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COUPLING AND INVARIANT MEASURES FOR THE HEAT
EQUATION WITH NOISE'

By CARL MUELLER

University of Rochester

We consider the heat equation with a noise term, on a finite interval
with periodic boundary conditions. We show how to construct coupled
solutions to the equation. As applications, we prove the uniqueness of
invariant measures and the triviality of bounded harmonic functions.

1. Introduction. Our goal is to develop a coupling technique for solu-
tions u(¢, x), t > 0, x € S = R(mod 27) to the equation

(1.1) u,=Du,, —au+ a(u) + b(u)W,

where W = W(¢, x) is a two-parameter white noise, and D > 0 and a > 0 are
constants. As an application of coupling, we prove the existence of a unique
invariant measure.

Strictly speaking, a coupling of the Markov processes X(¢), Y(¢) is a realiza-
tion [ X(#), Y(#)] on a common probability space such that for some stopping
time r(w), we have X(¢) = Y(¢) for ¢ > 7(w). Sometimes coupling means that
X(¢) and Y(z) approach each other asymptotically. We aim to show coupling in
the strict sense for pairs of solutions to (1.1) starting from different initial
conditions. Coupling dates back to Doeblin’s (1938) work on Markov chains
and it is one of the main tools in particle systems [see Liggett (1985)]. In
particular, it is used to study invariant measures of particle systems.

Recently, Sowers (1992b) has shown, for b(x) small enough, that there is a
unique invariant measure for (1.1). His proof is short and uses semigroup
theory. Coupling allows us to prove that there is a unique invariant measure
even for large b(u). This parallels the situation in particle systems as de-
scribed in Liggett (1985) where for small parameter values, general semigroup
arguments give a unique invariant measure. For larger parameter values,
other techniques such as coupling are used. One might hope that these
techniques will be useful for other problems in stochastic partial differential
equations.

As far as we know, this is the first use of coupling for stochastic partial
differential equations. Generally speaking, qualitative properties of stochastic
partial differential equations are not well understood. Some work on parabolic
equations has been done by Krylov and Rozovskii (1982), Walsh (1986), Shiga
(1992), Sowers (1992a, b) and the author (1991a, b, ¢). Konno and Shiga (1988)
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have shown that u, = u,, + u'/?W gives the density of super-Brownian mo-
tion, an object of much current attention. To give rigorous meaning to (1.1),
we interpret it in the weak sense, as in Walsh (1986). Walsh proves existence,
uniqueness, and the strong Markov property for solutions. We interpret (1.1)
as an integral equation: :

u(t,x) =f1G(t,x,y)u(O,y) dy
]
(1.2) +f()t'/‘;lG(t—s,x,y)[—a+a(u(s,y))] dyds

+ ['[ GGt = 5.%,)b(u(5,) W(s,5) dyds,

where the integral against W is given meaning in terms of Walsh’s theory of
martingale measures. Here, G(¢, x, y) is the fundamental solution of the heat

equation on S ’
—G(t,x = D——G t,x,y
9t » Ay y» Ay )

G(0,x,y) =d(x —y).

We make several assumptions about the coefficients a(u), b(x) and about
u(0,y):
(i) u(0,x) is continuous.
(i) For some constants L,, L > 0 we have

Ly<b(u) <L.

|b(u) —b(v)| < Llu — vl,
(iii) |a(u) —a(v)| < Llu — vl,

a(u) is nonincreasing.

The assumptions on a(u) are needed to show that an invariant measure
exists. Under these conditions, we have the following theorems.

(1.3)

THEOREM 1.1. Let uX(0, x) and u?(0, x) satisfy (1.3)1), and assume (1.3)
holds. We can construct u'(t, x), u®(t, x) on a common probability space, both
satisfying (1.2), such that for some stopping time t, we have u(t, x) = u%(¢, x)
fort >t andx e St

CoROLLARY 1.1A. For the process defined by (1:2) and (1.3), the invariant
o-field is trivial, and all bounded harmonic functions are constant.

