which seems more natural at first glance.
Note that the condition

(7.2) P{GNnA=02) =1

can hold only for u € .#, because P{suppu C G} = 1. However, the class N
of analytic sets A which satisfy (7.2) for all u € .#, does not fit the criteria to
be called the class of G-polar sets: It is possible that A c A and A € R but
A & R (take,eg, A=S_, A=85)]
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It follows from Theorem 4.1 that A is G-polar if and only if all compact sets
K c A are G-polar.

7.2.

LeEMMA 7.1. An analytic set A is G-polar if and only if
(7.3) P {G(r,»)NnA=0} =1, forall(r,x).

ReEMARK. By Lemma 6.1, this implies that if a closed set I' is G-polar, then
I' = 4(I'°) and all points of (I'°) are G-irregular.

ProoF oF LEmmA 7.1. If (7.1) holds, then, by taking F =S_,, u =39, ,,
we get
(7.4) P, ;{G[s,©) nA} =1
for every s > r, which implies (7.3).

On the other hand, (7.3) implies that, for every F, P, ;{G(r,).N FNA =
@} =1. If (r,x) ¢ F, then, by Lemma 64, GNFNA=G(r, o NFNA
P, ; -as., and therefore (7.1) holds for u =5, . By Theorem 4.2, (7.1) holds

r

for every u € Ap.

7.3.

THEOREM 7.1. An analytic set A is G-polar if and only if the following two
conditions hold:
7.3.A. A contains no set S _,.

73B. P, ,{GNA=0}=1, forall (r,x) & A.

Proor. Clearly, 7.3.A and 7.3.B are necessary for G-polarity. Suppose that
they are satisfied. By 7.3.A, for every r, there exist 7° < r and x° such that
(r%x% ¢ A. If s > r, then

(1.5) 0=Po; {GNA*Q) =P, [X,(4,) >0},

rY,8,0

where A, is the s-section of A. By (7.5) and (1.1.20),
0=1II0 ofé €A} = f p(r® x%s,y)ds,
AS

where p is the transition density of ¢. Since p is strictly positive, the Lebesgue
measure of A, is equal to 0. Therefore, for all x,

(7.6) P, ,X,(A,) = jAp(r,x;s,y) ds = 0.

If ¢t > s > r, then, by (7.6) and by the Markov property,
P ,{G[t,») NnA =0} =P, ,{X,(A,) =0, Glt,») N A =0}
7.7 o
( ) = Pr,&,{Xs(As) = 0’ PS,X,{G[t’Oo) N A = Q}}
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By the CB property, for every v,
logP, (GNANS,, =)= fv(dx)log P,,{GNANS,, =2}

If v(A,) = 0, then the right-hand side vanishes by 7.3.B and log P, {G[¢, ) N
A=2}=0. By (1.7, P, ;{G[t,») " A = &} = 1. Since this is true for all

r)

t>r,weget(7.3),and A is G-polar.
74.

THEOREM 7.2. Suppose that a closed set T satisfies 7.3.A and let @ = I'°.
The following five conditions are equivalent:

7.4.A. T is G-polar.

74B. P{GCc @} =1, forall u € #;.

7.4.C. Pr,8x{G cQ =1 foral (r,x) € Q.

7.4.D. The maximal solution of (4.15) is equal to 0.
7.4.E. Equation (4.15) has no solutions except 0.

Proor. By Theorem 7.1, 7.4.A is equivalent to 7.4.C. By Theorem 4.2, the
CB property holds for {G c @} and u € .#; and therefore 7.4.B is equivalent
to 7.4.C. By Section 4.5, the maximal solution of (4.15) is given by (4.16),
which means that 7.4.C is equivalent to 7.4.D. The equivalence of 7.4.D and
7.4.E is obvious.

8. Range and R-polar sets.

8.1. Now we interpret X, and all its parts f(, as measures in E by using a
natural correspondence between E and {t} X E. The range R of X is the
minimal closed subset of E which supports all measures X,. The range R, of
X in an open set D C E is the minimal closed set R, which supports all
measures X, (here X is the part of X in @ = R, X D). If G is compact (which
is true P -as. for all u €.#,), then R is the projection of G on E and
{R N B =g} ={Gn ([R,_X B) = &}. This makes it possible to get information
on R from the results on G obtained in the previous sections.

In this section we assume that the diffusion ¢ is homogeneous (i.e., the
coefficients of the operator L do not depend on time). As before, we assume
that K(dt) = dt and ¢ is given by (3.11). The corresponding Markov process
(X,, P. ) has a stationary transition function. We set P, = P,, for every
v € #(E).

8.2. Put a€4.D if (0,a) is a regular point of R,X D. [Note that
3. (R, X D) c R, X dD.] The following result is a trivial implication of Theo-
rem 4.2.

THEOREM 8.1. Suppose that D C D are two open sets and B is a closed set
in E such that D N dD c B c D° and A = 9D N B° cd,D. Then

(8.1) v(x) = —log P;{R; N B = &}
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is the maximal positive solution of the problem

(8.2) Lv=v* inD,

(8.3) v=0 onA.
For every v € #,(E),

(8.4) R is compact P,-a.s.

CoroLLARY. For every D,
(8.5) v(x) = —log P;{R c D} = —log P, { R}, c D}

is the maximal solution of (8.2).
8.3. Theorem 4.3 implies the following theorem:
THEOREM 8.2 (CB property). If A is analytic and if v € .#,, then

log P{RNA =@} = [v(dx)log P,{R N A =2}.

