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CRITICAL LARGE DEVIATIONS FOR GAUSSIAN FIELDS
IN THE PHASE TRANSITION REGIME, I'!
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Universitdit Ziirich and E.T.H. Ziirich

Dedicated to the memory of Frank Spitzer

We investigate large deviations for the empirical distribution functional
of a Gaussian random field on RZ°, d > 3, in the phase transition regime.
We first prove that the specific entropy governs an N¢ volume order large
deviation principle outside the Gibbsian class. Within the Gibbsian class we
derive an N9~2 capacity order large deviation principle with exact rate
function, and we apply this result to the asymptotics of microcanonical
ensembles. We also give a spins’ profile description of the field and show
that smooth profiles obey N¢~2 order large deviations, whereas discontin-
uous profiles obey N¢~! surface order large deviations.

0. Introduction. Let Z¢ be the d-dimensional square lattice, where we
always assume that d > 3. Next let Q = RZ’, We give () the product topology
and use %, to denote the associated Borel field. Let .Z,(Q)) be the space of
probability measures on (Q, %) and set

(fou) = fﬂfdu, for fe L'(p) and p € #,(Q).

On .Z(Q) we consider the weak topology generated by the bounded continu-
ous functions on Q. Let .#5(Q) be the subset of measures v € .#,(Q) which
are invariant with respect to the shift transformation {6%, k € 7%} determined
by

0%w); = wy,;, forallk,je Z%and w € Q.
J k+j

A#FE(Q) will denote the set of ergodic v € .£S(Q).
Consider a shift invariant symmetric transition function Q: Z¢ x 7¢ — [0, 1]

Z Q(0,k) =1, Q(0,0) =0 and Q(0,k) =0 if k|l >R,
kez¢

for some R € Z*. We will assume that Q is irreducible. Since d > 3, Q is
transient. We let G = {G(k,j): k,j € Z?} denote the corresponding Green
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LARGE DEVIATIONS FOR GAUSSIAN FIELDS 1877

function:
G= Y Q"= (-4q)
n=0

where Q" is the nth product of the matrix Q and Aq = Q — I, where I is the
identity.
Let P € .#5(Q) be the Gaussian field with

(wg, PY) =0 and covp(wy,w;) = G(k,j), jkez

The classical example is the simple random walk for d > 3 with

1
(0.1) Q(k,j) = | 2q> Hlk-il=1,

0, otherwise,
for which A is the usual discrete Laplacian on Z¢. In this case the associated
Gaussian field is sometimes called the (discrete) massless free field or the
harmonic oscillator. It will be helpful to introduce a Gibbsian description of P.
Let N(m,o?) € .#(R) be the Gaussian distribution with mean m € R and

variance o? € R* and consider the interaction potential % = {U,: @ # F cc
7% c C(;R),

ky. jo F= ky. ’
Us(w) = Q(k,j) oy w; {k,j)
0, |F| # 2.
Next let G¥(Q) denote the set of Gaussian {y,,: m € R} c.#5(Q) such that
cov, (wy,w;) = G(k,j) and (wy,v,) =m, k e 79,

and set
®5(Q) = {Y = fvy¢(x,dx: = L2(V)},

where V = [0, 1]¢ is the unit cube in R?. Note that P = y,. E(Q) and &S(Q)
are precisely the set of extremal shift invariant Gibbs states L2-finite (respec-
tively, shift invariant Gibbs states) for the potential % with a priori measure
N(0, 1) (cf. [15]). This means that if, for each k € 7? and pu € .£5(Q), u, (- lw)
denotes the conditional distribution of w, given {w;, j # Kk}, then

y € 65(Q) ifandonlyif y,(‘lw) = N( Y Q(k,j)w;, 1), k € 7¢°.
ik

The aim of this paper is to investigate the ergodic property of the law of the

empirical distribution functional
1

w€Q->Ry(w)=—— Y 8x, €45(Q),
|VN I keVy N
under P, where Vy is the cube Vyy = [0, N — 1] N Z? and wy is the configu-
ration obtained by extending wly, periodically to Z¢. Since P is ergodic, we
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know that with respect to weak convergence on .#°(2) we have

Z\lllm Ry =P, P almost surely.

In particular, if

Ly(o) = |VN| keZV d,, € #(R),

then
lim Ly = N(0,0?), P almost surely,

N-ox
where o2 = G(0, 0).
Thus if T € .#5(Q) is an open set containing P, then

(0.2) lim P(RyT) =0.

Our main task will be to investigate at which exponential rate the preceding
convergence occurs. Let us introduce some useful notation: If (ay)y <y is a
sequence of positive real numbers tending to «, and if Uy is a sequence of
random elements with values in a topological space X, we say that Uy, satisfies
an (a y)-large deviation principle, (a,)-LDP for short, with a rate function
J: X - [0,x], if J is lower semicontinuous with compact level sets and if, for
any Borel set A c X,

— inf J < hmlnfaN1 log P(Uy € A)
int(A)

< limsup ay' log P(Uy € A) < — inf J.
N-owx cl(A)

We also say that Uy is (a)-exponentially tight if

inf hmlnfaN1 log P(Uy € K) = —
KccX N-owx

If the upper bound holds only for A compact, we say that U, satisfies a weak
LDP.

Our first result (cf. Theorem 1.4) shows that outside of the Gibbsian class
®5(Q) the convergence in (0.2) occurs at an exponential volume rate as
N — . More precisely, let h(-|P): .#5(Q) — [0,] be the specific entropy
relative to P:

1

where H (u|P) is the relative entropy of u with respect to P restricted to the
cube Vy; h(-|P) is well defined and satisfies

(0.3) h(u/P) =0 ifandonlyif u e 65(Q).

Then h(:|P) is the rate function of a weak N9large deviation principle
for R .

h(ulP) = hm
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The restriction to compact sets in the upper bound can be explained by the
fact that the rate function h(:|P) does not have compact level sets on the
whole of .Z5S(Q) (cf. Remark 1.16).

In view of the characterization (0.3) of &5(Q), the preceding discussion
does not give any information on the large deviations within the Gibbsian class
®5(Q). The main objective of this paper is to study the precise asymptotics
within this class. The exact asymptotic behavior of G plays a crucial role. Let
A be the symmetric d X d matrix associated with the covariances of Q:

(0.4) i=y dy= ¥ (v k’Q(k,0), yeR?

kez?

and denote by |A| the determinant of A. As Q is assumed to be irreducible, A
is nonsingular. A classical result of Spitzer (cf. [26]) states that

05) L G0
. im ———— =1,
k| > o g(k)
where g: R? \ {0} - R* given by
( / ) -1/2 1
(0.6) g(x) = Wl (x- A )@ P

is the Green function associated with the operator

1 d 2
== A ——.
Aa 2121 " 9x; 0x;

We will actually need a stronger result than (0.5):
(0.7) G(k,0) — g(k)| = O(Ik|~**Y).

This comes as a consequence of the local central limit theorem with error
bounds. (See [19], Theorem 1.5.4 for the nearest-neighbor case. The general
case is similar.)

From this it is easy to guess that the exponential rate of the volume order
[Vyl = N must be replaced by a capacity order N¢~2. Namely, introduce the
empirical mean or magnetization My: Q — R of the box V},

My(w) = Y oy ={w,Ry(w)), Nez".

|VNl keV,

Then, since My, is a Gaussian random variable, a simple computation of the
variance shows that, for each m > 0,

m2

1
0.8 lim —— log PMy>m) = - —
(08) N yaz e P(My = m) = = 5y



1880 E. BOLTHAUSEN AND J.-D. DEUSCHEL

where

. Kyidv=[[ o(x)8(x - y)0(y)dxdy, 6,4 €LYV)

(cf. [6]). Note that this does not contradict Theorem 1.4 since in (0.8) we are
looking at a large deviation within &S(Q) as
{p eP(Q): vy, ) 2m} N G5%(Q) + .

Another approach is to look at the behavior of the relative entropy H y(y|P) on
the box Vy for some y € 85(Q). We will prove that the capacity specific
entropy (- |P): #8(w) — [0, ] relative to P,

1
e(plP) = lim ——Hy(ulP),

N —>oo Nd—2
is well defined and satisfies
lll5 .
_ &v(ly), ifu= o dx € GS ,
(0.9) c(ulP) ={ "9 v(ly) I fVY¢( ) Q)
o, otherwise,

where &: LAV) - [0, «],
Ey(#) = inf{ VAL )gu: h € H\(RY), h = $ ae.on V).

[Here HYR?) is the usual Sobolev space of once-differentiable functions
R? - R.] &, can also be viewed as the Dirichlet form of the diffusion embed-
ded in the cube V generated by 3A,. In particular, &,(1;) = cap,(V), where
cap,(V) is the corresponding capacity of V, and therefore

2

e(rulP) = - cap(V), v, € B%(Q).

The first guess might be that ¢(-|P) should govern an N?~2-]large deviation
principle. It turns out that the order is correct but the rate function ¢(-|P) is
wrong. This can be seen from (0.8) and (0.9) since an alternative expression of
the capacity shows that

(¢, 1)} ol
2<1V, Kv1v>v 2

for any ¢ € L*(V). The correct rate function is given in the following strong
large deviation principle, which is also our main result.

cap,(V),

THEOREM 0.10. Ry satisfies an N9 2LDP with rate function <€(-|P):
AE(Q) - [0, ] given by

£(ulP) = inf{%é’vw): ¢ € (V) with = [ v, dx}

(as usual inf @ = o).
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Note that €(y,,|P) = ¢(y,,|P) for y,, € GE(Q) and, in general,

1

—— & (y|P),

1capy(V) (1P)
where A, € R is the first eigenvalue associated with the integral operator K v
on L%V). However, the behavior of the two functions can be dramatically
different: ¢(-|P) is affine but €(:|P) is not even convex. For example, since
&y(¢) = = for discontinuous ¢ inside V, €(y|P) = « for y’s which are discrete
mixtures of extremals, for example,

c(vIP) < 5

n n
v = Zpiymi, with0 <p,<land ) p,=1.
i=1 i=1

The best way to understand why <(-|P) is the correct rate function in
Theorem 0.10 is to use the following ‘“profile” description. Let .#(V) and
#(V X R) be the space of finite signed measures on the cube V, respectively, of
probability measures on R X V. Consider the random measures X : Q — .#(V)
and Yy: Q - .#Z,(V X R):

Xpy(w)(dx) = Wk% Sy n(dx) - wy,

1
Yy (0)(dx,dt) = szv Bu/w(dx) ® 3, (dt).

Note that we recover both X (w) and L y(w) by projections from Yy (w):
(- ® 0, Yy(@)n = [ t¥y(0)(df) = Xy(w),
Iy @ -, Yn(@))v = [ Yu(@)(dx) = Ly(w).