THEOREM 1.2. Assume that (1.3) holds, and that a > 0. There is a unique
invariant measure u for the process defined by (1.2). Furthermore, let u,
denote the measure induced by u(t, - ). Then u, converges to u as t = «, in the
total variation norm.
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Sowers [(1992b), Section 3], proves that at least one stationary distribution
exists for the process defined by (1.2), provided a > 0. Observe that Theorem
1.1 immediately gives uniqueness. Indeed, it is easily seen that even if the
initial conditions %(0, x), #%(0, x) are random, there is still a stopping time =
giving coupling. Now let #(0, x), u%(0, x) have distributions given by two
invariant measures, @, and @,, respectively. Of course, u'(¢, x) and u?(t, x)
also have these distributions if # > 0. Thus, the total variation distance
between @, and @, is bounded by

P{ sup |ul(t,x) — u?(t,x)| + O} <P(t<71)—>0 ast— o,
xeS?t

A similar argument proves Corollary 1.1A.

2. Preliminary results. In this section we give some lemmas which will
prove useful later. The first is due to Sowers [(1992b), Section 3].

LEmMMA 2.1. Assume that a > 0. There is at least one stationary distribu-
tion for the process u defined by (1.2).

The next result, also from Sowers (1992a), is an estimate on the maximum
of |u(t, x)|. Fix T > 0, and for ¢(t, x) a function on [0, T'] X S, define

lolle = sup |@(¢, x)].
[0,T]x8?

LEmMA 2.2. Suppose that u(t, x) satisfies (1.2) and (1.3). There are con-

stants K,, K, depending only on sup, |u(0, x)|, T, such that
P{llull. > 2} K
ulle > 2} < exp| —— |,

sup, < b(x)”

provided z > K.

Proor. Referring to equation (1.2), we denote the terms on the right-hand
side as (I), (IT) and (III). (I) is bounded by the maximum principle, and since
la(u)| is bounded, (II) is also bounded. Proposition A.2 of Sowers (1992a)
implies that for some constants K,, K,, we have

-K,2?2
SUp, cp b(ac)2

for all z > 0 such that 22/sup, . b(x)? > K. This proves Lemma 2.2, possi-
bly for different K, and K;. O

P[> 2} < exp[

To show that u(¢, x) does not wander off to «, we need the following.
Let u(¢, x), v(¢, x) both satisfy (1.2), perhaps with different initial conditions
and different noises W.
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LemMMA 2.3. Assume a > 0. With probability 1,
liminf sup (|u(¢,x)| V|v(¢, x)|) <,

t— o xeSl

where V means max.

ProoF. By (2.24) of Sowers (1992b) and by Sowers’ comment between
(2.23) and (2.24), we have

sup E sup |u(¢,x)| < .
>0 xeS?t

Then by Fatou’s lemma, we have

xeS!

[llrgglf sup (Ju(z, )] Vlv(t,x)l)]

< sup E[ sup (Ju(t, x)| \/|v(t,x)|)]

t>0 xeSt

< sup[E sup |u(¢, x)| + E sup |v(t,x)|]

t>0 xeS?! xeS8?!
< oo,
since v and v both satisfy (1.2). This proves Lemma 2.3. O

Our next result is an easy modification of Theorem 3.2 of Walsh (1986). We
omit the proof.

LemMa 2.4. Equation (1.2) is equivalent to the following. For all ¢ €
C%([0,») X SY), and for all t > 0, we have

/:gl[u(t,x)<p(t,x) — u(O,x)<p(0,x)] dx

—f/{(sx

dp(s,x)  9%p(s,x)
+
at dx?

- a(p(s,x)]

+a(u(s,x))e(s, x)} dxds

+.[0tj:gl¢(t’x)b(u(t, x))W(dxds).