8.4. For every s > 0, we denote by R° the minimal closed set in E which
supports all X, with ¢ > s. An analytic set A is called R-polar if

(8.6) P{R°NA=0} =1,
for all s > 0 and all v € .Z(E).
THEOREM 8.3. Each of the following conditions is necessary and sufficient
for R-polarity of an analytic set A:
84A P{RNA=0}=1 forallx & A.
8.4.B. R, X A is G-polar.

CoroLLARY. A closed set T # E is R-polar if and only if 0 is the only
solution of the equation Lv = v* in D =T°.

8.5.

ExampLE. The function

(8.7) v(r,x) = clx| 2/ @~D
satisfies the equation
(8.8) 3 Av =v* inR%\ {0}
if
2a 1 1/(a-1
(8.9) d<k,=—7, c=[(a-1)""(x, — )] .



SUPERPROCESSES AND PARTIAL DIFFERENTIAL EQUATIONS 1241

Hence a single point is not R-polar if d < Ko If d > k,, then a singleton is
R-polar by the test in Theorem 12.3.)

9. Additive functionals of a diffusion.

9.1. In the next section we investigate additive functionals of superdiffu-
sions. As a heuristic introduction to Section 10, we state here, without proofs,
analogous results for additive functionals of diffusions. They are well known
(in a slightly different form) to specialists and they can be proved, for instance,
by arguments similar to those in Section 1.10.

Let ¢ be a diffusion in a domain @ c S with generator L. This is a Markov
process on a random time interval [«, ¢). (It can be constructed as the part in
Q of a diffusion in S with ¢ equal to the first exit time from @.) An additive
functional A of ¢ is a random measure on R, concentrated on [«, ¢) such that
A(r,t) is measurable relative to the universal completion of F#°(r,t) (cf.
Section 1.1.4).

We introduce three levels of additive functionals.

9.2. Ground level. To every Borel function f > 0, there corresponds an
additive functional

A(A) = fAf(s,fs)dS-

Let p(r, x;s,) be the transition density of £ Then, for every u € .#(Q) and
every Borel h > 0,

(9.1) H#fh(s, £,)A(ds) = f p(dr,dx)p(r,x;s,y)h(s,y)n(ds, dy),
R AxQ
where n(ds, dy) = f(s, y) dsdy. We call n the characteristic measure of A.

9.3. First level. Consider k(r,x;s,y) = k(s — r,y — x), where

1 -d/2 9

-5 —r/2 —
(9.2)  k(r,x)= 2(2mr) " exp{-r/2 — x|°/2r}, for r> 0,
k(r’x)=0, fOI‘I‘SO,

[Note that [k(r,x)drdx = 1 and that 2k(r, x; s, y) is the transition density of
the Brownian motion with the killing rate 1.] Put n € N, if

(9.3) F(r,x) = fk(r,x;s,y)n(ds,dy)

is bounded. Let %.(r,x) = ¢ ¢~k(r/e, x/¢). Consider a mollifier p, =k, ,
where ¢, | 0. Let

A, (d) = fA fa(s, €,) ds,

where

(9.4) fu(r,%) = [pa(r = 5520 — y)n(ds, dy).
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Fact. Suppose that u(dr, dx) = q(r, x) dr dx with a bounded q. Then, for
every n € N, and every finite interval A, A, (A) converges in L*(II w) to A(R),
where A is an additive functional with the characteristic measure 7 [i.e., (9.1)
holds for all & > 0].

9.4. Second level. Put n € N, if there exist n, € N, such that 7, 1 7.
Clearly, A, 1t A, where Aisan additive functional of ¢ with the characteristic
measure 7.

FAcT. A o-finite measure n belongs to N, if and only if  does not charge
any polar set. [We say that an analytic set A is polar if

J k(r,x;5,y)v(ds,dy) belongs to L*(Q)
A
only if »(A) = 0.]

ReEMark. All additive functionals with o-finite characteristic measures can
be obtained as functionals of the second level.

10. Additive functionals of a superdiffusion.

10.1. The superdiffusion X with parameters (L, o) in a domain @ C S can
be constructed as the part in @ of the superprocess with parameters (¢, K, ),
where ¢ is the diffusion with generator L, K(dt) = dt and ¢(v) = v*. We
investigate a special class of additive functionals of X in three stages similar to
the stages in Section 9. At one point we use analytical results proved for the
domains of the form @ = A X D, where A is a finite interval and D is a
bounded domain in E with a smooth boundary. This class is sufficient for our
purposes.

10.2. Ground level. To every positive Borel function f on @, there corre-
sponds an additive functional

I(A) = fA<f, X,) ds.

Note that I(R,) = (f,Y), where Y(ds, dx) = dsX,(dx) and, for every u €
A(Q),

(10.1) PI(R,) = fQXQ,u(dr,dx)p(r,x;s,y)n(ds,dy),
where n(ds, dy) = f(s,y) dsdy. By Theorem 1.1.8,

(10.2) P, exp{—-I(R,)} = exp(—{u, u)),

where

(10.3) wu(r,x) + pr(r,x;s,y)u(s,y)ads= pr(r,x;s,y)n(ds,dy).
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If f is bounded and belongs to C(Q), then, by Theorem 3.1,
t+Lu—-—u*=—-f inQ,

10.4
( ) u=0 ondQ.

