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LARGE DEVIATIONS AND MAXIMUM ENTROPY PRINCIPLE
FOR INTERACTING RANDOM FIELDS ON 7¢

By Hans-Orro GEORGIT!
University of Munich

We present a new approach to the principle of large deviations for the
empirical field of a Gibbsian random field on the integer lattice Z¢. This
approach has two main features. First, we can replace the traditional weak
topology by the finer topology of convergence of cylinder probabilities, and
thus obtain estimates which are finer and more widely applicable. Second,
we obtain as an immediate consequence a limit theorem for conditional
distributions under conditions on the empirical field, the limits being those
predicted by the maximum entropy principle. This result implies a general
version of the equivalence of Gibbs ensembles, stating that every micro-
canonical limiting state is a grand canonical equilibrium state. We also
prove a converse to the last statement, and discuss some applications.

0. Introduction. As is well known, the study of the asymptotic probabili-
ties of large fluctuations of time averages or space averages away from the
mean is based on two fundamental principles: the principle of large deviations,
and the maximum entropy principle. The former provides the exact rate of
exponential decay of the fluctuation probabilities, whereas the latter predicts
the limiting conditional distribution under the condition that the fluctuations
are large. It is obvious that these principles are intimately related. In this
paper, we investigate these principles in the case of interacting random fields
on the integer lattice 7.

The setup is the following. First, we let (E, &) be any measurable space. We
shall assume throughout that (E, &) is standard Borel, but we shall avoid
making any explicit topological assumptions on E. So we do not assume that
E is Polish. Next we let S = Z¢ be the d-dimensional integer lattice and
(Q, F) = (E, &)S the associated product space. In lattice models of statistical
mechanics, (E, &) is called the state space or single spin space and (2, .%) the
configuration space. We let &= (), .%) denote the set of all probability
measures on (Q, %) and we write &, for the set of all u € & which are
invariant under the shift-group ® = (6,), . 5 acting on ) via

(0.1) (Oiw)j=wj+i, i,jesawz(wk)keSEQ'

An element of & is often called a random field on Z¢. We shall be concerned
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with spatial averages

(0.2) IAI”Y Y foo,

ieA

of bounded local functions f: ) —» R over cubes A C S in the limit as |[A| — .
Here, by a cube (with side length p) we mean any set A of the form

d
(0.3) A=Sn [l[m,,m, +p—1]

k-1
with m = (m,,...,m, ) € S and p € N, and the notation |A| — » means that

A runs through an arbitrary sequence of cubes whose cardinalities tend to
infinity. Moreover, the term ‘local function” is used synonymously with
“cylinder function.” That is, a function f on  is called local if, for some
finite A C S, f is measurable relative to the o-algebra %, generated by the
projection X,: Q - E*, X (0) = 0w, = (w,);c . We let # denote the set of all
bounded local functions f: Q - R.

As is well known, the collective asymptotic behaviour of all spatial averages
(0.2) with f & _# can be described conveniently by a single quantity, the
periodic empirical field. For a given cube A and a configuration w € E?, this
is defined by

(0.4) pi = IAIT" Y 8y yrer.
ieA

Here 6, stands for the Dirac measure at {, and P € Q is the periodic
continuation of w. That is, if A is given by (0.3) then (w®), = w; whenever
JE€S and i € A are such that j, =i, mod p for all 1 <% <d. The main
advantage of this periodization is that p{ € &, forall w € E*. As v — 0P is
measurable, p,: @ = p{ is a measurable function from E* to &, provided we
equip &, (as we shall always do) with the evaluation o-algebra generated by
the mappings v - v(A), A € . Occasionally, it will be convenient to identify
pn With the Z,-measurable function w — p&x“) on Q. Accordingly, for each
f € -2 we may think of the function

pafro = pR(f) =ffde’

either as a function on E? or as a function on Q. As a drawback of the
periodization, p, f is in general different from the average (0.2), but it is well
known and easy to see that the difference is negligible in the limit |A| — o.

ReEmaARK 0.1. For each fe .2,

paf—IAITT X feo6,] = 0.

(0.5) lim
| > ieA

|A

Here and below, || - || stands for the sup norm.
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Combining the above remark with the multidimensional ergodic theorem
[which can be found in Section 14.A of Georgii (1988), e.g.], we obtain the
following information on the asymptotic behaviour of the periodic empirical
field: For each ergodic u € &y and f € .7, we have

(0.6) IAllilllmpAf= ffdu in £Y(p),
and the convergence holds w-almost surely whenever A runs through an
increasing sequence of cubes.

We shall be concerned with large deviations from this ergodic behaviour. We
start by recalling some terminology. Let (u,) be a sequence of probability
measures u, on (E, &)" indexed by a sequence of cubes A with |A| - . (u,)
is said to satisfy a level-3 large deviation principle with rate function I:
Pg — [0, ] if, for any measurable C c &,

(0.7) lim sup|A| ™! log u(p, € C) < —inf I(T)
|Al > -

and

(0.8) llinllianAI'l log uy(py € C) = —inf I(C?),
Al >

where C, respectively, C°, is the closure, respectively, the interior, of C
relative to a suitable topology on . But which topology is suitable? The
traditional approach is to assume that E is Polish so that ) is also Polish, and
to equip Py with the topology of weak convergence. However, the ergodic
theorem (0.6) suggests that the most natural topology on & in this context is
the topology 7, defined below. This topology has two advantages:

(i) 7, does not depend on any topology on E, and

(ii) 7 is finer than the weak topology (relative to any Polish topology on E
generating &) and thus brings the right-hand sides of (0.7) and (0.8) closer
together. In fact, we define 7, on & rather than only &,

DeFINITION 0.2. The topology 7, of local convergence is the smallest
topology on & relative to which all evaluation maps

vou(f) = ffdv, fe2,
on & are continuous.

Clearly, 7, can be characterized as the smallest topology on & such that
v — v(A) is continuous for each cylinder event A € .%. Equivalently, a net
(v');cp in P converges to some v € & relative to 7 if and only if, for all
finite A c S, the marginal distributions v} = v'+ X;! on (E, &)* converge to
vy in the so-called 7-fopology on P(E*, &*) which is generated by the
mappings a — a(g), g: E* - R bounded and measurable. In other words, 7
is the natural level-3 analogue of the r-topology on P(E, &); the latter is
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frequently considered in the study of large deviations on level 2 concerning the
empirical distribution (3.8) [cf., e.g., Groeneboom, Oosterhoff and Ruymgaart
(1979), Csiszar (1984) and Bolthausen (1987)]. In the setting of continuous
time processes, the analogue of 7 appears in Deuschel and Stroock (1989)
under the name “projective limit strong topology.”

Throughout this article we shall assume that & is equipped with the
topology 7. P, as a closed subset of &, will always be equipped with the
relative topology. Our main objective is a proof of the large deviation principle
(0.7) and (0.8) for sequences (u,) which can be considered as perturbations of
a product measure sequence (A\*) with A € P(E, &). As we shall see, this
includes many, interesting cases with nontrivial interaction between the lattice
sites, such as the Gibbsian distributions. Although we are mainly interested in
these cases of interacting random fields, we shall first prove (an extended
version of) the large deviation principle (0.7) and (0.8) for the special case
when p, = A* for some A € P(E, &). In this case, the rate function I is
nothing other than (minus) the specific entropy. The lower bound (0.8) can be
obtained by a well-known and natural argument which is based on the
Shannon-McMillan-Breiman theorem. Our approach to the upper bound (0.7)
arose from an attempt at lifting the ideas of Csiszar (1984) for level-2 large
deviations to level 3. Here is an outline of our argument for the upper bound
(0.7) in the case u, = A*. We start from Csiszar’s basic identity

(0.9) IAI ™  log A (py € C) = —|AI 7Ty o5 A1).