3. Proof of Theorem 1.1. In this section we construct a pair of coupled
processes ul(t, x), u(t, x), each of which satlsﬁes . 1) Of course, the white
noise appearing in (1.1) will be different for u' and u?

First we assume that

(3.1) u'(0,x) > ué(O,x).
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Let W(¢, x) and W,(t, x) be independent space-time white noises on (¢, x) €
[0,%) X S1. Consider the following equations:

U, =u,, —au+a(u) +b(u)W,

(3.) U, = Uy, — av + a(v) +'b(v)[(1—|u—v| A 1)YPW,
3.2 5
+(lu — vl A 1)°W,),
u(0,x) =u'(0,x), v(0,x) =u?0,x).
The rigorous meaning of these equations is given via integral equations similar
to (1.2).
Consider the difference
(3.3) A(t,x) =u(t,x) —v(t, x).
Roughly speaking, A(¢, x) ‘“more or less” satisfies
A=A, + AW,

where W is yet another white noise. This equation is related to the super-
Brownian motion, as explained by Konno and Shiga (1988). It is known that
solutions become identically zero after some finite time. But if A(¢, x) = 0 for
x € S!, then u and v are coupled. More precisely, A(¢, x) satisfies

At = Axx + a(u) - a(v)
1/2

(8:4) W(t,x).

Al A1
1+ (1—AlA1)Y2

+{(b(u) — b(v))? + 2b(u)b(v)

Lemma 3.1.  If (8.1) holds, then equations (3.2) have solutions u(t, x) and
u(t, x) with u(t,x) > v(t,x) forallt > 0, x € S, almost surely.

REMARK. We make no claim of uniqueness for v(¢, x). Uniqueness would
hold if the coefficients in the second equation of (3.2) were Lipschitz functions
of v, but they are not. We merely construct a pair z,v which satisfy (3.2).

ProoF oF LEMMA 3.1. Similar comparison theorems were proved by Kote-
lenez (1992), Mueller [(1991b), Theorem 3.1], Shiga (1992) and Donati-Martin
and Pardoux (1992), among others. Since the argument is standard, we omit
some details.

We construct approximations to (3.2), and then show tightness. For 0 < x <

1, let
) 1\1/2 1\1/2
fn(x)=(x+;) _(_) s

n
1/2

g.(x) = [1-f.(0)°] "
Note that f,(x),g,(x) are Lipschitz functions on [0,1] for n > 1, that
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£.(x)% + g,(x)? = 1, that £,(0) = 0, and that f,(x) = x'/% g,(x) » (1 — x)'/?
uniformly as n — o, for x € [0, 1].
Let u(¢, x), v™(¢, x) satisfy

u(0,x) = (0, x),
v™(0,x) = u?(0,x),
(3.5) u,=u,, +a(u)+b(u)W,
v} =vl, +a(v")
+ b(v") [ galle — 0™l A YW + folu — v A )W)

Since f, and g, are Lipschitz, (3.5) has a unique solution (u, v™). Also, note
that both z and v" satisfy (1.2), with different white noises, of course. By
discretizing space, as in Mueller (1991b) or Shiga (1992), for example, one can
show that with probability 1, u(¢,x) > v™(,x) for all >0, x €S ! The
argument is so similar to the proofs of the comparison results mentioned
earlier that we omit the details. Briefly, the discrete approximation consists of
a finite system of stochastic differential equations. Standard comparison theo-
rems show that u(¢, x) > v™(t, x) for the approximation, and this carries over
to the limit.

Tightness is also easy, given results of Sowers (1992a). We combine his
Propositions 1 and A.2. First, here is some notation. As in Section 2, fix T' > 0
and let o(¢, x) be a function on [0,T] X S'. For x,y € S', let d(x,y) be the
length of the shortest arc from x to y. Let

Pt %), (5,9)] = [(¢ = 9)* + d(x.9)] """,
Define
|§D(t7x) - (P(S,y)l .
r[(t,x),(s,y)]'(/2 '

[¢]. = sup

(¢,%),(s,y) €[0,T] xS, (t,x) # (s,y)}.