10.3. First level. Put m € N, if the function F defined by (9.3) belongs to
L*(S). Consider a function p of class C* with a compact support such that
[p drdx = 1 and put p*(r, x) = e "¢~ Ip(r /e, x /¢). Consider a mollifier p, = p°»,
where ¢, | 0. Define functions f,, by formula (9.4). By the Corollary in Section
4.4 and by the comparison principle, there exist unique «,,, such that

umn +Lumn - u(:nn = %( fm +fn)’
U,,=0 ondQ.

It follows from results in [2] that, as m, n — «, the u,,, converge in L%(Q) to
a solution of (10.4).
Put u € M if u(dr, dx) = p(r, x) drdx with p € LY(Q) (1/a + 1/a’ = 1).
If u e M, then {u,,,, n) = {u,n) and therefore
2
Pp,{exp< - %fn’Y> - exp( - %fm’Y>}
=exp{ — U,,, 1)+ exp{ — Uy, m) — 2xp{ — Uy, , 1) = 0.

Hence there exists I, such that (fu Y) > I, in P, -probability (In can be
chosen independently of u; see [27]). It is easy to see that I, satisfies (10.1)
and (10.2). Moreover, if n is concentrated on a compact set K, then

(10.5) {(GNK=0} c(I, =0} P,as.
(see [27], Theorem 1.1).

10.4. Second level. The class N, is defined analogously to N,. To every
n € N,, there corresponds an additive functional I, subject to (10.1), (10.2)
and (10.5).

We shall use the following result (see [2] or [27]).

THEOREM 10.1. Denote by ., the class of analytic sets A such that

f k(r,x;s,y)v(ds,dy) belongs to L*(S)
A

only if v(A) = 0. A measure n belongs to N, if and only if it does not charge
any set A € /.

11. G-polarity test.
11.1.

THEOREM 11.1. The class of G-polar sets coincides with /.
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OUTLINE OF THE PROOF (cf. [28]). (i) Clearly, A € . ifand onlyif K € ./
for all compact sets K < A. Therefore it is sufficient to prove the theorem for
compact sets.

(ii)) Let K be G-polar. Suppose

[ R(r,x;s,y)v(ds, dy) belongs to L*(S)
K

and »(K°¢) = 0. Then v € N, and, by Theorem 10.1, there exists I, > 0 such
that, for every u € I,

(11.1) P”IV=f u(dr,dx)p(r, x;s,y)v(ds,dy)
exQ

and, by (10.5), {G N K = &} c {I, = 0} P,-a.s. Since K is G-polar, P{G N K =
@} =1 for all u € .#. Hence P{I, = 0} = 1 and, since p(r,x;s,y) > 0 for
r < s, we conclude from (11.1) that v = 0.

(iii) To finish the proof, we need the following result on removable singular-
ities for the equation 0 + Lv = v® (see [2]).

Let K be a compact subset of a simple rectangle Q. If K € ., and if

(11.2) v+ Lv=v* in@Q\K,
then v € L{ (@) and
(11.3) v+ Lv=v* in CJ(Q)

lie., [(=¢ + Lo)v)drdx = [pv*drdx, for every infinitely differentiable func-
tion ¢ whose support is compact and is contained in Q1.

Moreover, we need the following extension of the maximum principle proved
in [2]: If

(11.4) v+ Lv>=0 inCJ(Q),
(11.5) limsupv <0 ond,@Q,
then v < 0 a.e. in Q.

Note that
(11.6) v(r,x) = —log P, ;{Go, N K = O}
is the maximal solution of (11.2) subject to the condition
(11.7) v=0 ondQ.

[This follows form Theorem 4.2 applied to @, =@ \KC @, =@ and T =
K U (0Q \ 9,@).] Since (11.2) implies (11.3), the function (11.6) satisfies (11.4).
By (11.7), it satisfies (11.5). Therefore v =0in Q and P, ;{Go, N K =2} =1
for (r,x) € @ \ K. Let (r,x) € Q \ K. By (4.16),

Pr,sx{GnK=®} a{GCQ\K} ra{GQ\KCQ\K}
>P ;{GocQ\NK}=P, ;{Gy N K =0}

Hence, P, ;{G N K = &} = 1 for all (r,x) ¢ K and K is G-polar by Theorem
7.1. O
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11.2.
THEOREM 11.2. A singleton {c} is G-polar if and only if a > (d + 2)/d.

Proor. To simplify notation, take ¢ = (0, 0). Then
f k(r,x;s,y)v(ds,dy) = ak_.(x).
{c}
Clearly, & _,(x) belongs to L*(S) if and only if
f 1,087 *4/? exp{ —as/2}exp{—dlx|*/2s} dsdx = fwe“"sﬂs‘("“l)d/z < w,

S 0
which is equivalent to the condition (e — 1)d/2 < 1.

12. Tests of R-polarity and H-polarity.

12.1. The results of this section follow from Theorem 11. 1 and from
analytical lemmas in [2].

We recall that, according to Theorem 8.3, an analytic set A C E is R-polar
if R, X A is G-polar. We say that A is H-polar if {¢} X A is G-polar for every
t € R. Clearly, all R-polar sets are H-polar.

THEOREM 12.1. An analytic set A is R-polar if A X A is G-polar for an
interval A of positive measure.

Recently Sheu [84] proved that Theorem 12.1 remains true with A replaced
by any Borel set A of positive Lebesgue measure.

THEOREM 12.2. An analytic set A is H-polar if {t} X A is G-polar for
some t.

(In the case a = 2, this theorem can be deduced also from the results in
[34])

PrOBLEM. Suppose A is H-polar and A is a set of Lebesgue measure 0. Is
A X A G-polar?