Here I(-;-) stands for the relative entropy (also called I-divergence or
Kullback-Leibler information), and w, = A*(:|p, € C) is the associated con-
ditional probability distribution. Then we partition the lattice S into disjoint
A-blocks, that is, translates of A, and consider the periodic measure on (Q, %)
relative to which the configurations in distinct A-blocks are independent with
identical distribution w, . The spatial average (i,  of this periodic measure
belongs to &, and its negative specific entropy I(ii, () is given by

(0.10) I(finc) = A1 T (s 03 4).

By definition of u, . we have u, ¢ps = fua c(dw)pg € coC, the closed convex
hull of C. Moreover, the sequences (&, ¢) and (u, cpy) in P have the same
set of accumulation points. Since the level sets of I are 7_-compact, this
immediately shows that

(0.11) liminfI(4, ¢) = infI(coC).
|A] >

This completes the proof of (0.7) in the case when C is convex. In the general
case, we use the fact that I is affine (this is a payoff of working on level 3) to
conclude that inf I(co C) = inf I(C), whence (0.7) follows from (0.9) to (0.11).

A main advantage of the preceding argument is that it reveals the intimate
connection between the principle of large deviations and the maximum entropy
principle. Indeed, suppose C is such that the right-hand sides of (0.7) and (0.8)
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coincide and are finite. It then follows from (0.9) and (0.10) that
@ + accfiy ¢ C {ve€coC: I(v) = infI(C)},
T ,

where acc, , 5 stands for the set of all accumulation points when A runs
through any sequence of cubes which eventually contain each finite subset of
S. But accy ;5 fiy, ¢ = accy, 5 ma, ¢, Wwhence

(0.12) @ + ﬁ:%/\"(-lp,\ €C) c{recoC: I(v) = infI(C)).

This is a version of the maximum entropy principle. When applied to specific
sets C, it yields a result expressing the equivalence of Gibbs ensembles.

The paper is organized as follows. Section 1 starts with some preliminaries
on specific entropy and then contains a statement of main results, namely: a
level-3 large deviation principle for independent and, as a consequence, for
interacting random fields, and a maximum entropy principle for interacting
random fields. In Section 2, these results are applied to obtain a uniform large
deviation principle for Gibbs distributions, and a result on the accumulation
points of microcanonical Gibbs distributions showing that, in the infinite
volume limit, every microcanonical equilibrium state is a grand canonical
Gibbs measure. In a sense, the converse is also true. This result can be found
in Section 3, together with a discussion of some special cases. Most proofs are
deferred to Section 4.

1. Main results.

1.1. Preliminaries. Throughout the paper we let A be a fixed probability
measure on a standard Borel space (E,&). The set & of all probability
measures on the product space (1, &) = (E, &)% is equipped with the topol-
ogy 7, of local convergence and the evaluation o-algebra generated by the
mappings v = v(f), f: O — R bounded and Smeasurable; &, is endowed
with the induced topology and o-algebra. [Here and below, we write v( f) for
the integral of f relative to v.] Also, we let ./ denote the set of all finite
nonempty subsets of S, and we write ./, for the set of all cubes.

Next we introduce the specific entropy. For any two probability measures
a, B on the same measurable space we let

(1.1) I(a; ) = {a(log f), if a < B with density f,

, otherwise,
denote the relative entropy of « relative to B. As is well known, the integral
above is always well defined and nonnegative. The negative specific entropy or
mean entropy of a measure v € & is then defined by

(1.2) I(v) = Lim |Al7'(vy;0%),
|A] >

where v, = v o X;! stands for the marginal distribution of v on (E, £)*. [Note
that the A-dependence of I(v) is suppressed in our notation.] The existence of
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the limit follows from the multidimensional Shannon—Pérez theorem; compare
Georgii (1988), Theorem (15.12). The following properties of I are well known:

(1.3) Forallv € &y, I(v)= sup|Al™'I(ry;A");
AeS

(1.4) I is lower semicontinuous, and its level sets {I <c}, ¢ > 0,
are compact and sequentially compact; and

(1.5) I is an affine function .

For a proof we refer to Georgii (1988), Propositions (15.16), (15.14) and (4.15).
Properties (1.4) and (1.5) will be fundamental for our results. [The compact-
ness of the level sets depends on our standard-Borel assumption on (E, &).]

We shall also deal with arbitrary functionals F: &g —] — o, ] and their
semicontinuous regularizations defined by

(1.6) Fee(v) = (llim sup F(U), Fi.(v) = ll]im inf F(U).
lv v

Here v € &g, limy; |, means that the limit is taken along the net of all open
neighbourhoods U of v, and F(U) is the range of F on U. It is easily checked
that F''* is the lowest upper semicontinuous majorant and F, the largest
lower semicontinuous minorant of F.

1.2. Statement of results. The first result is a large deviation principle for
the periodic empirical fields p, defined in (0.4). In fact, in place of the events
{p, € C} which appear in (0.6) and (0.7) we shall more generally look at
integrals of functionals F(p,) of p,, or of functions which are asymptotically
close to such functions. So Theorem 1.2 should be regarded as a version of the
Laplace approximation method. To simplify its statement we introduce the
following concept.

DeriNITION 1.1. An asymptotic empirical functional {(F,), F} is a family
(F\)h <., of measurable functions Fy: E* —] — o, ] indexed by the set . of
cubes, together with a functional F: &g —] — «, «] which is bounded from
below and such that

(1.7) Jim [IAI7F, = F(py)| = 0.

Here we use the convention ®© — « = 0; that is, (1.7) means implicitly that
{F, = ©} = {F(p,) = »} eventually.

THEOREM 1.2. For any asymptotic empirical functional {(F,), F},

(1.8) limsup|A| ™! log A*(e Fr) < —inf[I + F,.]
|A| >

and

(1.9) liminf|A| ™! log A*(e~Fr) > —inf[I + F»=].

|A| >
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The proof of the upper bound (1.8) will be given in subsection 4.1. The lower
bound (1.9) follows by a standard argument set out by Orey (1986), Féllmer
(1988) and Follmer and Orey (1988). This argument is based on the multidi-
mensional version of McMillan’s theorem [cf. Nguyen and Zessin (1979) or
Tempelman (1984)] and carries over without change to our setting.

It is easily shown by examples that the coincidence of the right-hand sides
of (1.8) and (1.9) is by no means necessary for the existence of the limit

lim |A]™" log AM(e 7).
|A| >

Nevertheless, this coincidence is a natural sufficient condition which holds
trivially when F is continuous, and this is the advantage of 7, over the
coarser weak topologies. On the other hand, using (1.5) and Proposition 19.3 of
Choquet (1969) one can easily show that the right-hand sides of (1.8) and (1.9)
also coincide when F is convex and the right-hand side of (1.9) is finite.

REMARK 1.3. Theorem 1.2 implies the large deviation principle (0.7) and
(0.8) in the case u, = A*. Indeed, let C c &, be measurable and define an
asymptotic empirical functional {(F}), F} by F(») =0 if v € C, F(v) = »
if v&C, and F, = |A|F(p,). Then \(e ™) =A*p, €C), F,,=0 on C
and = on P4\ C, F**=0 on C° and =» on Py \ C° and thereby
inf[I + F,, ] = inf I(C), inf[I + F**] = inf I(C®). Conversely, Theorem 1.2
can be deduced from (0.7) and (0.8) by means of a version of the well-known
Laplace-Varadhan method; compare Varadhan (1966, 1988). However, we
prefer to give a direct proof of Theorem 1.2 because this does not require any
additional effort and will also be useful for obtaining Theorem 1.6.