Recalling that |l¢|l. was defined in Section 2, let

lelle = llglle + [¢].-

Sowers shows that, if u(¢, x) satisfies (1.2) and (1.3), then there are constants
K,, K, depending only on u(0, x), T such that

_Klzz . :|

(3.6) Pfllullc = 2} < ex}?lm

provided z > K.

To apply this result, note that by the Arzela-Ascoli theorem, for all z > 0,
{¢: lloll« < 2} is a compact set in the uniform topology on [0,T'] X S 1 Thus, by
(8.6), the sequence v™(¢, x)(t € [0, T')) is tight for all T > 0. Hence the vector
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(u,v") is tight. Let (z, v) be a limit point. A standard argument, which we will
again omit, shows that (u, v) satisfies (3.2), and that u(¢, x) > v(¢, x) a.s. This
proves Lemma 3.1. O

Recall that A(¢, x) = u(t, x) — v(¢, x). Let
(3.7) U(t) = | A, x) dx.
Sl
We define the following filtration:
F, = o-{fo /:Slqo(s, x)Wy(dsdx) + fo fSll/I(S, x)Wy(dsdx):

¢,y € L*([0,) x 8'), ¢,  are supported on [0, £] X Sl}.
So &, is the o-field generated by W,, W, up to time ¢.
LEMMa 3.2.
(3.8) U(t) = U(0) + fOtC(s) ds + M(t),
where (M(¢), &,) is a continuous martingale. Furthermore, C(s) < 0 and
() = [ [ [(b(us,0)) = b(u(s,2)))" + 2b(u(s, ) b(v(s, %))

[A(s,x)I A1
1+ (1-]A(s,x)| A1)

dxds.

1/2

Proor. We apply Lemma 2.4 to both equations in (3.2), with ¢(¢,x) = 1.
Then we subtract. We gather the terms involving stochastic integrals against
W, or W, into M(t), and gather the remaining terms [except U(¢) and U(0)]
into [¢(C(s)ds. We find

C(s) = /:gl[a(v(s,x) —u(s,x)) +a(u(s,x)) — a(v(s,x))] dx.

Then (1.3) implies C(s) < 0. A short calculation gives the formula for (M ).
This proves the lemma. O

Next, Lemma 2.4 and (1.3) imply that

Lﬂg—(t—) > L%fsl[A(t,x) A 1] dx
E A(t, x)
“L)eag g vi®

U(2)

2
Osup, g1 A(t,x) V1°
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Thus, there exists an adapted process V(¢) such that

d{M)(¢)
—a u@)v(e),
(3.9) A L%
v(e) = sup,cgt A(¢,x) V1°
Next, let
(3.10) o(2) = [[V(s) ds,

X(t) =U(e ()
We wish to show that X(¢) is defined for all ¢ > 0; in other words, that
lim, _,, () = .

LeEmMa 3.3. With probability 1,

1

lim o(t) = [ dt =
P e (?) fo sup, c g1 A(t,x) V1 *

ProoF. Trouble could come if sup, . g1 A(¢, x) wandered off to « as ¢ — .

But Lemma 2.3 implies that
liminf sup A(¢,x) < 2liminf sup |u(¢,x)| V]v(t, x)]
2% yest i2® reSt
<o a.s.

Furthermore, Lemma 2.2 states that when |u(¢, x)| and [v(¢, x)| become small,
they have a positive chance of remaining small for some time.

Now we give the details. Assume that Lemma 3.3 is false, so that

Pl .
fo sup, st A(t,x) V1

for some ¢ > 0. Then, for each & > 1, we can choose a deterministic time R(5)
such that

dx<00}>3>0

pl( 1
fR(&) sup, c g1 A(¢,x) V1

Therefore, for each stopping time 7 > R(8) we have

T+1 1 ' 2
P dx <8} > —
{f, sup, c g1 A(¢,x) V1 * } 2

£

dx<<6} > g.

arid hence

T<t<t+1
xeS?!