12.2. The Bessel kernel is defined by the formula
8p(%,y) = 8p(y — x),

where
_ . -B/2 Y
gs(x) = (2m) dedewu + A7) T dA = Ny glx"K,(1x]).

Here v = (8 — d), N, p is a constant and K, is the Bessel function of the
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third kind of order v. In particular,
(12.1) g,(%) = j:ok(r, x) dr,
where £ is given by (9.2).

THEOREM 12.3. Put v € &F if

ngB(x, y)v(dy) belongs to L*(E)

implies v(A) = 0. An analytic set A is R-polar if and only if A € &2, and it is
H-polar if and only if A € &2/,

12.3. An analytic set A is polar in the classical sense if
(12.2) fgz(x, v)v(dy) belongs to L*( E)
A
implies v(A) = 0.

THEOREM 12.4. H-polarity is identical to the classical polarity in the case
a=2.

Proor. Since the convolution of g; with itself is equal to g,, the condition
fgl(x,y)v(dy) belongs to L( E)
A
is equivalent to the condition
[ v(dx)ga(x,y)v(dy) <.
AXA
It is well known that the latter condition is equivalent to (12.2).

A similar test can be proved for R-polarity. Let us write k,(r,x) and
85, 4(r,x) for the functions (9.2) and (12.1), indicating explicitly their depen-
dence on d. Put g, 4(x,y) = g, 4(y — x).

THEOREM 12.4'. If a = 2 and d > 4, then A is R-polar if and only if
(12.3) [ v(dx)gaa-2(%,y)v(dy) <= implies v(A)=0.

AxA

Proor. Note that 2msk (s, x) = ky_,(s, x) and
fdkd(r,x —2)ky(r',2)dz = $ky(r +1',x).
R
Therefore

2
[ &|[ gsta @] = Gam 7 [ o(d)aa (@)
R A AXA
and (12.3) follows from Theorems 11.1 and 12.1.
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12.4. The Hausdorff measure with an index y is defined by the formula

H,/(A) = ling inf Y r7,
£l i

with the infimum taken over all countable coverings of A by open balls
U(x;, r;) of center x; and radius r; < &. The Hausdorff dimension H-dim A is
the supremum of y such that H,(A) > 0. The Hausdorff codimension cd(A) of
aset A CR? is equal to d — H-dim A.

THEOREM 12.5. Let k, = 2a/(a — 1) and y =d — k,. If y <0, then A is
R-polar if and only if A is empty. If y > 0, then

{ed(A) > k,} = {H,(A) <=} = {Ais R-polar)
= {HYI(A) =0 forall v > y} = {cd(A) = «,}.

THEOREM 12.6. Criteria for H-polarity can be obtained by replacing «, in
Theorem 12.5 with A, =2/(a — 1) =k, — 2 (ord by d + 2).

REMARK. The case y = 0 can be treated by using the logarithmic Hausdorff
measure and the corresponding generalization of the Hausdorff dimension
(see [28]).

Part II1. Historical notes and comments.
1. Homogeneous and inhomogeneous Markov processes.

1.1. In this paper, inhomogeneous processes are considered as the princi-
pal subject, and homogeneous processes as an important particular case. It is
true that every inhomogeneous process can be made homogeneous by includ-
ing time in the description of a state. However, there are processes (e.g.,
historical processes introduced in Section 1.1.12) for which the natural state
space changes in time and their reduction to homogeneous processes obscures
the picture of the path evolution. Another advantage of the nonhomogeneous
setting is the possibility of applying useful transformations which destroy the
homogeneity (like monotone time change or approximation by piecewise con-
stant processes). On the other hand, analytic formulae in the homogeneous
case are usually simpler. The situation can be compared with the relationship
between theories of elliptic and parabolic differential equations.

Most literature is focused on the homogeneous case. The inhomogeneous
approach is presented, for instance, in [53], [9] and [58], and in monographs
[16] and [87].

1.2. We build the global state space S of pairs (¢, x), where x is a point of
the state space E, at time {. Another possibility is to start from S and to
consider E, as disjoint parts of S.
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We consider processes on the time interval R,. In other articles (see, e.g.,
[18], [23], [24] and [28]) this interval is R. The difference is inessential unless
we are interested in the behavior of the path as ¢t —» — .

1.3. In contrast to some previous publications, we assume that the life
interval contains the birth time a. In combination with condition 1.1.2.B, this
excludes the possibility of branching points at which the process jumps with
positive probability to a distinct state.

1.4. The class of right processes considered in the present paper is close to
the class of right processes introduced by Meyer and studied by Getoor, Sharpe
and others (in the time homogeneous case, see, e.g., [83]). Both classes coincide
if we exclude processes with branching points.

In [22], [26] and [29] we deal with a smaller class of regular processes.
Denote by K, the class of all probability measures of #.°. such that

{Z|F%(a,s]} =1, xZ 1l=as,

for all s > r and Z € p#.°.. We say that ¢ is regular if it satisfies conditions
1.2.A and 1.2.B and the following stronger version of 1.2.C: For every r € R,
every [l € K, and every Z € p7°,, 1 +,¢,Z is right-continuous on [r, u) IT-a.s.
Every right process can be made regular by expanding the state spaces
(E,, #,). On the other hand, if ¢ is a regular process and if E, € &, satisfy the
condition

H,,x{gt € E, for all ¢ > r} =1, forallreR,,x€E,,

then the restriction of ¢ to E, is right but not necessarily regular. More detail
on the relationship between these two classes can be found in [30].