REMARK 1.4. Theorem 1.2 still holds under weaker conditions than (1.7).
Namely, it is sufficient to require that |[A|~ 1FA is eventually nearly sandwiched
between two values of F' in a prescribed neighbourhood of p,. To make this
precise we let % denote the system of all sets of the form

U={(n,v) ePx2: max lu(f;) = v(f;)l < 5}

withd>0,n>1and f,,...,f, € 2. Forp € & and U € % we write U(u)
for the w-section of U. Clearly, % is a uniformity base for 7, on &, and the
sets U(w) with U € % form a base of neighbourhoods of . We extend I to a
functional on & by setting I = » on P\ Fy. We also assume that the
functional F is defined on & (rather than only &) and define F'* and F,_
by means of neighbourhoods in & [rather than P, as in (1.6)]. [Note that P
is contained in the closure of &\ %,. The restrictions of the above regulariza-
tions to &, are thus, in general, different from the functions defined in (1.6).

To reobtain the situation of Theorem 1.2 we may set F = «, respectively,
F = inf F(Zg), on P\ P.]
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Suppose now (F,) is a family of measurable functions F,: E* -] — =, «]
such that, for each U € %,

(1.10) liminf inf [IAI"*Fy(w) — inf F(U(p2))] = o.
|[Al 50 weEN

Then the inequality (1.8) (with the new meaning of the right-hand side)
remains valid. Similarly, if

(1.11) limsup sup [IAI_lFA(a)) — sup F(U(pX))] <0,

Al 2w weE?

then (1.9) still holds. The simple proof of these claims is deferred to the end of
Subsection 4.1.

The reason for the interest in the above extension of Theorem 1.2 is that
the conditions (1.10) and (1.11) are stable under small perturbations of p,. For
example, consider

-1
Rlu\)ﬂ‘l = Al E 60;‘(“’"15\/\)’

ieA

the empirical .field of w € E* with boundary condition m € Q. Here
wng\a € ) is the configuration which equals w on A and  on S\ A. Remark
0.1 shows that conditions (1.10) and (1.11) remain unchanged if p? is replaced
by Ry, for arbitrary 7. In particular, (1.10) and (1.11) hold when F, =
|AIF(R, ), and the convergence is uniform in 7. The result above thus gives
us a large deviation principle for R, , under A* which is uniform in 7, and
therefore also a large deviation principle for the empirical field,

Re=IAI""Y6,,, weQ,
ieA '

under AS. Mutatis mutandis, this remark also applies to the corollaries to
Theorem 1.2.

Although Theorem 1.2 is only stated for product measures A%, it immedi-
ately implies a similar result for dependent random fields. This is one of the
basic extension principles of large deviation theory; see, for example, Theorem
I1.7.2. of Ellis (1985). For any asymptotic empirical functional {(F}), F} and
any A € ./ with AMF, < ») > 0 we set

(1.12) uf = M (e Py e PapA,
that is, uf is the probability measure on (E, £)* with a A*-density propor-

tional to e *». Thus uf has the form of a Gibbs distribution with “Hamilto-
nian”’ F,.

CoroLLARY 1.5. Let {(F}), F} and {(G,), G} be two asymptotic empirical
functionals. Suppose F is continuous and such that inf[I + F] < . Then uf
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is eventually well defined, and we have

lim sup|A| ™" log uf (e %) < —inf[IT + G,,]
|A| >

and
liminf|A| " log uf(e~%) > —inf[IF + Gv=],
|A| >
where the F-modified entropy functional I¥ is defined by I¥ = I + F — inf[I +

F). In particular, choosing {(G,), G} as in Remark 1.3 it follows that (uf)
satisfies a level-3 large deviation principle with rate function I¥.

Proor. Since F is continuous, F'* = F|_, = F and (F + G)"* = F' + G,
(F + G, = F + Gy,. Theorem 1.2 thus implies that
lim |Al" ' log A*(e ) = —inf[I + F] > —w.
|A| >
In particular, A*(e~f+) > 0 eventually, whence uf is eventually well defined.
As uf(e=%) = \M(eFr=Gn) /)A(e~F1), the result follows by applying Theorem
1.2 to the asymptotic empirical functional {(F, + G,), F + G}. O

As we have pointed out in the introduction, our proof of Theorem 1.2 yields
as a by-product a limit theorem for averaged or periodic distributions of
Gibbsian type. The limiting distributions are mixtures of random fields which
minimize the associated free energy. So this limit theorem can be viewed as a
“minimum free energy principle”’ or, in more conventional terms, a maximum
entropy principle. By abuse of notation, we write u£ for an arbitrary probabil-
ity measure on ({2, %) whose marginal distribution on (E, &)* coincides with
the Gibbs distribution (1.12). We also introduce the averaged Gibbs distribu-
tion
(1.13) AL = A7 Y pE o0,

i€A
We write A 1S to indicate that A runs through the directed set ./ of cubes
ordered by inclusion. (The more general case when A runs through the set of
all cubes in a halfspace or an octant only requires trivial modifications.)

THEOREM 1.6. Let {(F,), F} be an asymptotic empirical functional satisfy-
ing
(1.14) inf[I + F\,.] = inf[I + F**°] < .
Then, in the limit A1 S, the net (uk) admits at least one accumulation point

u € Py, and each such p has a representation u = [w(dv)v in terms of a
Borel probability measure w on the compact set

(1.15) MF = {v & Po: I(v) + Fyo(v) = inf[I + F]}.

In particular, if M¥ = {v*} then lim, , s uX = vF. Moreover, if each F, is a

function of p,, the same conclusions hold when (%) is replaced by (uf).
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The proof of Theorem 1.6 is postponed until subsection 4.2. There are
simple examples showing that the accumulation points of (&%) may form an
uncountable subset of coM ¥\ M¥, where co M stands for the closed convex
hull of M¥. It is also important to note that, in general, one cannot dispense
with the spatial averaging. That is, if the F,’s fail to share the A-periodicity of
the p,’s then (1) may admit a non-shift-invariant accumulation point, and
the conclusion of Theorem 1.6 fails. This follows from an example of Csiszar,
Cover and Choi (1987).

Some applications of Corollary 1.5 and Theorem 1.6 will be discussed in
Sections 2 and 3. We shall not, however, treat the straightforward application
to the so-called Curie-Weiss or mean-field models for which the rate function
I and the set M¥ can often be determined explicitly. We rather refer to Orey
(1988), Ellis (1985), Ellis and Newman (1978), Eisele and Ellis (1988), Ellis
and Wang (1990), Messer and Spohn (1982) and Ben Arous and Brunaud
(1990).

Finally, we note that the techniques of the present paper can also be applied
to systems of marked point particles in R?. This is done in Georgii and Zessin
(1993). This paper also shows that the preceding results still hold when the
concept of an asymptotic empirical functional is extended in a way which
allows for applications to certain systems with unbounded interaction.

2. Applications to Gibbs measures.

2.1. Large deviations for Gibbs measures. We start by recalling the defi-
nitions of Gibbs distributions and Gibbs measures relative to an interaction
potential. A (shift-invariant, absolutely summable) potential is a collection
® = (P,), - of functions &,: Q — R satisfying the following:

(P1) For all A € .-#, &, is F,-measurable.
(P2) Forall Ae #andi€ S, P, =P,00,.
(P3) 1@l = X 5 ollP4ll < 0.