Next, define the rate functions J: .Z(V) — [0,»] and J: .£(V X R) — [0, «]:

i e LV

J— —_— e

J(wm) =142 v(¢), ax ¢ V),
00, otherwise,

and

1
) SEv(#), A(dx,dt) = dx ® N(d(x), a%)(dr),
0.11) J(a) = '
(0.11)  J(4) 6 LV),
o, otherwise.
In Section 3 we prove that both X, and Y, satisfy an N?~2large deviation

principle with rate functions J and J. X, is a Gaussian field, so the proof of
the LDP involves only covariance calculations.
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The proof of the LDP for Y, is more delicate. It turns out that the
empirical field locally looks like an extremal Gibbs field, at least up to events
which have probabilities too small to influence the LDP. This is the content of
Proposition 3.10, which is proved using a conditioning argument on a wider
lattice, a technique reminiscent of the hydrodynamical limits (cf. [16]). In some
sense X describes the profile of spins w, within the box V,,. We can relate
these two critical large deviation principles with Theorem 0.10 in the following
way: Take y € $5(Q) and choose ¢ € L%V) such that y = [v Yy dx mini-
mizes &y (¢). Next, define the Gaussian field y*¥ € .Z,(Q) with

N

Then, for any open I' C .#,(Q)) containing 7y, one can check that

k
(0.12) coven(wg, @) = G(k,J), (@, y™) = by (k) = ¢( —), k,j ez,

lim y**(RyeT) =1

and that

I\IIILnoo Nd—2
In other words, the best way for the empirical field R, to realize a large
deviation y under P is to adopt the profile ¢(k/N) for the spins w,, k € Vy,
and look at the appropriate microscopic scale like one of the extremal Gibbs
Yo, Ny Lhis will be, roughly speaking, the argument of the proof of the lower
bound of Theorem 0.10 (cf. Theorem 2.9).
The exact rate function also gives us the answer to some microcanonical
ensembles based on P. To be more precise, let us consider the empirical mean
M, and second moment S% of the box Vj:

1
S¥(0) = o7 L oi=(w},Ry(e)), Nez*.
|VNl keVy

1
Hy(y?P) = §Gov(¢)-

For m € Rand s?, 6 € R* we would like to know the limiting distributions of
the conditional law of P given [My — m| < 6 and |S% — s?| < &:

P(-|My —ml| <8) and P(-1I8% —s? <3),

when first N — « and then & \ 0. As a consequence of our large deviation
principle we get the following.

THEOREM 0.13. Let m € R and s% > o2 Then, with respect to the weak
convergence on #(Q),

lim lim P(:||M, — <$é) = * oy dX,
61\1.1‘1) NI_ITIOo (|| N — ml ) fV’)’¢ (x) GX

. N . 2 _ .2 _ N
;13(1) ]\1,1_1:1100 P(-118% — 5% <) fvy¢ ) 4%,
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where

¢*(x) = Kyly(x), *(x) = (s - 0% %ey(x), xeV;

m
<1V, Kvlv>V
e, € LXAV) is the normalized eigenfunction associated with Ay, the first eigen-
value of K. However, if 0 < s? < o2, then
lim lim P(-||S% — s? <8) = P,

590 Nrso (-118k | )

where P*" is the centered Gaussian field with covariance G** = (¢*I — A P
e* > 0 being chosen such that G¢*(0,0) = s2.

The rest of the paper is divided into five sections. In Section 1 we show the
noncritical large deviation principle. In Section 2 we show the existence of the
capacity entropy and prove the lower bound in Theorem 0.10. The proof of
the upper bound is given in Section 3 together with the large deviation
principles for X, and Y. Section 4 deals with discontinuous profiles where
surface phenomena of the order N¢~! occur. Finally, in the Appendix we
derive a few covariance estimates which are used in the proofs.

Before concluding this introduction, let us have a look at the literature: The
Gibbsian description of a Gaussian random field was initiated by Rozanov [23]
and Dobrushin [9]. The relation between the covariance G and the transition
function Q comes from Spitzer [25]. Although we discuss only Gaussian fields
whose covariances can be expressed as Green functions of some nonnegative
transition function Q, we believe that our result could be extended to any
situation with slowly decaying covariances. In a further paper we will investi-
gate the lower lattice dimensions d = 1,2 with a transient matrix Q of the
form

. Q(0,k)

lim ——— >0 forsome a € (0,d A 2).

k|- |k|*T

In this case the capacity order N¢~2 in Theorem 0.10 must be replaced by
N~ cf. [2]. The characterization (0.3) of the specific entropy has been
derived by Kiinsch in [17]. Large deviations for Gibbsian random fields at the
volume order have been investigated by several authors (cf. [13], [20], [5] and
[8]. However, none of these results apply to our situation since we are dealing
here with an unbounded interaction. Donsker and Varadhan [12] treated the
one-dimensional Gaussian case under rapidly decaying covariances where no
phase transition occurs; see also [18] for a variational formula for a continuous
version of P° in Theorem 0.13.

The understanding of critical large deviations for Gibbsian random fields
within the phase transition regime is still at a very preliminary stage. Some
results at the level of the empirical mean for Gaussian processes can be found
in [6]. For discrete spins Follmer and Ort [14] showed that the relative entropy
of two Gibbs states within the box Vy grows like the surface N¢~!, and they
derived a lower bound at this order for the empirical field. The best-studied
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model is the d-dimensional Ising model. In this case Schonmann [24] showed
upper and lower bounds at the surface order N?~! for the large deviation of
the empirical mean M. Dobrushin, Kotecky and Shlosman derive a large
deviation principle for the spins’ profile X, of the two-dimensional Ising
model, giving an explicit form for the exact rate function. The analogue of the
canonical ensemble in Theorem 0.13 is related to the Wulff construction of the
droplet (cf. [10] and [21]). It is interesting to compare our result with [10]: In
their situation, surface phenomena at the order N¢~! occur, whereas in our
situation we have capacity order N¢~2. The capacity order comes from the fact
that the R-valued spins have a continuous symmetry. We have an N¢~2 order
as long as we are dealing with “smooth’ profiles in H,(R%). On the other
hand, discontinuous profiles yield a surface order N¢~! with a rate function
similar to the one in [10] (cf. Section 4).

1. Noncritical large deviations. In this section we show that the spe-
cific entropy governs the large deviations of the empirical field at the volume
order.

Let us fix some notation: ¢, ¢;, ¢y, ... are generic constants greater than 0,
not necessarily the same at different occurrences.

We start with a definition and characterization of the specific entropy.
Given a nonempty A € 7% and w € Q, w, denotes the element of R* obtained
by restricting o to A, and %, is the o-algebra over ) generated by the
projection map o € Q - w, € R*. For any u € .#,(Q) and N € Z™, let Ky,
denote the marginal distribution of w € Q - w,_€ R under u. Next, define
the entropy Hy(u|P) of u € .#5(Q) relative to P on Vy, by

d/.LVN

1 d if P d =

o0, otherwise,

and set

- 1 1
h(ulP) = limsup — Hy(ulP) and A(vIP) = liminf — Hy(ulP).
N-oow IVNI N-oow IVNI

If they coincide, we call
h(uIP) =h(ulP) = h(nlP)
the specific entropy of wu relative to P. For L € 7%, set
x, = {v e £5(Q): {w},v) <L}.

Finally, for each ¢ > 0, let P° €.#5(Q) be the centered Gaussian field with
covariances

GE = (81 - AQ)_l,
or, equivalently, with spectral density g° = 8 /(eg + 1), where g is the spectral
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density of G. Note that
(1.1) G'=(1+e) " Y (1+¢) Q"
n=0

that is, G° is the Green function of a random walk with a killing rate
e/(1 + ¢), with killing starting at time 0. P° is usually referred to in the
literature as the (discrete) free field with positive mass ¢ and can also be
viewed as the unique Gibbs state with potential ¢ = {J§, F e 79},

&
- Ewi’ F = {k}’
J;?(w) - Q(k’j)wkwj’ F= {k’j}y
0, |F| > 3,

and a priori measure N(0, 1). It follows from (1.1) that P® is hypercontractive
(cf. [18], [4]) and has exponentially decaying covariances. This implies that
h(-|P®) is well defined and has compact level sets in .#S(Q) (cf. [18]).
Furthermore, R, satisfies an N%large deviation principle under P¢ with
rate function h(:|P?). For a proof, see [18] and [8].
The following gives a characterization of the specific entropy relative to P.

PROPOSITION 1.2. The specific entropy h(-|P) is well defined on #5(Q)
and satisfies h(v|P) = » for v & ¥, = U %, and
h(v|[P) =0 ifandonlyif v e ®5Q).

Moreover, for each L € Z*, h(-|P) has compact level sets in J%7,.

Proor. Let us first check that h(v|P) = « for v & %,: Simply note that

1

2

(cf. [7]. The existence and characterization of the specific entropy follows from
[17]. Moreover, for each ¢ > 0 and v € %, we have

1 1
Hy(v[P) = Hy(vIP) = [—E"[wf] + 5 log

(1.3) h(+|P) = h(v|P*) - §<w(2)>,, — $(e),
where
1
$(e) = —5 (Zw)df(_mw]dlog(sg(x) +1) dx

(cf. [17]), but this implies the lower semicontinuity of h(-|P) on each %] and
concludes the proof. O

Our main result in this section is the following weak large deviation
principle.
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THEOREM 1.4. For each closed F ¢ #5(Q) and L € 7+,
1
limsup ——log P(Ry € FN %) < — inf h(:|P),
m sup = log P(Ry L) < - inf h(IP)
and, for each open G € #5(Q),

1
h}{rn_)lgfm log P(Ry € G) > —igfh('lP).