The regularity properties of superprocesses stated in Theorems 1.1.4-1.1.6
are proved in [30] by using the results of [29]. The proofs are based on ideas
developed in [32], [35] and [36]. In particular, proofs of 1.1.10.B and 1.1.11.B (as
well as Theorem 1.4) use a relationship between stopping times for X and ¢
established in [35].

2. Superprocesses and branching measure-valued processes.

2.1. Let (E, %) be a measurable Luzin space and let .#(E) be the space of
finite measures on E with the natural measurable structure. We say that a
Markov process X = (X,, P, ) in .#(E) is a branching process if

(2.1) log P, , exp{ — f, X, = [ElogPr’axexp< —f, X)u(dx),

for all u € #(E), r <t €R,, f< p. This implies that
(22) Pr,/.l.+v exp( - f’ Xt> = PI‘,[_L exp< - fa Xt>Pr’y eXP< - f, Xt>,

for all u,v € .#(E). Heuristically, the branching property means the indepen-
dence of evolutions for any parts of the population alive at time r. Condition
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(2.1) is stronger than (2.2), but it follows from (2.2) if it is possible to introduce
a topology into .#(E) such that the following hold:

1. The set of measures supported by finite sets is everywhere dense.
2. P, exp{ — f, X,) is continuous in u for a sufficiently large class of f. (Cf.
the discussion of CB property in Section 11.4.6.)

Clearly (I.1.8) implies (2.1) and, therefore, a superprocess with parameters
(¢, K, ) is a branching measure-valued process.

2.2. The problem of description of all branching measure-valued processes
has attracted the attention of investigators since the late 1950s. Jifina [47, 48]
suggested the name continuous state branching processes (CSB processes).
(We use this term only in the time-homogeneous setting.) Examples of CSB
processes were studied by Lamperti [60] and Motoo [71]. A systematic theory of
CSB processes with a compact metrizable space E was developed by Watanabe
[94]. A

Watanabe proved that, for every Feller semigroup P, and every ¢ of the
form (I.1.15) (with constant a,b,n,#) there exists a CSB process which
satisfies the following conditions:

(2.3) P, exp{ — f, X,) = exp{ — v, u),

(2.4) v(x) + [(:[P’t_slﬁ(v)(x) ds = P,f(x), forse[0,t],

which are a particular case of equations (I.1.8) and (I.1.9).

Silverstein [85] constructed a CSB process with parameters (¢, K, ) for a
process ¢ with mass creation and annihilation and ¢ of the form (I1.1.17) under
a number of technical conditions on the combination of ¢, K, . An attempt to
replace them by more natural restrictions is made in [24] and in the present
paper. In particular, it is sufficient that a continuous functional K satisfies the
following conditions:

22.A 11, ,K(r,t) < forall r <t andall u.
2.2.B. I, ,expgK(r,t) <= forall »r <t, q>0andall x.

(Cf. 1.2.C in [24].) In the present paper, to simplify proofs, we impose even
stronger restrictions on K. A construction of superprocesses for a much wider
class of K and ¢ is given in a forthcoming book by the author (a part of a
series of monographs published by the Centre de Rechearches Mathématiques,
Université de Montréal).

2.3. The converse problem—characterization of the most general branch-
ing measure-valued processes—was studied in [95] (see also [80]) for the case
of a finite space E. Branching measure-valued processes in an arbitrary state
space E are investigated recently in [31].
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2.4. The following result is proved in [65]: If ¢ is a continuous real-valued
function on R, such that ¢(0) = 0 and if

U(2) = }}il(l)[aﬁ + bgz + cgpp(l — Bz)],
where ag, by, ¢z > 0 are constants and ¢, is a generating function, then
1 ]
¥(2) =az + b2% + f (e ** =1+ uz)n(du) + f (e™* = 1)a(du),
0 1

where b > 0, [u?n(du) < » and 7[1, ) < o,

Clearly, this implies the following: If a superprocess with parameters
(¢, K, ) is obtained by the passage to the limit described in Theorem 1.3.1
from a branching particle system with a local branching [i.e., if ¢ is given by
(1.2.6)], then ¢ belongs to the class given by (1.1.15).

3. Branching particle systems and enhanced models of super-
processes.

3.1. We refer to [43] for the early history of the theory of branching
processes. Branching particle systems corresponding to a diffusion ¢ and an
additive functional K were studied in [86]. Special classes of such systems
were investigated earlier in [82]. A general theory of branching particle sys-
tems was developed in [44].

3.2. Passage to the limit from branching particle systems to measure-
valued processes can be found in [94] and [7]. More general theorems are
proved in [33], Chapter 9, and in [80]. All these authors considered only the
case when ¢ is a process with a stationary Feller transition function. This
restriction was dropped in [21] and [23]. Another construction of a superpro-
cess over a non-Feller (but time homogeneous) process ¢ was given in [35] and
[36].

3.3. The complete description of a branching particle system is given by
the random tree composed of the paths of all particles. The historical superpro-
cess (see Section 1.1.12) provides a continuous counterpart for this tree: X,
can be obtained from branching particle systems by the limit procedure of
Section 1.3.1—as the limit of discrete measures 15,,_;), where w_,(i), i =
1,2,...,n, are “the historical paths” of all particles which exit from @ (each
path is traced from the exit time back to the arrival of the forefather-
immigrant).