The Hamiltonian for ® in a region A € . with “boundary condition” w € Q
is then given by

(2.1) HY ()= X Pp(l{os\a), (€EM
ANA+D

The Gibbs distribution vy in A € ./ with boundary condition w € Q rela-
tive to @ (and the a priori measure A) is defined as the probability measure on
(E, &)* with density

exp ~H ] /2
relative to A*. The normalizing constant
ZPe = AA(exp[—Hf’""])

is known as the partition function. Note that y>“ is equivalent to A*. Clearly,
the mapping y?: (0w, A) = v “(A) on Q X &% is a probability kernel from
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(Q, F5\ ) to (E, &)*. A probability measure p € & is called a Gibbs measure
for ® (and A) if, for each A € ., u admits y® as a regular conditional
marginal distribution on E* relative to %, ,. We write (@) for the set of all
Gibbs measures for @, and ZH(P) = ADP) N P, for the set of all shift-
invariant Gibbs measures. Physically speaking, #(®) is the set of all equilib-
rium states for a spin system with interaction ®. For a detailed account of the
theory of Gibbs measures we refer to Georgii (1988).

We now state a uniform large deviation principle for the distribution of the
periodic empirical field p, under y“. In the case when E is Polish (resp.,
finite) and % is equipped with the weak topology, this theorem was proved
by Comets (1986), Olla (1988) and Féllmer and Orey (1988). In the case of
finite range potentials, a completely different proof was recently given by
Deuschel, Stroock and Zessin (1991).

THEOREM 2.1. Let {(G,), G} be an asymptotic empirical functional and
(@M., a family of potentials such that limja|-=|®* — |l = 0 for some
potential ®. Then

lim sup|A| " log sup v (e~ %) < —inf[I® + (e
|A| > w€eE)

and
liminf|A| " log inf y2“(e=%) > —inf[I® + G*<].
Al —eo we
In the above, I®: Py — [0, ] is defined by
(2.2) I?(v) =I(v) + {v,®) + P(®), veE P,
where
{v,®) = V( Y |A|_1¢>A) = lim |A|_1VA(H1§D"”)
A>0 Al - e
and

P(®) = —inf[I + (- ,®)] = lim |A| "log Z2>*
|A| >

uniformly in w € Q. In particular, for each p € Z(P) the sequence (u,)
satisfies a level-3 large deviation principle with rate function I°®.

REMARK 2.2. (v,®) is called the specific (internal) energy and I(v) +
(v, ®) the specific free energy of v for ®. P(®) is known as the pressure or
specific free Gibbs energy. I®(v) turns out to be the specific relative entropy of
v relative to an arbitrary u € #(®), namely,

I°(v) = lim |AI7 (v, my).
|A| >
Thus I®(v) = 0 when v € Z,(®). A celebrated variational principle of Lanford

and Ruelle asserts that the converse is also true. Details can be found in
Georgii (1988), Chapter 15.
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Proor or THEOREM 2.1. Let us first look at the specific energy. Consider
the function fy, = T, /Al '®,. By (P1) and (P3), f, € .7, the | - |-closure of
-Z. The functional F: v — (v, ®) = v(f,;) is therefore continuous, Also, a
straightforward application of (P2) yields the estimate

sup |IAITTHE2(8,) — IAI7TY Y foo6,(¢)
w, (€N ieA

<8(A, ) =20 ¥ X 94,

i€A AS0 A\(A-i)#D
and (P3) implies that 8(A, ®) — 0 as |A| - «; see Georgii [(1988), page 320],
for more details. This shows that for each v € &,

(v, ) = IAllirgwlAl‘lvA(HA“”"’)

(2.3)

uniformly in w € Q. Next, we observe that for every family (0™®), . » in Q,

(2.4) lim [||AI7THHE " — (p,, @Y = 0.

|A| >
This follows from (2.3) as applied to ®* instead of ®, Remark 0.1 and the
obvious inequalities

(2.5) 8(A,®*) < 29* — Dy + (A, D), | for = Foll < lPA — @llo.

Equation (2.4) means that {(H? %oy (-, @)} is an asymptotic empirical func-
tional. Theorem 1.2 thus implies that
lim |[Al"'log Z2"«" = —inf[I + (-, ®)].
|A| > o
Finally, we have y2““"=puf when F, = H®““". The theorem therefore
follows from Corollary 1.5 by a suitable choice of (w*). O

2.2. Thermodynamic formalism: an application of the contraction principle.
In this section we will show how to apply the theorem above to the thermody-
namic formalism as set out by Lanford (1973). We begin by noting that the
space %, of all potentials [in the sense of (P1) to (P3)] is a Banach space with
norm || - [lo. Let V be an arbitrary closed subspace of %. Its topological dual
V* is equipped with the weak* topology and the evaluation o-algebra. [Recall
that these are the smallest topology, resp., o-algebra, on V* making the
evaluation maps V* 3 7 —» 7(¥) with ¥ € V continuous, resp., measurable.]

The well-known contraction principle of large deviation theory describes the
behaviour of the large deviation principle under a continuous mapping; see, for
example, Orey (1986) or Varadhan (1988). We shall apply the contraction
principle to the affine continuous mapping ¢y: P, — V* defined by

(2.6) ey(V)(P) = (v, V), veH, VeV
Thus ¢y (v) is the restriction of the specific energy functional (v, - ) on % to

V. Composing ¢y, with the periodic empirical field p, relative to a cube A we
obtain the random functional 7, y, = ¢y ° py: E* — V* in A. By definition, for
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each w € E® and ¥ € V we have

(2.7) v (W) =(py, V) = |AIT HY P (w),

where

(2.8) HY P (0) =2 Y Y%, (0™), oeE*
A i€l

is the Hamiltonian for ¥ in A with periodic boundary condition. In (2.8), the
sum over A contains precisely one translate of every set in .. Theorem 2.1
thus gives us the following uniform large deviation principle for the distribu-
tion of 7, ;, under Gibbs distributions.

CoROLLARY 2.3. Let V be a closed subspace of B, ® € B, (®1), . s Q
family in B, such that ||®* — ®|lp > 0 as |A| - ©, and K a measurable
subset of V*. Then

lim sup|A| ™" log sup y" (7, € K) < —inf JE(K)

|Al > w€eE)

and

liminf|A| 'log inf y2“ (7, y € K) > —inf J(K°),
|A] > we) ’

where the function Jy: V* — [0, ] is given by
Jo(r) = ianq’(¢‘71{T})

(2.9) = P(®) + inf [7(¥) + P(® + V)], 7 V™

(S
Jy is convex and lower semicontinuous with compact level sets, and its
effective domain {J¥ < =} coincides with

(2.10) Dy = {oy(v):v € Py, I(v) < }.

Proor. We only need to comment on (2.9). The basic observation is that
for each 7 € V*, ¥ € V and v € ¢y Y7},

(2.11) I1°(v) = I°*Y(v) + P(®) — P(® + ¥) — 7(F).

Since I®*¥ > 0, we immediately obtain an inequality for the quantities in

(2.9). The equality then follows from the Hahn-Banach theorem and Proposi-
tion (16.11) and Theorem (16.13) of Georgii (1988). Details can be found in
Pirlot (1985). O

2.3. The equivalence of ensembles. Here we will apply the maximum en-
tropy principle, Theorem 1.6, to the setting of the preceding subsection. For a
given potential ® € %g and cube A we consider the Gibbs distribution vy per
with periodic boundary condition. yJ> P*" is defined as the probability measure
on (E, &)* with A\*-density

(2.12) exp| —H>Per] /X" (exp[ — H2Per]);
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compare (2.8). The same symbol y,2 P** will also be used to denote any element
of & whose marginal distribution on E* is given by (2.12). Conditioning
y2 PT on the event that the energy functional 7,y takes a prescribed set of
values, we obtain a periodic Gibbs distribution of microcanonical type. We will
show that, under suitable hypotheses, all accumulation points of these micro-
canonical Gibbs distributions are Gibbs measures for a suitable potential. This
is a general version of the well-known principle of equivalence of ensembles, as
will be explained in more detail in Subsection 3.1. For ® € %, and V as before
we introduce the set

(2.13) DY = {oy(v): v € Zy(P + V) for some ¥ € V}.