Proor. We will only give a sketch of the proof of the lower bound, since
the argument is identical to the one used by Donsker and Varadhan in [11]; see
also [4]. We need to show that, for any v € T such that h(v|P) < o,

1
(1.5) liminf ——log P(Ry € G) > —h(»|P).
Actually it is enough to consider an open convex T and v € .Z5(Q) of the form
n n
v= ) pv', wherevie £E(Q)Nn ¥, and ¥ p, =1,
i=1 i=1

for some L € Z* (cf. [7]). Let Z(V) be the set of finite partitions of V into
disjoint cubes {V',...,V"}. Choose a partition {V,...,V"} € #(V) such that
[V = p, and set

. k .
Vi = {keZd: N eV‘}.

Next, define the measure v™¥) € .Z(Q),

n+1
N) _ i
v = l_[lvi,&,
i=

with V#*! = Z? \ V and v"*! = P. Then by the ergodic theorem and the
convexity of I' we have

(1.6) Al,im vVWRyeT) =1.
Repeating the argument of Kiinsch in [17], we see that
n
Hy(v™IP) < ¥ Hy(v'IP) + C(n) - LN971,
i=1

where N; = p;N and C(n) € (0,») is some constant depending on n; there-
fore,

1 id .
(1.7) limsup —Hy(vMP) < Y p;h(»|P) = h(v|P).
Now |Vyl i=1

Now (1.6) together with (1.7) implies (1.5) (cf. [7]).
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The proof of the upper bound is more delicate and uses exphcltly the set
#;.Fix L€ 7" and set I, =T N %7, for some closed T’ c #5(Q). Next, for
¢ > 0 define PN¢ € .#,(Q):

PN,e dw 2 1
“Fday = () = o] - K0 R0 7.

where
(1.8) Zg = EP[exp[— %IVNI( w2(0),RN(w)>” = det(eGy + Iy) V%,

where G, and I, are the restrictions of G and the identity, respectively, to
the box Vy. Then

1
(1.9) Alrl_l'flw A log Z§; = ¢(¢)
[cf. (1.3)].
The covariance operator GN'¢ of P™:¢ can be written as
'\N,e — _ _ "
(1.10) G (I T2 N) nZO (Q :-:INQ) ,
that is, killing occurs only in V. Using (1.9), we get
limsup —— log P(Ry €1I})
N-ox |VN|
1.11 < limsu log EP™* ‘RyeT
( ) N_)wp |VN| g |:FN,£ N L]
eL
< — + ¢(e) + limsup — log PV ¢(Ry €T}).
2 N-ow |VN|
We will show that
1
(1.12) limsup — log PY¥¢(Ry € I}) < —inf h(-[P?).
N-ow I Nl FL

Combining this with (1.3) and (1.11), we get

lim sup —

eL
log P(Ry €T;) < — — inf h(-|P);
N oo IVNl g ( N L) 2 T, (l)

as ¢ > 0 is arbitrary, the upper bound follows.
Let M € Z™ be fixed. We may assume that
T, S (R™) = A (Qy).
Let d,, be the Prohorov metric on .#,(Q,,), which is dominated by the total
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variation norm. If 0 < 7 < 1, consider

RN,‘r =

Z aokwN )

IVN,‘rI kEVN,,,.
where

V.. = ([*N,(1 - 7)N] n 2)°.
Given a > 0, we can choose 7 > 0 and N large enough such that

dy(Ry,Ry ;) <a.

Let FL denote the closed a-neighborhood of I';. If N is large enough, then
Ry, is %y, ,<measurable. Let ¢y = (dP™ eleN )/ (dP°| By, ). Then for
any 1 <p <®,g=p/(p -1,

lim sup —— log PV'¢(Ry € T})

N-oow |VN|

< limsu

1
— lim su
=P NP |VN|

1
+ —limsu

——log PV¢(Ry , € TF)
(1.13)
log E™'[$§]

—— log PE(RN IS Ff").
We first claim that

(1.14) lim sup —

log E** =0.

Let H and K be the covariance matrices G° and G'¢, respectively, restricted
to Vy . 2. From (1.1) and (1.10), it easily follows that

(1.15) sup |H(i,k) — K(i,k)| = O(e N,

i,keVy,
where C = c(g,7) > 0, for ¢,7 > 0. Thus
EP'(¢2) = det(H'K)"*det[ p(H 'K - T') + T']"%,
where I' = I, . Using (1.15), one gets
lim E7[4§] = 1,

which is much more than what is needed for (1.14).
Next, using the upper bound in the N¢LDP for R, under P¢, we see that
1 1
— lim sup —
q

1
log P¢(R, € T??) < — —inf h( - |P?).
N oo |VN| g ( N L ) q I‘fa ( )

Since a and p > 1 are arbitrary, we get (1.12). O
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REMARK 1.16. The restriction of h(-|P) to J%; is not artificial, but neces-
sary—namely, the specific entropy is not lower semicontinuous on the whole
of .#5(Q): Choose {¢,: n € Z*} c LAV) such that ¢, converges in L'(V) to
¢ with ||l 2v) = « and set

v = fV%n(x)dx’ Y= fv7¢(x) dx.

Then y" converges weakly to y but h(y"|P) =0, n € Z*, and h(y|P) = x,
Also we do not have exponential tightness at the volume order |Vy|. As we will
see in Section 3, exponential tightness holds at the capacity order N?~2. More
precisely, for each L > o2,

1
Al,i_)mWIOgP(RN & ji/L) = —

where A, is the first eigenvalue of K.

We conclude this section with an application of Theorem 1.4 in the setting
of microcanonical distributions. Let S%(w) = (0%0), R y(w)) be the empirical
second moment of the box V.

PROPOSITION 1.17. Let 0 < s2 < o2, Then with respect to weak convergence
on #(Q),

: : . 2 _ L2 — pe&
lim lim P(-[[8} - s?| <8) = P,

where £* > 0 is chosen such that

8(x) o _ .

EP"[02(0)] = G**(0,0) = Wf(_mw]dm

Proor. From (1.9) we know that the law of S% under P satisfies a weak
large deviation principle with rate function J: [0, ©) — [0, «],

J(s?) sup = 59* = #(0)], 57 < [0.0%),
S = e>
0’ 32 (S [0’2,00).

The supremum over ¢ > 0 is obtained at £* such that

2 _og(e*) = _8®)
(1.18) s2= —2¢/(e*) = (2w)df(_mﬂd£*§(x) " lc(x.

In order to show the above convergence, we simply have to verify that, for each
s2 € (0,02, P is the unique solution of the variational problem

inf{h(vIP): v € #5(Q) with E*[w?*(0)] = s?} = J(s?).
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However, this follows from (1.3) and the fact that h(v|P¢) = 0 if and only if
v=~P: O

Proposition 1.17 will not give the microcanonical distribution for an s2 > 2.
This will be answered in the next section.

2. Capacity entropy and the lower bound. In this section we prove
the existence and give a characterization of the capacity entropy. We also give
a proof of the lower bound for the critical large deviations.

Our analysis is based on the exact asymptotic behavior of the covariances Q.
Let g: R? \ {0} be the Green function of the diffusion associated with 1A , [cf.
(0.6)]. Define the integral operator Ky: LXV) — L%(V),

Kyo(x) = [g(x =9)$(»)dy, x€V.

Ky is a compact, positive define operator. Welet {A,, A\, > A,,;,,n € Z*} c R*
and {e,, n € Z*} c LAV) denote the corresponding positive eigenvalues and
eigenfunctions. Let &,: LAV) - [0, ],

o

1
Fo(#) = T —(b,e k.

n=1"n

The following gives an alternative expression for &%,.

LEmMa 2.1. For each ¢ € L3(V),
&y(¢) = sup{<f, ¢dv — 3{f, Ky [)v: f € LA(V)}
inf{%ll IVhIAHsz(Rd): he H(RY),h=¢a.e.on V}.

In particular, &,(1;,) = cap (V).

Proor. The first equality is a trivial consequence of the spectral decompo-
sition theorem. Set

Ev(d) = inf{%”|Vh|A”2L2(Rd)2 h € H(R?),h = ¢ a.e.on V}.
Assume that fv(¢>) < o, If Q is an open domain in R%, and fe HYQ), we
write
1fla0= [IVfIAdx.
Q

Let V = int(V). Evidently, for any f € L%V) and any h € H'(R?),
(fyh) — 3, Kf) < 3llAllare,

and so &y (o) soéBV(dﬂ. We prove the other direction.

Let ¢ € H(V). We choose a sequence ¢, € C*(V) which satisfies ¢, —
#lla,v — 0 (see [1], Theorem 3.18). We first restrict ¢, to a smaller cube
C,=1[8,,1—5,]% and then take the harmonic extension of this restriction to
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4 which is the unique function ¢, € Cy(R?) satisfying A i, = 0 outside C,
and ¢, = ¢, on C,. By choosing 8, \s 0 appropriately, we may assume that
lp,, — ¥,lla v — 0. We now approx1mate ¥, by functions 7, € C5(R?) which
agree with ¢, outside V and satisfy |7, — ¢,lla,v = 0. Then we put f,=Ar,,
which is 0 outside V. Therefore,

Furtudv = 5 Fus Ky £0v = s ) = 5 Fos Kf) = $llmalla, v

Furthermore,

[{furd — 10v] =[{Var,, Va(d — 7 | < lI7,lla,mellp — 7, ll 4,2 = O,

for n — «. Therefore, we get

lim sup{f,, #>v — 5{f,, Ky f,>v > limsup 2l 1%, re,

n—o n—o

that is,
&y(¢) = limsup &Iz, |15 me.

n—o

By the Calderon extension theorem (see [1], Theorem 4.32), there exists a
continuous extension operator A: H 1(V) -» HYR?). Then

hn =7, + A((d’ - Tn)l‘})
is an extension of ¢ which satisfies

Ik, lla re <t lla,re + Cllp — 7,lla,v.
Therefore

Ey(¢) = limsupllh,llare > £(). o

n—o

The following lemma will play an important role in our proofs.