Historical paths have been considered already by Kallenberg [49] in his
“backward tree formula.” Historical superprocesses were introduced and stud-
ied in [12], [24] and [26]. (The terminology in [12] differs from our terminology:
“historical processes” are called “path processes” and the name “historical
processes’’ is reserved for what we call “historical superprocesses.”)
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3.4. Let 7€ . Denote by E_, the set of paths obtained by restricting

each path w to the interval [0, 7(w)]. The measure X, on E_. also can be
defined by

(8.1) X.(B)=lim Y X {¢_, €B,t,_, <7<t}

where the limit (in probability) is taken over a sequence of partitions of R,
with the mesh tending to 0. We return to measures X, by setting

(3.2) X, (A) =X{(7,¢) € A}

The Markov property (I1.1.22) was deduc§d in [26] from (3.1), (3.2) and the
properties of the historical superprocess X.
In [26] we consider a larger than X, 1 € 7, family of random measures

&= [<dn, k)

indexed by measure-valued additive functionals of ¢. [X', corresponds to the
measure 1 on R, X E given by

(4, B) = 1()15(£,).]

3.5. The probabilistic structure of measures XtAhas been studied in [12].
The results can be extended to measures X, . Since X is an infinitely divisible
random element of .#= .#(E _,), we have

log B, exp(—(f, X)) = = [F(w )v(m,w.,

+f/(1 — exp(—{f,»)))R, (1, dv),

where y(u, - ) and R_(u, - ) are positive measures (see, e.g., [50]). If we assume
that 15#{5{, = 0} > 0, then y = 0. By the CB property (Section I11.4.6),

R.(1,C) = [u(dx )R (x,,C).

The following property can be proved by using these formulae. Let o be the
first exit time from an open set U c @ such that dist(U, Q°) < 0 and let
JoE., = E_, associate with every element of E_, its restriction to [0, o).
Then the image X of X_ under ¢, is concentrated on a finite subset of E <o
(cf. Proposition 3.3 in [12]). This fact can be used for constructing a superdif-
fusion as a limit of imbedded branching particle systems (cf. [64]).

3.6. A new type of path-valued processes was introduced by Le Gall [63],
who used them to study superdiffusions with the quadratic branching parame-
ter (¢) = bt2. For Le Gall’s process £,, the state space at time ¢ is the space of
paths over a random time interval [0, {,], where ¢, is not monotone (it is the
reflecting Brownian motion in R, ). The superdiffusion X (and the historical
superdiffusion X) can be constructed by using £ and the local times of ¢ at all
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levels. It is proved that a set C is R-polar for X if and only if it is not hit by
the random set which consists of all terminal points of ¢, [i.e., the pomts
£,Z)]. The G-polar sets can be characterized in a similar way. The process £, is
a symmetric Markov process (even if we start from inhomogeneous ¢). By
applying the potential theory of such processes, Le Gall was able to get (for the
case a-= 2) the necessary conditions for R-polarity given by Theorem II1.12.3
and the necessary conditions for G-polarity provided in Theorem II.11.1.

A related trajectorial construction of superdiffusions by modeling the
quadratic branching with the help of the Poisson point process of Brownian
excursions was developed in Le Gall’s earlier papers [61, 62]. Among applica-
tions of this construction, [62] contains a new proof of the properties of the
support process obtained first by Perkins [74] (cf. Section 5 below).

4. Differential equations involving the operator Lv — v*.

4.1. We use [41] as the standard reference book on elliptic partial differen-
tial equations and [37] and [59] for references on parabolic equations. Analysts
usually write the equation (II.1.1) with the reversed time direction. From the
probabilistic point of view, the form (II.1.1) is preferable since it represents the
backward Kolmogorov equation. The term v is (I1.3.17) is often replaced by
lv|*~v. In our setting, this makes no difference since we are interested only in
positive solutions.

The relationship between the equation © + Lv = ¢/(v) and the Laplace
transform of the superdiffusion X, is well known [94]. A connection between
the nonhomogeneous equation v + Lv = §(v) — p and [{{p’, X,) dt was estab-
lished first in [45].

4.2. The elliptic equation
(4.1) Av = v,

with @ = (d + 2)/(d — 2) in a d-dimensional domain D, was investigated by
Loewner and Nirenberg [68] in 1974. They established the following:

(a) If D is bounded and 4D is smooth, then (4.1) has a unique positive
solution which tends to +« at the boundary.

(b) For an arbitrary D, there exists the maximal positive solution vy,.

(c) Suppose that 3D is compact and D = D \ K, where K c D is compact. If
H-dim K <d/2 — 1, then vj is bounded near K; if K is a smooth
hypersurface with dimension > d/2 — 1, then vs —» +® as x tends to K.

[Note that the critical codimension d — (d/2 — 1) =d/2 + 1 coincides
with k, in Theorem I1.12.5.]

4.3. Isolated singularities of (4.1) with @ > 1 have been studied in [6], [67]
and [91]. (Recall that a probabilistic interpretation is known only for 1 < a < 2.)
It was established in [6] and [67] that the singularity is removable for d > «,,.
The most complete results for d < k, have been obtained in [91]. In particular,



SUPERPROCESSES AND PARTIAL DIFFERENTIAL EQUATIONS 1253

it is proved that, if 3 < d <k, and 0 € D, then every positive solution v in
D \ {0} has either the form

(4.2) G, g%l 7“1 + £(x)]
or the form
(4.3) clel*[1 + ()],

where &(x) >0 as x >0, g, ;=[2(a — D7k, —d))“ Y and c>0is a
constant.
The maximal solution (4.2) can be obtained by the probabilistic formula

(4.4) v(x) = —log P,{R c D \ {0}}.
In particular,
(45) — log Pax{R c Re \ {0}} = qa’dlxl—Z/(a—l)

(cf. Section I1.8.5). To get a probabilistic interpretation of solution (4.3), note
that, for d < «_, the function k(r, x) in (I1.9.2) belongs to L*(S) and therefore
the measure 7(ds,dy) = ds §,(dy) is an element of class N, (see Section
I1.10.3). The desired expression is

(4.6) v(x) = —log P, exp{—cl, (R,)}

[cf. (I1.10.2)].