In Lemma 4.9 we shall show that € D} if and only if the convex function
VoV - 7(¥) + P(®+ V) on V attains its infimum or, equivalently, the
function J admits a tangent functional at 7. In particular, if V is finite-
dimensional, D contains the relative interior DY} of Dy, that is, the interior
of Dy relative to the smallest affine subspace of V* containing Dy. In the
general case we know, at least, that D} is norm-dense in Dy relative to the
usual norm on V*; compare Lemma 4.10.

THEOREM 2.4. Consider the setting of Corollary 2.3. Suppose K is convex
and such that K° N D, # @Gand K2, < DY, where
Kb, ={reK:J(r) = inf JJ(K)}.
Then there exists some V¥ € V such that

(214) @ acc " (clryy € K) € Fo(® + W) N oy K,
T

and each such ¥ is a point of minimum of the function T+ P(® + - ) on V,

for all € K2, . A similar conclusion holds for averaged [in the sense of

(1.13)] conditional Gibbs distributions with configurational boundary condi-

tions.

To deduce this result from Theorem 1.6 we need to show that the set M ¥ in
(1.15), for the appropriate choice of F, is contained in Zg(® + ¥) for some
¥ € V. The assumption Kg, < DY, though difficult to check in general, is
clearly necessary for this to hold. In fact, it may be replaced by the weaker
assumption that for some 7* € K2, N Dy and all other r € K2, , D} con-
tains a nontrivial convex mixture of 7* and 7. This will be evident from the
proof of Theorem 2.4 in subsection 4.3.

3. Special cases and examples.

3.1. Large deviations and maximum entropy principle on level 1. Let
N > 1 be an integer and ¥!,..., ¥V € &, be N potentials. We write ¥ =
(w1, ..., ¥N) for the associated RN-valued potential. We assume without loss
of generality that ¥!,..., ¥¥ are linearly independent and let V denote their
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linear span, that is,

N

V= {t~\lf= Yt Wnite RN}.

1
For each cube A, the V*-valued function 7,  in (2.7) can then be identified
with the RV-valued rescaled periodic Hamiltonian

|AI 7 H Y per — |A|_1(H,;I'1’per, ceo H,;I'N’per).

Corollary 2.3 thus gives the following result.
For each ® € %, and all Borel sets K c RY,

limsup sup
(31) |A| > weN |A|_1 log ,yf,w(lAl_lH/;l’,per e K)
lim inf inf

< —inf JE(K)
> —inf JE(K®)’
where J§ is given by

(82)  JY(x)=P(®) ~ if [t-x+P(@+eW)], xeRY

The effective domain {J§ < =} of J$ coincides with
(3.3) Dy={{v,¥):v € Py, I(v) < }.

This is Lanford’s (1973) large deviation principle for rescaled Hamiltonians;
see also JanZura (1985), Olla (1988) and Féllmer and Orey (1988). By Remark
1.4, (3.1) remains true for Hamiltonians with configurational (rather than
periodic) boundary conditions, and all other asymptotically negligible perturba-
tions of H"P°*. In the special case when N =1, ® = 0 and

foX,, if A={i}forsomeiesS,
Yy = .
0, otherwise,

for some measurable function f: E — R, (3.1) reduces to the well-known
Cramér theorem because in this case y;» @ = A*, HY'P* = ¥, _, fo X, and

Jg(x) = sup[tx — log A(e')], =xeR.
teR

Our next subject is the maximum entropy principle. In the present setting,
Theorem 2.4 and the remarks before and after this theorem give us the
following result.

Suppose K is a convex Borel set in RN satisfying K° N Dy # & and
K3¥ N DY + &, where

K3y = {x € K:J$(x) = inf JE(K)}.

Then there exists some t € RY such that

@+ accydPr(-||AITTHY - € K
(3.4) ATS ( )
Chp(P+t-¥)n{(,¥)eKh¥]

min
and each such t minimizes the function t > t-x + P(® +t-W¥) for all x €
K2Y.

min
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In the particular case ® = 0, N = 1, ¥! = ¥ € %, (3.4) just means that

(35) T+ Aagqsm(w IAITHY P e K) € Zo(BY) N {-,¥) € K%Y,

for some B € R depending on ¥ and K. The conditional distributions in (3.5)
are precisely the microcanonical Gibbs distributions (with periodic boundary
condition) on the thick ¥-energy shells described by the interval K. As the
definition of Z,(BY) involves the grand canonical Gibbs distributions, asser-
tion (8.5) can be paraphrased by saying that every microcanonical limiting
equilibrium state for ¥ is a grand canonical equilibrium state for ¥ (or —¥)
at a suitable inverse temperature |8|. Similarly, for a special choice of ¥ the
conditional distributions in (3.4) take the form of the small canonical Gibbs
distributions. Assertions (3.4) and (3.5) thus express the equivalence of the
three Gibbs ensembles.

Three further remarks on (3.4) and (3.5) are in order. First, why do we
insist on considering the relative interior of D, rather than its usual interior?
The answer is simple: Although ¥!,...,¥¥ are supposed to be linearly
independent, they may admit a nontrivial linear combination ¥ = ¢ - ¥ which
is equivalent to 0, in that { -, ¥) is constant on {I < «}. In this case, Dy is
contained in a hyperplane and thus has empty interior. Lemma 4.11 will imply
that this does not occur if and only if, for one and thus all ® € %, P is
strictly convex on ® + V, and in this case Dy # &, and Jy is differentiable on
DY, with |grad J$(x)| - » as x — dDy. The vector ¢ in (3.4) then equals
—grad J$(x) for each x € K2 ¥ N DY,. Examples of spaces V on which P is
strictly convex are given in Georgii [(1988), Corollary (16.15)].

The second remark concerns assertion (3.5). If ¥ is not equivalent to 0 and
the interval K in (3.5) shrinks to some x € DY, then it follows readily from
the above that the associated parameter B = B(K) converges to B(x) =
—(J3)Y(x). It thus follows from (3.5) and Theorem 4.23(c) of Georgii (1988)
that, in the double limit A 1S and K | x, every accumulation point of the
microcanonical Gibbs distributions belongs to Zu(B(x)¥). A weaker result of
this type has been obtained recently by Deuschel, Stroock and Zessin (1991).

As for the third remark, we shall see in Example 3.2 that the inclusion in
(3.5) can be strict. So it might seem that, in general, there exist more grand
canonical equilibrium states than microcanonical equilibrium states. The fol-
lowing converse to (3.5) shows that this is not the case: Every Gibbs measure
is a limit of microcanonical Gibbs distributions, at least if the energy shells are
allowed to vary with A. Specifically, we have the following theorem which will
be proved in subsection 4.4.

THEOREM 3.1. For each ¥V € % and all n € (V) there exist sequences
(A,) in A, (¥*) in By and (c,) in R such that A, 1S, ||[¥* — ¥, - 0,
¢, = {u,¥) and

n = }E'i_l;rg'o/\Ak(.”Akl_lH/:I;k’per < ck)-
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As a matter of fact, we can extend (3.5), using the ideas of Remark 1.4, to
show that every limit of microcanonical distributions as above necessarily
belongs to Z(¥). Hence, Z,('¥) coincides with the set of all these limits. We
conclude this subsection with the previously mentioned example.

ExampLE 3.2 (The two-dimensional Ising model). Let d =2, E = {1, 1},
A the equidistribution on E, and ¥ € %, be defined by
Tw;w;, 1fA={l’.]},|1' _.I|=1’
0, otherwise.