LEMMA 2.2. Let ¢ € C(V;R) and set ¢(k) = ¢(k/N), k € Vy. Then

1
(2-3) All,iinm]_v—drz<¢N,GN¢N>VN= <¢,KV¢>V-

Let ¢ € CHV;R) and let G§' be the inverse of the matrix Gy. Then
1
(24) hmw N2 (n, Gy'ONIvy = Ev(d).
In particular, if y*¥ denotes the Gaussian field on R~ with
ytN k . * d
E"w,] = dy(k) = ¢ N/ COVy‘bN(wk’wj') = G(k,j), k,jez°,

then

1 1
(2.5) lim = Hy (y*IP) = S &y(4).
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Proor. In view of Spitzer’s result (0.5), we see that, for each M > 1,

1
dim Nz (bn: Gy dNDv,

1
dim WW’N, N 2GyoéN)y,

1 k k j j
N-oow N2d k,jeVy, k—jl>M N N N N
= <¢’KV¢>V'

This shows (2.3). Next, take any A € HY(R?) such that 2~ = ¢ on V and write
hy = h(-/N). Then

{on:Gr'dNIvy = 2SUP{<¢N, vy — 3, Gx[ovy: fE Lz(VN)}
= 2sup{Chy, 22 — 5¢f, Gf)ze: f € L*(Vy))
< 2sup((hy, f)ze = 5(f,Gf)ze: f € L*(2%)
— (hy, Gy )ge = HIVoh e,
where

Vohn2(k) = ¥ QG,Kk)(hy() — hy(k))".

jez?

Thus, using the mean value theorem, we get

1 1 1
lim sup T—2<¢N’GKII¢N>VN < — limsup <|VQhN|2>Zd = ”2"“ |VR|a "Ilsz'

N-oow N 2 N-oow Nd—2

On the other hand, for any f € CY(V;R),

1 1 1 1
S G = 2 7wy = 5 rasa (oo G Fow

thus, in view of (2.3),
1 1
llllvn_)lgfm<¢N,G1?I1¢N>VN 2 2(< fod)v— §< f va>V)-
Now (2.4) follows from Lemma 2.1 and the fact that
&y(¢) = 2sup{(f, ddv — 3 f, Ky fiv: f€ CH(V;R)},

since e, € C(V;R), n € Z* (cf. [22]). Finally, since y*~ and Py, are both
Gaussian with the same covariance G,

HN(Y¢N|P) = %<¢N7G;J1¢N>VN
and we get (2.5) by (2.4). O
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As we saw in the previous section, the specific entropy vanishes on &5(Q).
We will prove that a relative entropy H y(y|P) of y € $5(Q) with respect to P
on the box Vy has a growth of the capacity order N -2 33 N — . More
precisely, define the capacity entropy c(:|P): .£(Q) — [0, «],

1
(26) C(le) = l\lJlEloo W‘_—Z-HN(le)

Then we have the following.

TusoreM 2.7. The capacity entropy is well defined on .#5(Y) and satisfies

il
ewlP) = | T3 @YDy v = [ v dx € B%(Q),

®, v & 65(Q).
ProOF. Set

1 1
c(v|P) = hr}\l;ljgp W‘_—Z—HN(le), c(v|P) = h,{,n_,lgffv—d——ZHN(VlP)‘

Then, in view of Proposition 1.2, ¢(v|P) = &»|P) = « for v ¢ $5(Q). Also as a
direct consequence of Lemma 2.2,

m2
(YnlP) = E(ynlP) = - capa(V),  ¥m € GE(Q),

since & (p) = m? capy(V) for ¢ = mly,. Next let y = [y74,)dx € ¢5(Q).
Since

Hy(7IP) < [ Hy(vyolP) dx = 417 Hy(7iP),
we see that

llpll?
. % capa(V).

Take a finite partition {V,...,V"} € &(V). Then

c(yIP) <

T . 1
v = YV, where y' = — | Y X,
igl |V '[V" b(x)

and therefore

n

(2.8) c(yIP) = ¥ e(yiIP)VY

i=1
(cf. [7], Exercise 4.4.41). Let

d(Ym) vy
fm,N= (Ym)v,

o dyl 1
d fi= ¥ o= — dx.
dPy, and i dPy, V¢ fvif¢(x)’N *
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Then, using Jensen’s inequality, we see that

Hy(y!IP) = E"'[log f] = E” [IV’I f 10g fyx), Ndx}

1
_ Ev‘[——¢2(x)<1,G;vl1>VN+ ¢(x)<1,G;,1w>VN] dx
vV Jy 2

e A

Since lim 5 _, .(1/N?72)}1,Gy'1)v, = cap (V) (cf. Lemma 2.2), we get

c(yIP) = ”¢2“VcapA(V) cap,(V) Z IV'If f {¢(x) — $(5))" dxdy.

Now the result follows from this, (2.8) and

inf{l v [ f (¢(x) — () dxdy: (V!,...,V"} € W(V)} =
¢ L*V). O
Our next step will be the proof of the lower bound.
THEOREM 2.9. Let T be an open set of #3(Q). Then
liminf% log P(RyeTl) > — illlfﬁ('IP),

N>
where

€(v|P) = inf{%epv(qﬁ): ¢ L*>(V),v= ny¢(x) dx}.
Moreover €(-|P) has compact level sets in #(Q).

Proor. The last statement follows from

gl
€(y|P) =
(vIP) = 5 N
In order to show the lower bound it is enough to prove that
1
hmmf NI log P(Ryerl) > — —cfv(t//)

for each ¢ € LZ(V) such that y = [yy,,,dx €. We may assume that
&y () < » and, using the eigenfunction expansion of ¢, choose for each ¢ > 0
a ¢ € CYV;R) such that

Y = fVVaS(x) deel and &y(4) < &y(¥) +e.
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Let y*~ be the Gaussian field on R"¥ as in Lemma 2.2. We will show that
(2.10) lim y*¥(Ry €T) = 1.
N-oow
This, together with (2.5), implies that
1 1 1
liminf 7= log P(Ry €T) 2 = 5&y(4) 2 — 58y (¥) — ¢

(cf. Lemma 5.4.21 of [7]), and concludes the proof. Equation (2.10) would be
trivial for simple functions of the form

. .
¢ (x) = Y m(i)lyi(x), forsome{V! ... ,V"} e P(V).
i=1
However, in this case &%(¢') = . For glven 8 > 0 choose a simple function ¢’
such that

lim sup ——
N-oow |VN| ke

Z |y (k) — dy(k)| < 3.

If d; denotes the Wasserstein metric on .#Z(R"2), then, for each w, o' € Q,

[Vl
dL(RN(w)’RN(w’)) = IVN| kZ oy — 0

Also, since
Y*(Ry() €T) = y*VRy (- + ¢y — ) €T),
we see that we can choose § > 0 small enough that
y*"(Ry €T) 2 y"Ry "),
for some open I" containing y' = [y v, dx; therefore,

liminf y*¥(Ry € T') > liminf y*¥(Ry € ") = 1. -
N-oo N-oo
Let vy € 5(Q). Then there exists a unique p € .#Z|(R) such that

(2.11) v = [ Ymo(dm).

If F,: R - [0, 1] denotes the distribution function of p: F(#) = p((2, ©)), then
any ¢ € LA(V) such that y = [y y,,, dx must satisfy

(2.12) H{x e V: d(x) > t}| =F(t), teR.

In general it is quite difficult to find the minimizing ¢ in Theorem 2.9 and to
evaluate €(y|P). For certain distributions concentrated on the positive (or
negative) half-line, this problem can be explicitly solved via the rearrangement
theorem (cf. [7], Section 4.3). More precisely, we assume that p € .Z((0,»))
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with

d
(2.138) % F,(t) <0, fort e supp(p) \ {0}.

Moreover, we suppose that p({0}) > 0 is large enough that

1/d
o (5]

Ka

cxefy-3)

(2.14) B >

where 1=(,...,1), BO,r)={y € R%: |yl <r}, xgz= B0, =42/
I'(d/2 +1)and A = 1/|A|"%; here A is the d X d matrix of the covariances
of Q [cf. (0.4)].

PROPOSITION 2.15. Let v € 85(Q) be of the form (2.11), where p satisfies
(2.13) and (2.14), and set ¢: R — [0, ),

F7Y(t), te(0,F,(0)),
0, t & (0, F,(0)).

Then
A |1/ddz 2/d

1
(216) €(vIP) = 7| Vbl all 72y = 1

FO) o_o,am
fop Y274 (y)* dy,
with
1 - £ . Z—I/Z |d Rd
¢ x + '2_ = ¢(Kd | X ), X € .
PrOOF. Let ¢(x + 1) = ¢(AV%(x + 1)) = $(xy - x|%), x € R% Then (2.14)

implies that ¢ has compact support in V, respectively, ¢ in A~'/2V. Next let
us verify (2.12). If ¢ < 0, then

(€ V:g(x) > 1) = VI = 1 = F(1).
For ¢ > 0 we have

[{x € Vi ¢(x) > t}| =| A/%{x € A-/2V: y(x) > t}]
= {x EK_I/Z(V— %) Ixid < _l%(dt_)}‘ = F,(2).

The rearrangement theorem also shows that such a ¢ minimizes

| 19 1all3eme = 1AM IVolallzome, = A1 1991 | Zame),
and (2.16) follows from this and substitution. O
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From (2.16) we get the following information abouf the tail of p.
COROLLARY 2.17. Let v = [py,p(dm) € B5(Q) satisfy €(y|P) < . Then
F,(¢) =o(t724/€@"9) g5t —>w

and
1—F(t) =o(tI 7>/ ®) ast > —oo;
in particular, {Im|’), < » for 2 <p < 2d/(d — 2).
ExampLE 2.18. Let 0 <p <1 be such that B(0,(p/k,)*/%) c A~VAV —

1); for example, in the isotropic case, where A = I, one needs p < k,;/2%. Next
let 0 <q <p and M > 0 be given and set

8(p,q, M) = {y = [7mp(dm): supp(p) < [0,),

p({0)) = 1 - p, p([M,)) > q}.