(3.11) P{ sup  A(t,x) > %} > %
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Let 7=17(5, M) be the first time ¢ > R(§) such that sup,.glu(t x)| v
[u(¢, x)| < M. If there is no such time, let » = R(5).
Using Lemma 2.3, choose M such that

E
P{liminf sup (|u(t, x)| V]v(s, x)|) <M} >1-—.
{2 yes! 8
In other words, for all § > 0,
(3.12) P{ sup (|u(7,x)|V|v(7,x)|)<M}>1—§.
xeS!t

Using Lemma 2.2, choose § > 0 such that if sup,  g:(|z(0, x)| Vv [v(0, x)|) < M,
then

1 1
P{ sup A(t,x) > E} SP{ sup |u(t,x)|> 5—5—}

0<t<1 0<t<1
xe8?! xeS?!
1
(3.13) + P{ sup |v(¢,x)|> —=
O<t<l 26
xe8?!
€
< —.
8

Finally, using the strong Markov property at 7, (3.12) and (3.13), we find

1

P{ sup A(t,x)>—}
T<t<t+1 o
xeS?t

1
<P{ sup A(t,x)>—|sup|u(r,x)|V]v(r,x)|<M
T<t<t+1 o xeS!

xeS?t

+P{ sup (|u(r,x)| V]v(r, x)|) ZM}

xeSt

& E E
<—+-=-.
8 8 4

But this contradicts (3.11), and so Lemma 3.3 is proved. O

Now we return to the time-changed process X(¢) defined in (3.10). By
Lemma 3.2 and the definition of the time change, we have

T X(t) = U(0) +[()‘é(s)"ds +[0‘X1/2(s)d3(s), C(s) <0

for some Brownian motion B(s). Let
Y(¢) = 2X172(¢).
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We wish to apply Itd’s lemma to Y(¢), but the function f(x) = 2x!/2 is not
differentiable at x = 0. If applicable, It6’s lemma would give

dY = dB ¢ ! dt < dB
= + i;'— 3; t < s

(3.14)
Y(0) = 2U(0)"2.

Let 7(n) be the first time ¢ > 0 that Y(¢) = 1/n. If there is no such time, let
7(n) = . Then (3.14) is valid for ¢ < 7(n). Letting n — o, we see that (3.14) is
valid as long as Y(¢) > 0. Therefore,

Y(t) < 2U(0)"? + B(t),

and so Y(¢) hits 0 with probability 1. But when Y(¢) = 0, we have U(¢~1(#)) = 0
and hence u(p~(2), x) — v(¢ 1(#),x) = Alp~Xt),x) = 0 for all x € S*. Thus,
coupling has been achieved.

Now we prove the general case of Theorem 1, so we no longer assume that
u(0, x) > v(0, x). For this part, we go back to the notation (¢, x), u2(¢, x) for
the processes to be coupled. Consider the following set of equations:

v, = v, +a(v) +b(v)W,, v(0,x) = I{léla.)(z(ui((), x)),

1/2

(3.15)  wi=1ul_ +a(u')+ b(ui)[(l —lv—u'l A1) ]Wl

+(v —ull)*W,, i=1,2.

Arguing as in Lemma 3.1, we may find a set of solutions to (3.15) which
satisfy v(¢, x) > u'(¢,x) for i = 1,2 and for all (¢,x) € [0,) X SI. By the
previous case, there are times o;, i = 1,2 such that v(¢, x) and ui(¢, x) couple
at time o;. Then, u'(¢, x) and u*(¢, x) couple at o = max(a,, 0,). This proves
Theorem 1.1. O

Acknowledgment. I wish to thank the referee for suggesting improve-
ments.
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