Isolated singularities for the equation Av = (v) with a continuous increas-
ing function ¢ have been studied in [89], [92] and [79]. [Note that all functions
of the form (I1.1.19) with a > 0 satisfy this condition.] Sufficient conditions of
removability in terms of behavior of (¢) as + » « were given in [90] and [1].

4.4. A singular solution of

(4.7) v+ Av—v*=0 in[0,¢) XD,
subject to the boundary condition
(4.8) v—>9, asrtt,

where 8, is the Dirac delta function at point y, appeared first in [4]. The
authors proved that such a solution exists if and only if @ < (d + 2)/d (cf.
Theorem I1.11.2). We know that

(4.9) v(r,x) = —log Py . exp(—I,,(R+)),

where 1 = §, , is the Dirac measure at point (¢, y).
By replacing I, with kI(n) in (4.9) and by letting % tend to «, we arrive at
the very singular solution

(4.10) v(r,x) = ~log P, {I(R,) =0}
of (4.7), constructed first in [5] and investigated in detail in [51]. Apparently, it
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coincides with the maximal solution
(4.11) u(r,x) = —log P;_{(t,y) ¢ G}
in the domain @ = S \ {(¢, y)}.

4.5. Removable singularities for elliptic equations involving a more general
operator Lv — v* were studied in [1]. Most results of [1] follow from the
subsequent paper [2] devoted to the parabolic case. [1] was used in [25] and [2]
in [28]. In the present paper, all results on the elliptic equations are deduced
from the results for the parabolic case.

4.6. According to II.3.4.D, the first boundary value problem (II.3.17) has a
solution if @ is bounded and regular and f: 3,@ — [0, ] is continuous. The
uniqueness follows from the comparison principle if f is finite. Analogous
results can be established for the elliptic case [see (1)—(3) in the Introduction].
It was proved independently in [93] and [55] that, if D is a bounded domain of
class C? in R? then there exists only one solution of the equation Lv = v®
which tends to « at the boundary. However, the uniqueness theorem fails if
f = « at one point of dD even if D is a ball [56].

4.7. The elliptic version of the problem discussed in Section IL5 is to
describe all solutions of the equation

(4.12) Lv =v* in D.

As in the parabolic case, the problem can be restated in probabilistic terms. It
is natural to investigate, first, the case when L = A and D is a bounded
domain with a smooth boundary. Let g(x,y) be Green’s function and k(x, y)
be the Poisson kernel for A in D. Equation (4.12) holds if there exists a
harmonic function 2 such that

(4.13) v(x) + [ &(x,2)0(5)" dy = h(x).

Clearly, h is the harmonic majorant of v, and v is the maximal solution of
(4.12) dominated by h. Therefore (4.13) establishes a 1-1 correspondence
between the class V, of all solutions dominated by harmonic functions and a
class H, of positive harmonic functions. Let m(dx) = p(x) dx, where p(x) is
the distance from x to dD. We conjecture that H, contains all positive
harmonic functions which belong to L*(m). It follows from [42] that this is
true at least for functions A(x) = k(x, y). Denote by M, the class of measures
w for which

h(x) = faDk(x,y)M(dy)

is an element of H,. It is clear that, if u, T p and p, € M,, then u € M,
assuming that the corresponding 4 is finite. Denote by K, the class of Borel
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subsets T’ of 4D such that
JB(%,)v(dy) belongs to L(m)
r

only if »(T') = 0. We conjecture that u € M, if and only if u does not charge
any set of class K,. Motivated by the results in Sections II.11 and I1.12, we
also conjecture that K, coincides with the class of Borel sets I' © 9D such that
P;{RpNT =@} =1, for all x € D. (Partial results in this direction have been
proved by Le Gall and Sheu.)

4.8. The equations involving the operator Lu + u® rather than Lv — v*
have also been studied extensively in the literature. Fujita [39] discovered that
the equation

(4.14) i = Au + u®

(after time reversal it takes the form & + Av + v® = 0) has no global solutions
in R,x R? if d <2/(a — 1) and it has such solutions if d > 2/(a — 1).
Fuyjita’s critical value 2/(a — 1) coincides with A_ in Theorem I1.12.6 but we
have no explanation of this identity. The ‘‘blow-up” phenomenon for the
equations involving Lu + u® was studied in terms of branching particle
systems in [72]. We refer to [40] and [38] for more recent developments.

5. Path properties of the super-Brownian motion.

5.1. The super-Brownian motion with quadratic branching parameter
¥(2) = z? has attracted the most attention and is investigated in great detail.
The process has continuous paths. More precisely, { f, X,) is continuous a.s.
for any bounded Borel function f [78]. (Recall that, in general, { f*, X,) is
right-continuous a.s. for a bounded continuous f.) The proof in [78] is based
on nonstandard analysis. A standard proof for a broader class of processes is
given in [76].