Thus K(p, q, M) defines the set of mixtures concentrated on the positive
half-line, with (1 — p)-mass at 0 and at least g-mass on [M, ). Then the
preceding considerations show that

|AIY%d(d — 2)k¥/¢ - M2

1
inf{€(yIP): vy € R(p,q, M)} = Z" V||| 7 2y =

4(qq4 — pa) ’
where g, = ¢*/¢7%, p, = p?/¢"! and
M, kg 1A V%% < q,
1 M — _ _
¢(x M E) “lga-p ' [Klzi/d—l|A_l/2x|2 d _Pd]’ q <Ky A% <p,
d ~ Pag
0, Ky A" 2%)% > p.

"Thus the corresponding minimizing p has a distribution of the form

1, t <0,
¢ ~d/(d-2) .
F(t) = (-M(qd*pd)erd) , 0<t<M,
0, " t>M. O

We conclude this section with the proof of Theorem 0.13.

Proor oF THEOREM 0.13. Assuming Tzlnéorem 0.10, we simply have to show
that y™ = [y y,xq, dx, respectively, Y = [y y,# dx, are solutions of the
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variational problems
inf{€(yIP): vy € £5(Q),(wy)y = m}
= inf{%éjv(ﬁb): ¢ €L*(V),{(¢,1y)v= m}
and '
inf{€(yIP): vy € £5(Q),(w}), = s?}
— inf{3&,(4): ¢ € LA(V), ($,$)v = % — o7},

where in both cases ¥ = [y, dx. We can reformulate these two problems in
terms of the eigenfunctions:

(o] 1~ (o]
inf{ Y —<¢, e,y <¢,en>v<1v,en>v=m}
-1

n=1 An n
and
. > 1 g & )
inf{ Y —(d,e, v Y, (d,e,)v=5%—a?}.
n=1 )‘n n=1
Since A; > A,, n > 2, we see immediately that the solution to the second

problem is simply ¢*. As for the first problem, Lagrange multipliers yield
(d,e)v=n A1y, e,)v

for some constant u € R. However, this means that ¢ = u - K, 1,, and shows
the result. O

3. Large deviation principles for X, and Y,,. In this section we prove
the large deviation principle for X, and Y,,, and we prove the upper bound in
Theorem 0.10.

If r> 0, let .#.(V) be the set of signed measures on V with total variation
less than or equal to r. We equip .#,.(V) with the weak topology with which it
becomes a compact space.

The set of all signed measures

A(V) = U L(V)

is equipped with the inductive topology: A set A < .Z(V) is open if and only if
A N .#,(V)is open in .#,(V). The empirical measure

1
Xy(w) = Wl > Ox/N " @k
| N| keVy
is an .#(V)-valued random variable. Let J: .#(V) — [0, »],
J(v) =3 sup {{v, FHv—3{f, Kyvfov});

fec)

J is convex and lower semicontinuous on .#(V).
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Levma 3.1. (@) If v(dx) = ¢(x) dx, ¢ € HA(V), then J(v) = 1&,(¢), and
J(v) = = otherwise.
(b) J has compact level sets.

Proor. (b) follows from (a) and from the fact that the embedding ¢ €
HYV) > ¢ € LV) is compact and the mapping ¢ € LY(V) — #(x)dx €
.#(V) is continuous. Therefore, we prove (a). If v(dx) = ¢(x)dx, ¢ € HX(V),
then

sup (v, fov—3{F, Kyfivi= sup {{&, fov—3{f, Kvfiv};

fecv) feLXV)

so J(v) = 3&,(¢) follows from Lemma 2.1. It remains to show that J(v) =
otherwise.

For any compact subset W € R? and finite signed measure r with topologi-
cal support in W, we put

JW(T) = % sup {<T’ f> - %< f7 KWf>W}
feCc(w)

Then, for supp(r) c W, c W,
JWI(T) = JWZ(T)'

Let h be a smooth probability density with support in the unit ball and
h(x)=¢%h(x/e). If V'=[-1,2] and x € R?, |x| <1, then J,(6,v)=
Jy(v), where 6,v(A) = v(A — x). Using the convexity of ., we get for |¢| < 1

Jy(v,) = JV,(fdxhs(x)Hxv) < [dxh (x)dy(8,v) = J(v).

v, has a smooth density ¢.(x) = [h (x — y)v(dy) with support in the interior
of V' if |¢] < 1, and therefore
Jy(v,) = 3V 4.
The right-hand side converges to « for ¢ — 0 if v does not have a density in
HYV). O
ProposiTION 3.2. Xy satisfies an N~ 2-LDP with rate function J.

Proor. The lower bound follows from Section 2 and Lemma 3.1. To prove
exponential tightness, it suffices to show that

3.3 lim limsup N~¢*2 log P(Xy & #,) = —.
N r

r—o N-oowx
To prove this, we use Lemma-A.1 from the Appendix. Using
“sup Y G(i,j) = O(N?), tr(Gy) = N%?,  tr(G}) = O(N+Y),
ieVyjevy

where Gy is the restriction of G to Vy, and (A.3) from the Appendix, we see
that, for each a €(0,1/A;), where A, is the maximal eigenvalue of the
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covariance operator Ky,

o2a

a<w2(0),RN))] <5

d-2

1
lim sup —5—; log E* [exp(
N-oox N

This shows that

1 1
lim sup —— log P(Xy € #,) < lim sup —5— log P ;| > 1
Nooo Nd 2 ( N ) N oo Nd -2 |VN|J€ZVN

< limsup —— Nz log P({w?(0),Ry) > r?)
N-oow
r? - g2

< -
22,

The upper bound for Proposition 8.2 is now straightforward: If fe C(V),
then { f,X ) is Gaussian with limiting variance

I\lji_rflmNd‘zEPRf,XN)z] = (f, Kyfiv

[cf. (23.)]. Therefore,

Jlim N7¢*% log EP|exp(N2(f,X\))] = 3{f, Kv[)v.

Together with (3.3), this proves the proposition in the standard way. O

Let .#,(V X R) be the set of probability measures on VX R. If ¢ is a

continuous function, defined on V or on R, we write
l6(x) = &(3)|
up ————————.
x+y |x -Jy |
We use the following metric on #(V X R): If u, v € #£(V X R),
d(u,v) = sup{[<¢ ® ¥,v — w)|: ¢ € C(V), I$llzL < 1,
v e CR),lyllsr < 1};

d , metrizes the weak topology on .#,(V X R). This follows from the well-known
fact that the Wasserstein metric [i.e., where the supremum over ¢ ® ¢ is
replaced by the supremum over 7 € C(V X R) satisfying [|I7llz < 1] induces
the weak topology and the fact that the functions ¢ ® ¢ appearing above
separate .Z(V X R).

We define a continuous mapping ®: L(V) — .#,(V X R) by
' ®(¢)(dx,dt) = dx ® N(¢(x),0?)(dt),

where N(a, o?) is the the normal distribution on R with mean « € R and
variance o2 = G(0,0). It is obvious that @ is a one-to-one continuous map-
ping. We define J: .#,(V X R) — [0, «] as in (0.10).

lgllsr = llpllo +
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As the embedding H W) - L(V) is compact, it follows that J has compact
level sets and therefore is also lower semicontinuous. The main result of this
section is the following.

THEOREM 3.4. Yy(w) = [Vyl7'Z; oy, 8;,n ® 3, satisfies an N?~2-LDP with
rate function J.

The basic idea of the proof is a conditioning argument, conditioning the field
(wy) <72 on the subfield (w;;); 7« for suitable L € N. As the fields are
Gaussian, we can decompose the field as
(3.5) w; =y + &, iez?,
where ¢; = Ef[w;| %} ;4] and the field (y;); ¢ is independent of (w;;); c z¢.
Furthermore, ¢, has a linear representation,

(3.6) &= Zqi(k)ka'
k

The gq,(k) are expressible in terms of the Q-random walk on 7%, as explained in
the Appendix. If we denote by G% the covariance matrix of the (y,); < ze-field,
that is,

GL(i,j) = EP[yiyj]’
then we have
(3.7) Yqi(k)G(§, kL) = G(j, i) — G(i,J).
k

It is crucial that GZ(@,j) is rapidly decaying. More precisely, we have the
following.

LEMMA 3.8. There exist constants cq, ¢y > 0 such that, forall i,j € 7% and
LeN,

Gr(i,j) <c¢, exp( —cyli — j|/Ld/2)-
The proof will be given in the Appendix.

We let L depend on N: L = Ly = [log N] and define ¢y(k), ¢; and y; in
terms of this L. Let Zy: Q — #(V X R) be given by

1
Zy(w) = Al ¥ 8;,n ® N(¢5(w),0?).

ieWy
The proof of Theorem 3.4 will then be a direct consequence of the following
two propositions:

PROPOSITION 3.9. Z, satisfies an N%~2-LDP with rate function .

ProprosITION 3.10. For any a > 0, 6§ > 0 and any bounded Lipschitz-con-
tinuous ¢: V- R and : R - R, we have

I\llim N=*%log P(|[<¢p ® ¢, Yy — Zy)| 2 a) = —oo.
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The proof of the first proposition is given in three lemmas. Let & be a
smooth symmetric probability density on R? with support in the unit ball, and
for ¢ > 0 set h,(x) =& %h(x/e). If we.#(V), let u, € C(V) be given by
w(x) = [yh (x — y)u(dy). We then define ,: A (V) —» £ (V X R) by

D (1) = P(u,).

®_ is a continuous mapping and therefore the contraction principle applies,
yielding Lemma 3.11.

LEmma 3.11. For each & >0, ®.(Xy) satisfies an N? 2LDP with rate
function

J(v) =inf{d(n): D.(p) = v}.
The crucial step in the proof of Proposition 3.9 is Lemma 3.12.