Yp(w) = {

The function B — P(BW¥) is even, as is easily seen by means of the reflection
w; > —w,; at every second site i of S. [In fact, the famous Onsager formula
even provides an explicit expression for this function; see Georgii (1988), page
450, for references.] Equation (3.2) for ® = 0 thus implies that the conjugate
function J,, = J9 is also even. J,, thus attains its minimum 0 at x = 0 and is
decreasing on ] — o, 0]. It is also easy to see that Dy, = [—2,2]. J,, is differen-
tiable on ] — 2,2[ with |J(x)| —»  for |x|12; compare the first remark on
(3.4) above. Further, for our choice of ¥ all accumulation points in (3.5)
necessarily share the invariance of A and ¥ under the reflection of E, and it is
known that for each B > 0 there exists a unique reflection-invariant u? e
Zo(BY); compare the references on pages 453 and 472 of Georgii (1988).
Equation (3.5) thus implies the following result. For any ¢ €] — 2, 2],

lim AN (<] [A]THE P < ¢) = uh©),
AT S

where B(c) = —dJy(c) > 0 for ¢ <0 and B(c) =0 for ¢ = 0. On the other
hand, if B = B(c) is sufficiently large, that is, if ¢ is sufficiently close to —2,
Zo(BY) is not a singleton, but (-, ¥) is constant on Z,(BY¥); compare
Theorem (6.9) of Georgii (1988). This shows that the inclusion in (3.5) can be
strict. Some further, related results for this model can be found in Deuschel,
Stroock and Zessin (1991).

3.2. Large deviations and maximum entropy principle on level 2. Here we
apply the results of subsections 2.2 and 2.3 to the space

(3.6) V={¥ € %y: ¥, = 0unless |A| = 1}

of all self-potentials in %,. (More generally, we could consider all ¥ with
W, = 0 except when A is a translate of a given base A € ..) We note first
that the relation

(37) \I’(i)(w) =f(wi)’ wEQ,iES,

establishes a one-to-one correspondence between the potentials ¥ € V and
the bounded measurable functions f on (E, &). Equation (3.7) implies that
v, ¥) = y(f) for all v € Py. Consequently, the mapping ¢, in (2.6) is
nothing other than the marginal projection v — vy, from &g into the subset
H(E, &) of V*. The specific energy function 7, , relative to a cube A thus
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coincides with the empirical distribution

(3.8) me=IAI"" X6, wcE
i€A
As a further consequence of (3.7), the formula (2.9) for the rate function J;
can be rewritten as
J?(a) = inf  I%(v)

vEPy: vgy=a

3.9
(39) = P(®) - i1}f[a(f)+P(d>+\Iff)], a€ P(E,&).
In (3.9), the infimum over f extends over all bounded measurable functions on
(E, &), and ¥ is the potential in V related to f via (3.7). We finally note that
the weak* topology on V* induces the 7-topology on H(E,&). It is thus
obvious how Corollary 2.3 and Theorem 2.4 can be restated for the present
choice of V. We refrain from doing so; the case of finite E is treated in detail
in Féllmer and Orey (1988). In the case ® = 0 we obtain the classical Sanov’s
theorem in the version of Groeneboom, Oosterhoff and Ruymgaart (1979) and
a conditional limit theorem of Csiszar’s (1984) type. Equation (3.9) then
reduces to the well-known formula

I(a;)) = st;p[a(f) ~ log A(eN)],

a direct proof of which can be found in Varadhan (1988), for example.
Another case of classical interest is when d =1 and ® is a bounded
nearest-neighbour potential. Corollary 2.3, for the space V in (3.6), then gives
the level-2 large deviation principle for uniformly recurrent Markov chains in
the version of Bolthausen (1987). Moreover, the rightmost expression in (3.9)
then can be shown to coincide with Donsker and Varadhan’s (1975, 1976) rate
function sup a(log u/Qu); here the sup extends over all positive measurable
functions © on E which are bounded away from 0 and «, and @ is the
transition kernel of the Markov chain which is the unique element of Z(®).

4. Proofs.

4.1. The upper bound. In this section we will prove the first half of
Theorem 1.2, namely inequality (1.8). We thus need to find an upper estimate
of the quantity

(4.1) |Al ™" log A (e~ Fh).

Here {(F)), F} is a given asymptotic empirical functional, and A is an arbitrary
cube. We can assume without loss of generality that F > 0. Clearly, we can
also assume that A*e f») > 0. We then can define the associated Gibbs
distribution uf; compare (1.12). The relative entropy of uf relative to A* is
related to the expression (4.1) via the key identity

(4.2) — |Al M log AN (e™Fr) = [AIT T (uf; M) + IAITWE(FY),
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as is easily checked using (1.1) and (1.12). This is an observation of Csiszar
(1984). We therefore proceed by deriving lower bounds for the terms on the
right-hand side of (4.2). To deal with the first term we introduce the measure

~ - S _
(43) AL = AT X (uh) o0,
ieA

Here p is the side length of A [compare (0.3)] and (uf)?S stands for the
probability measure on ({, &) relative to which the projections (X, . ,.);cs
are independent with identical distribution w£. [It should be noted that the
construction (4.3) can be traced back to Parthasarathy (1961).]

LEmMMA 4.1.  For each cube A, if € &, and
I(AR) = [AI7 T (uf; A%).

Proor. The first assertion is an obvious consequence of the A-periodicity
of (uf)?S. A proof of the second assertion can be found in Georgii (1988),
Proposition (16.34), for example. O

To estimate the second term on the right-hand side of (4.2) we introduce the
lower convex envelope F of F. By definition,

(4.4) F(p) =sup{G(pn):Ge &, G<F}, ueP,

where & consists of the affine continuous evaluation functions Zg = v = v(g)
with g € .Z. As F > 0, F is well defined and nonnegative. Clearly, F is lower
semicontinuous. (A different expression for F will be derived in Lemma 4.7.)

LEMMA 4.2. For each cube A,
IAI""E(Fy) = F(ufp,) + inf[|AI7'F, — F(py)],
where uip, € Pe is defined by ujp, = [ui(dw)py.
Proor. Let g € 2 be such that v(g) < F(v) for all v € &,. Then
IAI7'F, > pa(g) + inf[IAI_lFA - F(PA)]~

Integrating this inequality with respect to uf and taking the supremum over
all such g, we obtain the result. O

The next step is to show that the measures i and ufp, in Lemmas 4.1 and
4.2 have the same set of accumulation points as |A| — .

LEmMma 4.3. Forall f € 2,

Jim [GRCf) = wipa(H)] = 0.
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Proor. We pick any A € 7 such that f is %,-measurable. Since f -9, is
F,-measurable for any i € A with A + i C A, the difference under considera-
tion equals

- s
AT R (WR)(fo8) - [uh(dw) fe8wP) .
ieEAN:A+izA
This is bounded in modulus by
21 FINAIT{i € A: A + i & A},

which tends to zero as |A| - «. O
We now take advantage of the fact that I has compact level sets.
LEMMA 4.4. liminfia|»=[I(g}) + F(ufp,)] > inf[I + F].

ProoF. Suppose the contrary. Then there exists a number ¢ < inf[I + F]
and a sequence (A,) of cubes such that |A,| — « and

I(ﬁik) + F(Mikp/\k) =c¢

for all k. Since F > 0, the sequence (% A,) belongs to the (sequentially) compact
set {I < ¢} and thus admits a convergent subnet (even subsequence) (i, F ) with
limit v, say. By Lemma 4.3, v is also the limit of (uf A,Pa,)- Since 1 and’ F are
lower semicontinuous, we conclude that

I(v) + F(v) < liminf[I(y,) + E(up,pp)] < ¢,
in contradiction to the choice of ¢. O
Combining (4.2) with Lemmas 4.1, 4.2 and 4.4 and hypothesis (1.7) we

obtain

(4.5) lim sup|A| ™! log A*(e~Fv) < —inf[I + F].
|A| >

To complete the proof of the upper bound (1.8) we thus need to replace F by
F\.. in the last infimum. This is possible because I is affine with compact level
sets.