5.2. The support process K, = supp X, is studied in [11] and [75]. It is
proved that K, is right-continuous with left limits (in the topology induced by
the Hausdorff metric in the space of compact sets) and that, for almost all w,
the following hold:

1. K,cK,_ forall ¢t > 0
2. K,_\ K, is empty or a singleton for all ¢ > 0;
3. K, = K,_ for each fixed ¢ > 0.

It is easy to deduce from these results that the graph G of X is the union of
all sets {t} X K,_, ¢t > 0, and {0} X K|,

5.3. Relations between X, and the Hausdorff measures. These were inves-
tigated in [10], [78]-[75], [11] and [12].
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If d = 1, then X,(dx) = p(¢, x) dx with a continuous p [78]. This result was
established independently in [57]. (An earlier result in the same direction was
obtained in [80].)

According to [10], for any d, the measure X, is concentrated, a.s., on a
random Borel set of Hausdorff dimension not larger than 2. Perkins [74] has
proved that, for d > 2, X,(dx) = p,(x)n(dx), where n is the Hausdorff mea-
sure corresponding to the function ¢(r) = r2 loglog(1/r). Moreover, a.s., 0 <
cg <p;, <C;<won K, for all ¢£> 0. These results have been refined in [12].
It was shown that, for every fixed ¢, p, = const. a.s., and therefore K, is a
set-valued Markov process.

5.4. The fact that the range R of the super-Brownian motion is a.s.
compact was established first in [46]. The necessary conditions for R- and
H-polarity (which coincide with the conditions in Theorems 11.12.4 and I11.12.4")
were established first in [75] independently of any results obtained by analysts.
However, the sufficiency part of these theorems (even for a = 2) is not yet
proved this way. Theorem II.12.5 and I1.12.6 for « = 2 were proved in [11].
The proofs are also purely probabilistic. (Note that our method is not applica-
ble to more general random sets R,—the sets of k-multiple points of
X—studied in [11] and [75].)

5.5. In [75] and [12] the super-Brownian motion as well as the superpro-
cesses corresponding to symmetric stable processes ¢ were investigated. In
this situation, the topological support K, is, a.s., either the empty set or the
entire state space, and it must be replaced by a random Borel set A, support-
ing X,.

6. Invariant measures.

6.1. The asymptotic behavior of branching particle systems and superpro-
cesses in the critical case and the related problem of the classification of the
equilibrium distributions have been studied by many authors (see, e.g., [8],
[23], [49], [66] and [12]). A general entrance boundary theory for superpro-
cesses was developed in [23]. We sketch here the results on equilibria for
time-homogeneous diffusions which follow from this theory.

6.2. Let p/(x,dy) be a stationary Markov transition function in E. A
measure m is called p-invariant if

[m(dx)p(x, B) = m(B) forallt, B.

We say that m is a p-equilibrium measure if, in addition, m(E) = 1. For the
Brownian motion in R9, all invariant measures are given by the formula
m(dx) = const. dx. (There exist no equilibrium measures.)

In general, the p-equilibria form a convex cone which is generated by its
extremal elements.
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6.3. Let ¢ be a diffusion with a stationary transition function p and

P, f(x) = [p(x,dy) ().

A superdiffusion X with parameters (¢, ¢) can be defined in the space A, =
{v: {p,v) < }if p > 0 and P,p/p is bounded for each ¢. Its transition function
& is stationary. Set

‘/tf(x) = _lochSxexp< _f, Xt):
Wi(x) = ["W(V.f) dt.

To every p-invariant measure m there corresponds a unique Zequilibrium
measure M,, such that

[IMm(dv)exp(—O”,v)) =exp(—{f— Wf,m)), feLi(m).

If (Wf,m) = (f,m) < for some f> 0, then M,, is concentrated at 0.
We call it the trivial p-equilibrium.
The opposite extremal case is

o1
}\111(1)X<W()\f),m> =0,

for some f > 0. Then we say that m is dissipative. The map m — M, is a
1-1 map from the set of all dissipative p-invariant measures m onto the set of
all nontrivial extremal Zequilibrium measures M such that

6.1 M(dv){p,v) <,
(6.1) // (dv)<p
and the inverse mapping is given by the formula

f//M(dy)y =m

6.4. Suppose ¥(2) = 2¢ Since V, f < P(f), m is dissipative if
(6.2) [ (®ef)",m) dt <,

for some f> 0.
Let ¢ be the Brownian motion in R? and let m(dx) = const. dx. Take
f = py, where

pi(x) = (2mt) "7 /%,

Then P, f = p,,, and {(T, )% m) = const. (¢ + 1)~9~1/2 Hence (6.2) holds
if d > 2/(a — 1). Dawson proved that, if « =2 and d = 1 or 2, then M, is
trivial. Therefore in these cases there exist no nontrivial Sequilibria subject
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to condition (6.1). [Recently, Bramson, Cox and Greven have shown that the
last statement remains true even without condition (6.1).]

7. Other results.

7.1. A martingale approach was applied in [80] to superprocesses with
quadratic branching and in [36] and [32] to superprocesses with more general
branching described by the formula (I.1.15).

7.2. Superprocesses with quadratic branching possess moments of all or-
ders. The diagrams for calculating these moments were suggested in [20]. By
using these diagrams, a representation of all square-integrable functionals of
X was obtained which is similar to the representation of functionals of
Gaussian processes by the multiple Wiener-Itd integrals. As an application,
the existence of local times and self-intersection local times for X has been
investigated. (The first results on the local time for the super-Brownian
motion were obtained in [45].)
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