LeEmMA 3.12. For any a > 0,
lim limsup N™¢*2 log P(d 4 (®,(Xy),Zy) 2 a) = —

N0 N oo

Proor. For any measurable : R — R, satisfying [l¢(l. < 1,
¥(x) = [#(0)N(x,0%)(dy)

satisfies ¢l < 1 and ||§'|l. < V2 / V7 o. Using this, one easily obtains

g—d-1
(3.13)  dy(P.(Xy),2Zy) < lVNl{Z‘:]InJH 7 Xellw,.l},
js jeWy

where

1
mi(w) = §(0) =

keV;
For any a,¢ > 0,
e—d-1
(3.14) limsupN~¢*2 log P NV Y ol > a) = —oo;
Noow N jevy

this follows from Lemma A.1 [see the proof of (3.3)]. We also use this lemma to
treat the first summand on the right-hand side of (3.13).

Let I'5(i,j) = EF[nn;], i,j € Vy. It is easy to prove
(3.15) tr((l’lf,) ) = O(N¢*Y).
[Actually, for d > 5, it is only O(N?), but this is of no importance.] We claim
that

(3.16) Alri_r?wIVNI_l tr(T) = 0,
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for all £ > 0, and
(3.17) lim limsupN~2 sup ) |5 (i,§)| = 0.

eNn0 N oo i j
Equations (3.15)-(3.17) and Lemma A.1 imply that
lim lim supN~=%¢+2 log P Y In§l = — o
N0 N IVNI jeVy

for all a > 0. This, together with (3.13) and (3.14), proves Lemma 3.12. It
remains to prove (3.16) and (3.17). We can estimate tr(Iy) = I;c v, var(n})

quite crudely:
Kk 2
[l - ) )]

The second summand on the right-hand side is O(N~¢*2) for any fixed ¢ > 0,
uniformly in j € Vy, and, by Lemma A.14,
Jlim (V™" ¥ EP[¢]] = lim Vi~ X {G(.3) - G*G.0)) =

jeVy jieVy

var(nj) < 2E*[¢}] + 2E*

This proves (3.16). To prove (3.17), we write
. 1 j
=& — —— h
G4 Wk %o
Using the independence of the ¢- and y-fields, we get
Iy =I5 + Ay,
where T is the covariance matrix of the é-field and A% that of
1 j k
=Yk ( d

N N)yk: JjEVy.

|VN| keVy
Using the fast decay of the covariances of the y-field (cf. Lemma 3.8), we get

limsupN~° sup ), A%(i,j) =0
N-—w» i jeVy

for every 6 > 0, ¢ > 0.
Let

Gf(i,j) EEP[§I§J] = G(i’j) - GL(i’j)

Using GG,j) = gl — §) + O(li —jI7¢*"), i # j [cf. (0.7)] and Lemma 3.8, and
putting

R(i,j) = G¢G,5) —8(i-J),
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we get

|R(1,§)| < c,li —jI7%"" + exp

L |
*(log N)*2 |’

Therefore, the contribution R(i,j) to ZjevNIflf,(i,j)I is again O(N°*1) for any
8, & > 0; it remains to prove

(8.18) lim limsupN~2sup ). |a&(i,j)| =0,

N0 N i jeVy
where

ay(i,j) =2(i-J) -2 X p.(i,k)E(k - j)
keVy

+ X p(ik)p(G,e)g(k — e)
e, keVy
with p,(i,j) = [Vyl "'h /N — j/N) and gG — j) = gG — D) PP,
An easy approximation leads to
lim N?sup T ag(i.d))]

i jevy
= sup [ dylg(x —y) 2k, *g(x —y) +h b xg(x =)l

The right-hand side converges to 0 as ¢ \v 0 by Lebesgue dominated conver-
gence. This proves (3.18) and, therefore, Lemma 3.12. O

Lemma 3.12, together with Lemma 3.11, proves that Z, satisfies an
N<~2.LDP with rate function

(3.19) J(w) = limionfjs(v).
EN

vou

Proposition 3.9 therefore follows from the next lemma.

LeMmA 3.20.
J=d.

Proor. If J(») < », then v = ®(f) for some f € HYV) and d,(fdx) > v
as & \v 0. Therefore J(v) < J(»).

To prove the converse, assume /(v) < «, and let u®, & > 0, be elements in
AV) with J(u®) - J@), ®,(ule)) = v, as e \ 0. As J(u®) < », we have
uw(dx) = £F©(x) dx, with @ € H(V); in fact, f© is relatively compact in
LY(V), as & \ 0. Passing to a subsequernce ¢, — 0, we may assume that ) is
convergent as ¢ \ 0, f© — f, say. Then, however, also u> — f and therefore

®(f) = v. Therefore, J(v) = :&,(f) < lim, ., J(u®) = J(»). O
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The proof of Theorem 3.4 is completed with the following.

Proor oF ProrosiTION 3.10. First note that

= o3 [ve - (o (& o)

of3)

<¢ ®(//’YN > |VNl !

jew
We write w; = £; + y; and, using the independence of the ¢- and y-fields, we
get
PV~ & ¢( )[«/f(w,) - (¥, N(&,0%))]| = “)
ieWw
< supP|IVyl | T ¢( )03, +33) = (o, W (83, 0))| = a)»
jewy '

where the supremum is taken over b = (b)) € RV, For any b € R,
|4, N(b,0%) = (¢, N(b,¥*))| < lo = ¥l Ill5z.
Putting 7} = E*[y}], we have, because L —  as N — o,

jeWy

(cf. Lemma A.14). So we see that it suffices to prove that, uniformly in b,

Zo{ 4 )lvte, =30 - (0. w01 2 o

< exp(—cN?7?%),

for large enough N.
By the inequality (A.5),

exp(+|VN| by ¢>( )[«/f(b +5) = <¢,N(bj,ff)>]”

jeVy

1
P|Vyl™

(3.21)

EF

sexp(Ilqbllmlll,bIIBLIVNI_1 )y EP[yjyk])-

i keVy

Using this, together with Lemma 3.8, (3.21) follows in a standard way. O
As a direct consequence of Theorem 3.4 we get the following.

PROOF OF THE UPPER BOUN.D oF THEOREM 0.10. In view of Theorem 1.4, all
we need to show is that, for each y € 85(Q) and M € 7™,

1
(3.22) lim lim sup N2 log P(Ry € By(y,¢)) < —€(vIP),

N0 N
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where B, (y, &) € #,(Q,,) is the Prohorov ball of radius £ > 0 around vy.
Assume y = [y7,,,dx for some ¢ € L2(V). Then there is an & > 0 such that

{Ry € By(y,8)} c {LN € B;(LN(¢(x), o?) dx,s’)}

= {(YN, - ® 1)y e Bl(fN(¢(x),02) dx,gl)}’
v
and (3.22) follows from the contraction principle and Theorem 3.4. O

4. Surface entropy. In this section we introduce a surface entropy for
discontinuous profiles and derive the corresponding N?!-large deviation
principle.

In Section 2 we have seen that for smooth profiles ¢ € C(V;R), the relative
entropy H(y*¥|P) grows at a capacity order N?~2. We will show that for
discontinuous ¢, the entropy grows at a surface order N?~!. More precisely,
take ¢ of the form

n
(4.1) d(x) = ¥ ¢i(x)lyi(x), x€V,
i=1
where {(V1,...,V"}is a partition of V into open sets V' with piecewise smooth

boundary and ¢' € CL(V’; R). Next let
W, =VinVi, i+j

and let o; ; be the surface measure on W, ;. For x € W, ;, let n; ;(x) € Sd-1

be the outer normal vector to dV; at x and set
Vi,j¢>(x) = }Lr%¢(x + tni,j(x)) - ¢(x — tni’j(x)).
Finally, write
Iyle= ¥ (k-y) Q(k,0), yeR?

kez?

PROPOSITION 4.2. Take ¢ as in (4.1) and let y*~ be the Gaussian field as
in Lemma 2.2. Then

1 1
(43) 1\1;3100 NTTIHN(‘Y(leP) = E/((ﬁ),
u)here

A@) =1L [ [V 6| ni (2) o, (7).
YW

i#j Wi,y
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Proor. In view of Lemma 2.2, we have

1 1 k| . 1
Nd IHN(‘Y NIP) - J_VﬂkeVNZ,leVNd)(N)GN (k,l)d)(ﬁ)

1
= ]—Vﬂ< b s GN'ON) vy
The summations over the exterior boundary terms are of the order N¢~2 and

can be neglected. We may therefore assume that ¢ has compact support in V
and get

]37131 d— 1<¢N7GN ¢N>VN

1
= Al,linw N1 §<|VQ¢N|2>Z"

H< oolx) - ¢(x]]
v 2 eenfo( ) -of3)

where Vi, = {k € Z: k/N € V'}. Using the smoothness of ¢’ inside V¢, we
see that

im o T QM (e (k)—¢(%))2=o,

keVi leVi

and (4.3) follows from

lim o= £ ZQ(“‘)(( |- “’(%))2

(4.4) ke Vi leVy
= [, %@ [ni j(2) g0, (), fori =,
LJ

We will prove (4.4) assuming that d = 3 and Q is the transition function of the
simple random walk [cf. (0.1)]. The general case can be shown along the same
lines.

Since ¢>‘ and ¢’ are continuous on V' and V/, we can take ¢'(x) = f! and
¢’(x) =f’ to be constant. Using the smoothness of the boundaries and a
suitable triangularization, we may assume that W, ;,; is the triangle spanned
between a = (a,0,0), b = (0,5,0) and ¢ = (0,0, ¢):

W, j={x=(x,%,%) =e;a+e,b+e5c,0<e,<1,6 +ey+e5=1}.
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In this case the normal vector is constant with

n; ;= (be,ac, ab) /Vb%? + a%c® + a?b?.