Lemma 4.5. inf[] + F'] = inf[I + F].

Proor. We proceed in three steps, using techniques of convex analysis.
(i) Let _£* be the topological dual of - and

(4.6) F=weL*v(f)20when0 < fe_Z
(1) = 1, v(f<8,) =v(f)forall fe_ #, iecS)}

be the convex set of all shift-invariant, normalized, positive linear functionals
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on .Z. % is a closed subset of the unit ball of .Z*. It thus follows from the
Banach-Alaoglu theorem that % is compact in the weak* topology on -Z*.
The set P, can be regarded as the set of all v € J¥ satisfying

(4.7) v( f,) 10 for every sequence ( f,) in £ with f, | 0.

Indeed, this condition implies that A — »(1,) is o-additive on the algebra of
all cylinder events. The Caratheodory extension theorem thus shows that v
can be extended to a unique element of &. Therefore, we will think of &, as
a subset of ¥ The topology on &y induced by the weak* topology on %  is
precisely 7, the topology of local convergence.

As a matter of fact, &, is a face of %" For let v{,v, € %, 0 <s <1 and
v=sv, + (1 — s)v € F,. Property (4.7) for v then implies the same property
for v, and v,. Hence v,v, € .

(ii) We extend the specific entropy I to a functional on % by setting
I(w) = wif v € X\ Fy. Since P, is a face of ¥, this extension is still affine.
For each ¢ > 0, the level set {I < ¢} is a compact subset of &, and thus a
closed subset of % Therefore, the extended I is still lower semicontinuous.
As a consequence of these properties, the separating hyperplane theorem
implies that the family &7 of all functions G: v - v(g) on ¥ with g € .~
and G < I is directed upward and satisfies
(4.8) I= sup G;

Ge s,

see Choquet [(1969), Theorem 21.21], or Phelps [(1966), page 68], and note
that each continuous linear functional on .Z* has the form v — v(g) with
ge.r

(iii) Suppose now m = inf[I + F] is finite and let ¢ > m. For each G € &,
we set

(4.9) Cy = {v € Po: G(v) + Fii(v) <c)

and let Cj; denote its closure in J¥. We have C; # & because otherwise ¢ — G
(restricted to Pg) is a minorant of F and therefore also of F, whence
I + F > c in contradiction to the choice of c. Since &7, is directed upward and
the sets C,; are compact and decreasing in G, it follows that

N Cs;* 2.
Ge
But

N Ccc N {G=sc}={I<c}cPy
Geg, Ge s,

because F,, > 0, and C; = C; N P because F,, is lower semicontinuous.
Hence

{I+FISC$C}=’— n CG¢@‘
Ge s,
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As ¢ > m was arbitrary, we conclude that inf[I + F\_ ] < m. The reverse
inequality is trivial because F < F)_.. O

An alternative proof of this lemma will be given at the end of subsection 4.2.
We conclude this subsection with the proof of Remark 1.4.

Proor oF REMARK 1.4. We only derive the upper bound (1.8) under hypoth-
esis (1.10). The proof of (1.9) under (1.11) is similar but simpler. For each
U € % we define F;: Py =] — o, 0] by F,;(v) = inf F(U®)), v € P,. As we
have seen above, (1.10) is all that is needed to derive (1.8) with Fy; in place of
F. Hence, the left-hand side of (1.8) is not larger than the negative of

sup inf[I + (Fy),]-
Ue%

But this expression equals inf[] + F. ]. Indeed, otherwise we could find a
number ¢ < inf[I + F\] and, for each U € %, some v, € &, such that
I(vy) + (Fy)e(vy) < c. This implies that for each U there exists some v}, €
U*(vy) with I(vy) + F(v};) < c. Here, U2 € % is defined by doubling the &
defining U. Since F is bounded from below, the net (v;) belongs to a level set
of I and therefore admits a convergent subnet with limit », say. The corre-
sponding subnet of (v;) also converges to v. By lower semicontinuity, it
follows that I(v) + F\,(v) < c, in contradiction to the choice of ¢. O

4.2. The maximum entropy principle. In this section we will prove Theo-
rem 1.6. We assume again without loss that F > 0. As a consequence of (1.14)
and (1.9), uX is well defined for sufficiently large A. The key to the maximum
entropy principle is a combination of the main ingredients of the proof of the
upper bound with the lower bound, namely Lemmas 4.1 and 4.2, equation
(4.2), the lower bound (1.9), assumption (1.14) and Lemma 4.5:

lim sup [I(ﬁf) + F(ufpy)] < — liminf|A| " log A*(e =)
(4.10) M= Al e
<inf[I + F"°] = inf[I + F] < .
As F > 0, this inequality implies that (4%) eventually belongs to a level set of
I and thus admits at least one accumulation point u. By the lower semiconti-
nuity of I and F and Lemma 4.3, (4.10) implies further that
I(pn) + F(p) <inf[I + F]

for each such w. Hence

4.11 D * if c {I + F = min}.
(4.11) ace fi {I + F = min}
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The proof of Theorem 1.6 will thus be complete once we have shown that

(i) accy ;g i} = acc,, g &Y and accy, g A = acc,, g uy when each F, is a
function of p,;

(i) {I + F = min} is equal to the set of all mixtures of measures in {I +
Fi,. = min}.

Problem (i) is settled by the following analogue of Lemma 4.3.

LEMMA 4.6. For each f € £, lima|—»« [a5(f) — z5(f)]1 = 0. If each F, is a
functional of py, then also lim, , S[aX(f) — ui(f)] = 0.

Proor. In view of (1.13),

rA(f) = #IX(M'_I Z f°0i)-
ieA
The first assertion thus follows directly from Remark 0.1 and Lemma 4.3.
Suppose next that each F, is a function of p,. In fact, this amounts to the

requirement that each F, is invariant under periodic shifts P°: E* - E*
defined by

0w = (6;w®") ,, w€EieA.

Indeed, the function w — p% clearly has this invariance property. Conversely,
if g: E* > R is invariant under (), _ ,, then

g(w) =IAI"" X go0r"(w) =pi(g°X,), weQ.

ieA

By (1.12), the measure uf inherits the invariance under (67"), . ,. Thus, for
each bounded measurable function g on E* we have

WE(e) = wE(1A17" T go0r) = ufon(g > X,).
ieA

If we think again of uf as an element of & with A-marginal (1.12), this may

be restated as follows. For each fe .7, uf(f) = uflp,(f) provided A is so

large that f is %, -measurable. The second assertion thus also follows from

Lemma 4.3. O

Turning to problem (ii), we must show that each u € {I + F = min} admits

a representation u = fw(dv)v in terms of a Borel probability measure w on
{I + F\;, = min}. More explicitly, this representation means that

w(4) = [w(dv)v(A) forall Ae &

This makes sense because the set of all A for which A — v(A) is Borel
measurable is a monotone class containing the algebra of local events, and
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thus is equal to .. A monotone class argument also shows that the represen-
tation above is equivalent to the requirement that

u(f) = [w(dv)v(f) forall fe 2.

We need again a piece of convex analysis.

LEMMA 4.7. Let u € Py be such that I(u) < », and #(u) the set of all
regular Borel probability measures w on {I < »} representing u in the sense
above. Then:

(@) I(w) =w(l) forallw € 7 (),
(b) F(w) = inflw(Fy,): we #(u), and the infimum is attained when
Fp) < .

Proor. (i) Consider the compact set % in (4.6) and the set # of all
regular Borel probability measures on J%. # is compact in the weak topology.
As shown in Step (b) of the proof of Lemma 4.5, I can be extended to an affine
semicontinuous functional on J%. Thus, if w € ¥ represents u, then Lemma
9.7 of Phelps (1966) implies that I(u) = w(I). [Since each continuous linear
functional on £ * has the form » — v(g) for some g € - and »(1) = 1 for all
v € %, Phelps’ set A can be replaced by the set of all functions #> v — v(g)
with g € .Z.] This gives (a) because each Borel probability measure on the K,
set {I < »} can be considered as an element of 7.