If [W; ;| denotes the surface of W, ; we get

1 i12
|fl - fjl “ni,j”QWVi,jl

fW | v, i#(x) |2” n; ;(x) ”Qo'i,j(dx)

lac|  |abl

_l' i 1‘2 |bc| 4+ — 4+ —
=5 f( 2 2

Next, let W, (u) be the orthogonal projections of W, ; onto the planes
{x,=0}, u= 1 2,3. Let R(i, j; N) be the number of bonds kDcVixVv
cut by the plane N W, ;. Then, up to a boundary effect of order N, we have

R(i,j; N) = N2(|W; ;(1)| +|W, ;(2)| +|W; ;(3)]) + O(N)

o[ lbcl lacl  labl
Mz vz ) o

However, this implies

im — T T Qk, 1)( (k) "’(%))

N-= N? keVi1eVy
1
= llm YV'E—R(Z _] N)lfl
1 {|bc| lac| Iabl -
6( 2 + 2 )|f i

and shows (4.4). O

Note that we could consider the lower semicontinuous extension of
~# on L%V). In particular, if ¢ € L%V) is such that &() < », then we
can find discontinuous ¢,, n € Z*, converging to ¢ such that
) < liminf, ,, A(¢,) = 0.

Also, it is interesting to compare the solutions of the following variational
problems. Let d = 3 and let Q be the transition matrix of the simple random
walk [cf. (0.1)]. We want to look at profiles which minimize the surface,
respectively, the capacity, rate function for a distribution concentrated on two
points 0 and M > 0. Of course in the second case we have to consider a
stitable approximation. More precisely, for 6 > 0 and 0 < p < %, set

Ay(p) = (¢ € L2(V): |{x: ¢(x) = 0}| = 1 - p,
[(x: 6(x) = M}| =p - 8).
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Then the solution of A(¢*) = inf{.(¢): ¢ € Ay(p)} is achieved at

(0, p'%)°, 0<p<(2)
¢*(x) =M - Ly, (x), whereV(p) ={(0,p?)" x (0,1), (2)°<p<31,
(0,p) X (0,1)°, i<p<i,

whereas if we are looking at &(y3) = inf{&(¢): ¢ € A;(p)}, 6 > 0, and then
let 6 \v 0, we get, by Example 2.16,

y*(x) = ’5121}) yF(x) =M - 1y(x), where W= {x eV:Ix® < ﬂ}

K3

This shows that approximate and exact canonical distributions can be quite
different! -

In view of Lemma 4.2 it is clear that we can get a lower bound of the large
deviations of X, for discontinuous profiles ¢ at the order N¢~!. However,
with respect to the topology introduced in Section 3, any open set containing ¢
will also contain a smooth ¢ for which &() < « and #(i) = 0. So if we want
to deal effectively with discontinuous profiles as before, we must find the
suitable topology. This problem is not trivial. We illustrate this phenomenon
only in the case where one looks for discontinuities of the one-dimensional
profile obtained from arithmetic means along hyperplanes orthogonal to the
first of the coordinate axes. Even that restricted situation requires some care.
We hope that the approach will be extendable to cope with more general
surface phenomena.

To keep things as simple as possible, we also restrict ourselves to the simple
random walk [cf. (0.1)].

We introduce Wy: Q — .#([0, 1]) defined by

N
Wy(w) = Z VjSN(w)aj/N’
=1

J

where

ViSy=8y;—Snj-1 Sn,j(w) =Nt )y O, jay - s Ja)?

with Sy o(w) = 0and VD =[1, Nl¥"1 nz¢ L,

Let E, be the set of finite linear combinations of Dirac measures in [0, 1].
We introduce a Skorohod-type metric d, on E,: If «, B € E,,, d (a, B) is the
infimum over numbers & > 0. such that there exists a continuous, strictly
inereasing function A: [0, 1] — [0, 1], satisfying A(0) = 0, A(1) = 1, max |A(¢) —
t| < e and

sup |a({A71(2)}) = B({t})] <&.

tef0,1]
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We define a rate function I, on E,,

It is obvious that I, is lower semicontinuous (but not continuous) on E.
Let (E, d,) be the completion of (E,, d), which is a Polish space, and let I:
E — [0, »] be defined by

I(e) = lim Io(B).
BeE,

LemMaA 4.5. I has compact level sets.

Proor. It suffices to prove that any sequence (a,),en, @, € Ey, satisfying
p = sup Iy(a,) <,

n

has a Cauchy subsequence. If a, = L/¥Px{"8,, then
max |x{”| < cy/p .
13

Fix k£ € N and let
1
A (k) = {j: 1<j<m(n),|x™| > Z}‘

Obviously |A ()| < cpk?.

We may pass to a subsequence of (n) along which |A,(%)| is constant (k
fixed). We denote this subsequence again by (n). We may identify all the
A, (k): A (k) = A(k) and, passing again to a subsequence, we may assume that
the £ and x{™, i € A(k), are convergent. Therefore, we get

limsup d (a,,a,) < 7.
n,m-—o k
As k is arbitrary, we may pass to a Cauchy subsequence. O
Our main result in this section is the following theorem.

THEOREM 4.6. W)y satisfies an N%~'-LDP with rate function I.
Let a = X}_x,6,, € Eg with 0 = &, <§; < -~ <§,<é,.1=1andset
Vi= (& 1,6) X (0,1) P cRY,  i=1,...,n.
The profile ¢ € L%(V) corresponding to « is then given by
d(x) = ¥ filyi(x), where f'= Y x;,i=1,...,n,
5 i=1 ’ j=1
and
1 n
= = — ,2
A($) = 1(a) = 77 Lot

i=1
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From this and (4.3) it is not too difficult to show the lower bound in Theorem
4.6 by the usual entropy argument. The upper bound will be proved in several
steps. We first need estimates of the covariances of the V;Sy.

LEMMA 4.7.
EP[V,-SN \/ SN] = 2d6i,jN—dJr1 + O(N~“%log N).
The proof will be given in the Appendix.

Let us first prove exponential tightness of Wy. For two sequences p = (p,)
and 1 = (I,) of positive real numbers satisfying p, N 0 and [, » », let

Ko(p,l) = n G(pnrln)r
where
G(p,!l) = {in‘o‘gi €Ey; Y Ixl< l}.
i ;i =p

The same kind of argument as that used in Lemma 4.5 proves the following.
LemMA 4.8. The closure K of K, is compact.

We now want to show that, for appropriately chosen sequences, P(Wy & K)
is small; this is more precisely stated as follows.

LemMA 4.9. let p = (p,) be given by p, =n"'* and 10 = () by I =
r2n?, r € N. Then

lim limsup N~¢** log P(Wy & K(p,177)) = —.
r->® Noo
Proor.
P(Wy ¢ K(p,17)) < ¥ P(Wy & G(m™V4, r’m?)).
m=1
If p>0, let vy(p) be the number of elements i €{1,..., N} for which
|VZSN| > p. Then
P(Wy & G(m~%,r?m?))

2rm

< Y P(Wy&G(m V4 r’m?), vy(m™"*) = k)
k=1

+ Lgrm <P (va(m™1*) > 2rm)

> rm3/4)
J

- rm

rm
2 Vi, Sy
-1

=A(r,m,N) + Ay(r,m,N),

for some subset {i,,...,i,,} of {1,..., N}.
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By Lemma 4.7 we have
Ay(r,m,N) < c;rmN exp(—c,r’m?N4-1).

From this, we easily get
lim limsup N™%*!log Y A(r,m,N) = —.
r7® Now m=1

Again by Lemma 4.7, we get

rm
var( Y VijSN) <c(rmN~%*! + r?m?N~%log N).

Jj=1
Therefore,

rml/2Nd-1
Ay(r,m,N) <c¢,N™ exp'( )

T2 N log N
Note that, for rm < N,
rml/2Nd-1 c rml/2Nd-1

1+ rmN~'log N =721+ rmN~!log N

rmlog N — ¢

if N is larger than some fixed N,,. Therefore,

¢y rml/2Nd-1 )

A2(r’ m, N) = cll(rmsN)exp(——z— 1+ rmN-1 logN

This immediately gives

[N/r]
lim limsup N™%*1log ) Ay(r,m,N)=—=
ro® N m=1

and proves the lemma. O

PROOF OF THE UPPER BOUND IN THEOREM 4.6. We introduce an approximat-
ing rate function: If § > 0, a = ¥ jxjﬁgj € E,, let

1
Ia) = X =
4d i:lxy>8
I, is lower semicontinuous and is extended to a lower semicontinuous function
on E. Obviously, I; < I and it is straightforward that, for any compact set K,

4.10 lim inf I;(a) = inf I(a).
(4.10) i ot s(a) = inf I(a)

sting this and Lemma 4.9, we see that it suffices to prove that, for any
8, A > 0and a € E, we can find ¢ > 0 such that

(4.11) , limsup N~?*!log P(Wy € B, (a,¢)) < —I;(a) +A.
N>
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Let a =1X7_,x;6;, I(a) = k. Let M =[4dk/52] + 1. Then there is a

subset of indices {j;,...,j} < {1,...,n} with L <M, Ix;| >6 and
1/4d)xE x2 > k. We choose now ¢ = &(8, k,A) such that, for any B
B,(a,e) N E'0 of the form B = ZJ 1Y;0,, there exist L indices with
(1/4d)2, i =k — A. Therefore, :

P(Wy € B,(a,¢)) < (Z\]\JI)J max P(4d Y (v, SN) >k —A

and (4.11) follows from Lemma 4.7, and the upper bound is proved. O

APPENDIX

In this Appendix we prove a few useful covariance inequalities.
We start with a quite general inequality:

LEmMA A.1. Let P € .#(R"™) be the centered Gaussian law with covariance

matrix T € R**", Then, fort > 0,
[ ; ( t . )
< exp| — — min

8 T’ tr(T?%)

where T = max, % _4IT;,1 and tr( ) denotes the trace of a matrix.

(A.2) P( f: x?>tr(T) +¢
i=1

ProoF. Let A; > A, > -+ > A, >0 be the eigenvalues of I'. Note that
AM<TIIf0<a<1/A then

1 n n _ 1 n
log E'P[exp(—z—a Yy sz” =log [] (1 -a))) 2 - —§ Z log(1 — aA))

j=1

a n 1 n S

(A.3) < §j§1AJ + 5 Z % (ar;) (ary)
1

< —tr(F)
a2
+—§—tr(l’2) 5 (—log(1l — axr,) —aAy).
1
Therefore, if a), < 1,
” a a
Pl Y x?>tr(T) + x| = [5 Yo ] > exp[g(tr(f‘) + t)])
j-1 -

a a? )
‘ < exp —§t+?tr(l") .
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If tr(I'?) < tA,, then

at a? t 1 t t
assil/g)\l(? - —2—tr(F2)) > o 8—)‘21tr(I‘2) > 3 z oF
If tr(I'®) > ¢A,, then ¢/(2tr(T'?)) < 1/(2A,); therefore,
sup (a_t - f—tr(l“z)) = —L ]
a<1/(21;) 2 2 8tr(I'?)

Let -Z(R™) be the set of Lipschitz continuous f: R* — R and write

——-—-———I f(I:k) _—;:Iy)l tx; =y, for j +# k}.

6,(f) = sup{
Let P € #(R") be as in Lemma A.1.

LEmMA A4. For any f € Z(R"), we have

(A-5) EPlexp[ - ()]l < exp[% i ﬁk(f)ll"k,ﬂ@(f)}-

k,j=1

Proor. Using a suitable approximation, we may assume that fe
CY(R™; R). In this case,

d
—f

axy,

6,(f) =

o

Let A =T2 and set
Y(x) =f(A x), x € R™.

Let # be the Wiener measure on C([0,1];R”) and let {P,, ¢t > 0} be the
corresponding semigroup. Then by It6’s formula we have

V(W) = B7[W(W)] + ['VP,_¥(W,) - dW,

1
= E7[¥(W)] + [P (V¥)(W,) - dW,.
Therefore,

1= &7 || [P, (VW) - aW, = 4 [P (T at|

> E’/[exp[qr(wl) - E7[¥(W,)] - %folPl_t(IV\lflz)(W,) dt”.
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This yields
EP[exp| f — EP[f]]] = E” [exp|¥(W,) — E” [¥(Wy)]]]

7 sup Vf(x) - T Vf(x)

xeR”

< exp[% sup IV\I’IZ(x)] = exp

xeR™

n
)»
e

i 1

< exp[% 8;( I ;18,( f)] a

We write P;, i € Z¢9, for the law of a discrete-time random walk {n,: ¢ € N}
(N, =N U {0}) on Z¢ with transition probabilities @(i,j) starting in i. Let
7, = inf{t € Ng: 1, € LZ%. Obviously, 7, <® Pjas. for all i € z% If i,
k € 79, we define

q:(k) = Pi(nm = kL)'
Clearly, q;,(k) = 8, , fori € z7°.

LEMMA A.6.

7,—1
Y (kGG kL) = G(i,j) - GE(1,§), where G (i,j) = [Ei[ 1(,,,=j,].

kez? t=0

Proor.

Y ¢;(k)GG,kL) = ) Pi(n,, = kL)[EkL[ élmﬁn]

kez4 kez?

- =E tZ 1(m=j)] = G(1,j) - G*(i,j). O
=,

Note that GX(i,j) = 0 if i, j € LZ?. It is essential that GZ(i, j) is rapidly
decaying in |i — j|; this is more precisely stated as follows.

LEMMA A.7. There exist ¢, cy > 0 such that
GE(i,5) < ¢, exp(—c,li — jI/L4/2),
forall i,j € 7%, L € N.

Proor. Ifj € 7%, we write 7; for the first entrance time into j:

TL'_].

= Py(; < TL)EJ'[ Eo Lon,—5

T,—1

Y Ligegy 75 <71
t=q

< G(0,0)Py(7; <17p,) < G((‘),O)[umi(fj <T)+Py(7, > T)],

G:(i,j) = E;
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for any T > 0. We claim that
(A.8) Pi(r, > T) < exp(—cT/L%),
(A.9) Pi(r; < T) < ¢y exp(—c,li — jI°/T),

the last estimate for 7' > [i — jl.
The desired estimate for Lemma A.7 follows from these estimates by
choosing T = |i — jIL4/2.

ProoFr oF (A.8). Instead of investigating 7, for m,, we can change to a
random walk n{¥ on the finite torus {0,..., L — 1}¢ (identifying L with 0)
and investigate the first entrance time into 0. It is well known that, for s > L2
the distribution of n{X is close to the uniform distribution if Q is aperiodic;
the periodic case needs a slight modification, which we omit. More precisely,
there exists ¢ > 0 such that, for s > L?

(A.10) Py(n{ = 0) = Py(n, € LZ%) = cL™9.

This follows, for example, immediately from a local central limit theorem with
error rate (see [26], Section 26):

1
P. N —d/2 4 1—-1/2 _ AN — i
(A1) i(n, =) = (2ms) A" Fexp| — -G — 1, AT — 1))

+ 0(8_(d+1)/2),

where A is the d X d covariance matrix of the distribution Q [cf. (0.4)]. For
small s, s < 2L2, we have an estimate from below:

(A.12) Pi(n, € LZ?) = ¢ min(s~%/%,1).

Equation (A.10) is fairly immediate from (A.11), too.
Using (A.10) and (A.12) (and d > 3), we get

2L? ’ 2L
cL™4*2 < Y Py(n, €L7% < E| X 1,e129
t=L2 t=0
2L2
Z l(n,e Lz%
t=0

< Py(7, < 2L%)E, < ¢Py(ry, < 2L?),

uniformly in i, that is, _
Py(ry, < 2L%) > cL™¢*2.

By the usual renewal argument,
Py(r;, > 2kL?) < (1 — cL™4*2)" < exp(—ckL™+?),
which proves (A.8). O
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Proor oF (A.9).

Py(r; <T) < Po( sup In,l > li —jl) <2 sup Po(n,l = 3li —jl),
0<s<T 0<s<T

by a maximal inequality. The right-hand side is now estimated by the usual
large deviation estimates for sums of ii.d. vectors, which lead to (A.6) for
li — jl > T. This proves our lemma. O

We return to the original setting of the paper; in particular, P € .£5(Q) is
the centered Gaussian field with covariances G. Let

&(w)= ¥ qj(k)wy; and y;(w) =w; - §(w), i€ VAS

kez¢

LeEmMMA A.13. (a) EP[yiyj] = GL3,j).
(b) The fields (y;); < z7¢ and (£;); < z¢ are independent.

Proor. For (b), it suffices to prove that y; and £, ; are uncorrelated for
any i,k € 7%

Ef[yi6] = GG, KL) - ¥ ¢;(GGL. kL)

jeze
=G(i,kL) - G(i,kL) + G*(iL,kL)
=0,
by using Lemma A.6. Part (a) is immediate, too. O

LEMMa A.14. Let L = L(N) = log N and o2 = G(0, 0). Then
lim N°¢ ¥ o - /GL(i,i)| =0 and lim N°¢ T EP[¢2] = 0.
—o i

Noo ieVy eVy

Proor. Simply note that, by Lemma A.6,
EP[&] = G(i,i) - G*(i,i) = Ei[ D 1(m=i)];
t=1y,

this shows the lemma since L(N) > was N - . O

Let Q be the transition matrix of the simple random walk [cf. (0.1)]. In this
case (cf. [19]), page 32), (0.7) can actually be sharpened to

(A.15) G(i,0) = g(i) + O(lil™%)..
For j=1,...,N,let '
VjSN(“’) = SN;j(w) - SN,j—l(w)’

— n—d+1
Sy,j(0) =N ) O, v ra)
Ggsevvs J)eEVFD

with Sy o(w) = 0 and V*~P =[1, N]*~ ' n z¢- 1,
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LeEMMA A.16.
EP[V,Sy V;Sy] = 2d8; ;N ¢** + O(N~?log N).

Proor.

EP[ViSN VjSN] = N~2d+2 Z [2'y(i -L,k-1)—-y(i-j+1Lk-1
k,1eV§E—D

_7(l _j - 1’k - l)]’
where, for r € Z, s € 7%~ ! and (r,s) € Z¢, we write
y(r,s) = G((r,s),(0,0)).
For (r,s) € Z X 7%~1, we have
2y(r,8) —y(r+1,8) —y(r—1,8) = Ay_1y(7,8) + 2d 5, 4, 0,0y
where
Ay yy(r,s) = Z (Y(r’s+l) —Y(r’s))'

I: 1-s|=1
Therefore,
EP[VISN VJSN] = 2d6i’jN_d+1
(A.17) + Y N-wvEIp, 4(i—j,k-1).
k,leV{E-b

Let p(k) = (A;_;1ly@-uv(k). Then p(k) = 0 except when k belongs either to
3VED, the boundary of V™D, or to & V™Y, the boundary of the comple-
ment V(d D Fixing 1 and performlng the summatlon over k, we get, by (A.15),

Y Aplpy(i-j k-1 Y p(k)y(i-j, k-1
keVISJd‘” kEZd_l

cEp(k)[l(z k) - (J,1)

(A.18) 7" a1

¥ 0(>:|p<k>|[l<i,k) - G0 A1),

Set VIV = 9iVE D U VD, The O( ) summand is easy to handle. A
stra.lghtforward ca.lculatlon using ¥, ¢ z¢-1(1 A |n|” d) < oo, yields

(A.19) Y X (1AlGk - GD]TY) = 0N,

1eVED peaVE—b .

uniformly in i, j.

As to the first summand, we must have a closer look at p(k). If k € ¢
then p(Kk) is minus the number of neighbors of k which do not belong to Vy
and, for k € @ V@D, vice versa with the other sign. Performing for each

V(d D
(d y
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k' € 0'V{#D the summation over k being neighbbrs of k' in the first sum-
mand on the right-hand side of (A.18), this partial sum can be bounded by

ell(i, k) - (G, DI A1)
Using
Y (1A lnI"*") = 0(log N),

nezd-1
Inl<N

we easily get

Y IG.K) - (DI A L= 0(N?"?log N).
K edv§—b

Combining with (A.17)-(A.19), this proves the lemma. O
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