(ii) To prove (b) we extend F to a function on % by setting F = » on
K\ Py, and we let F, denote the lower semicontinuous regularization of F
on % A glance at (1.6) shows that F,,, = F,|%. As % is compact and thus
completely regular, F, is the supremum of all its continuous minorants.
Hence

w(F,) =sup{w(G): G continuous, G < F,}

for all w € #; compare Phelps (1966), page 63. It follows that the mapping
w = w(F,) on ¥ is lower semicontinuous. This in turn allows us to extend
the proof of Proposition 3.1 of Phelps (1966) to show that

F(u) = inf{w(F*): we ¥, u-= fw(dv)v}

for all u € #. Now, if I(u) < « then assertion (a) implies that w(I) < = for
each w contributing to the infimum. Hence each such w is supported on
{I < }. In particular, w(F,) = w(F,,). This gives the first part of (b). To
obtain the second part it is sufficient to note that the set of all w € ¥,
representing u is compact and w — w(F,,) is lower semicontinuous. [

As an immediate consequence we obtain the following lemma which com-
pletes the proof of Theorem 1.6.
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LEMMA 4.8. Suppose that m = inf[I + F\,|] < © and let p € Pg. Then
I(n) + F(uw) = m if and only if u is represented by a regular Borel probability
measure on the compact set {I + F\,, = m}.

Proor. By Lemma 4.5, I(u) + F(u) = m if and only if I(u) + F(u) < m.
In view of Lemma 4.7, the latter holds if and only if there exists some
w e #(u) with w(I + F,,;) < m. But this inequality means that w is sup-
ported on {I + F\,, = m}. O

To conclude this subsection we note that Lemma 4.7 provides an alternative
proof of Lemma 4.5. Indeed, let u € & be such that I(u) + F(u) < . Then
u is represented by some w with F(u) = w(F,,). Hence

I(/"') +E(”’) = w(I + Flsc) = lnf[I + Flsc}'

Since F < Fi,,, Lemma 4.5 follows.

4.3. Equilibria under energy constraints. Here we shall prove Theorem
2.4. So we let V be a closed subspace of %, and ® € %, a potential. We shall
drop the lower indices of ¢, and J;F. We consider the sets

€¥(1) = {v € o Hr}: I®%(v) =J®(1)}, re V*,

Since I?® has compact level sets, €®(7) # & when 7 € D. The lemma below
shows that, for a large set of 7’s, € ®(r) consists of Gibbs measures relative to
® + ¥ for a suitable ¥ € V, and provides various characterizations of this set
of 7’s. Consider the function P®: V —» R defined by P®(¥) = P(® + V) —
P(®), ¥ € V. By (2.9), P? is just the convex conjugate of J 2 relative to the
bilinear form (7, ¥) - —7(¥). A functional 7 € V* is called a tangent to P®
at ¥ € Vif P®(¥) + 7(X) < P®(¥ + X) for all X € V. The set dP®(¥) of all
these tangents is called the subdifferential of P® at V. Similarly, the subdif-
ferential 3J ®(7) of J® at r € V* is defined as the set of all ¥ € V such that
J¥7) + a(¥) < J®%r + o) for all ¢ € V*.

LEMMA 4.9. Foreach ® € %, ¥ € Vand 7 € V* the following statements
are equivalent:

(D 7= @) for some v € Zo(® + V).
(i) 7 + P?® reaches its infimum at V.
(iii)) —7 € P2 ().
(iv) =¥ € 9J%(7).

(v) 1 €D, €%71) C Zo(® + V).

Moreover, if T € D and ¥, V' € V are such that (i) through (v) hold for both
(7,¥) and (7,¥'), then L(® + ¥) = L(P + V).
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Proor. (i) = (ii) Since I®*¥(») = 0 when (i) holds, we conclude from
(2.11) and (2.9) that 7(¥) + P®(¥) = —I®() < —J®(7) = inf[r + P?].

(ii) < (iil) This follows right from the definition of dP®(¥).

(ii) = (iv) Equation (2.9) and (ii) imply that J®(7) = —7(¥) — P2(¥) < o
and J (7 + o) > —(r + o)(¥) — P®(¥) for all o. Subtracting the equality
from the inequality we obtain the result.

(iv) = (v) If 8J ®(r) # O then clearly J®(7) < ® and thus r € D. Suppose
now that —¥ € 9J®(r) and let u € €*(r) be given. We also pick an arbitrary
v € Zo(® + ¥) and set o = ¢(v) — 7. Then

IP(w) +{p — v, ¥) =Jd%(7) + o(-¥) <J®(r + o) <I®(»)

and thus I®*¥(u) <I®*¥(v) = 0. By Remark 2.2, it follows that u €
Go(® + V).

(v) = (i) This is trivial.

Finally, suppose (i) to (v) hold for the pairs (r,¥) and (7, ¥'). Since
€®(1) # @ for 7 € D, this implies that Zy(® + ¥) N Z,(® + V) + . Let p
be an element of thls intersection, A € ./, and A € £2. The functions
f=y2*" (A and f' = y2*¥ (A) are two versions of w(X, € A|Fs. ) and
thus identical u-almost surely. By Proposition 2.24(b) of Georgii (1988) f and
f' are uniform limits of local functions. Moreover, any two Gibbs measures are
mutually absolutely continuous on %, for all A € . Thus, if v € L(® + V),
then f = f' v-almost surely, Whence f is a version of 1/(XA € A|Fs\ ,)- This
shows that L(® + ¥) c L(® + ¥), and the reverse inclusion follows by
symmetry. This completes the proof. O

Consider now the set
D® = {p(v): v € Zo(P + V) for some ¥ € V}.

In view of the above, D® coincides with the set of all negative tangents to P®
and also with the set of points where J® admits a tangent. This gives the
following lemma.

LEMMA 4.10. For all ® € %, D® is dense in D relative to the operator

norm on V*. If V is finite dimensional, D® contains the relative interior D"
of D.

Proor. By (2.9), D coincides with the set of all r for which —7 is
P®-bounded, in that —r < P?® + ¢ for some constant ¢ > 0. The first assertion
thus follows from a general theorem of Bishop and Phelps; compare Proposi-
tion (16.7) of Georgii (1988). The second assertion follows from the fact that a
convex function on a finite dimensional space admits a tangent at every point
in the relative interior of its effective domain [cf. Rockafellar (1970), page
217]. O
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Lemma 4.9 also implies Theorem 2.4, as we will now show.

Proor or THEOREM 2.4. We will apply Theorem 1.6 to the asymptotic
empirical functional {(F,), F} defined by

(-, ®), ife(v) ek,
F = .
o, otherwise

and

@A, per :
FA= HA P 3 lfTA’VeK,
o, otherwise.

Thf, measures p} in (1.12) then coincide with the microcanonical distributions
yx 7P (- |1y v € K). Hypothesis (1.14) follows from the assumption K° N D +
@ and the convexity of K (cf. the remark after Theorem 1.2). We thus only
need to show that M¥ c Zy(® + V) for some ¥ € V. But, clearly,"

MFc J{€®(r):reK2,}.

min
Hence, if K3, is a singleton the result follows immediately from Lemma 4.9.
In the general case we pick any 7, € K2, < D®. Lemma 4.9 provides us with
some ¥ €V such that €%(ry) C Zo(® + ¥). For any other r € K2 we
consider an arbitrary convex combination 7' = st + (1 — s)7y, 0 < s < 1. Since
K and J? are convex, 7' € K2, and thus ' € D®. Let —¥' € J ®(s"). Then

for all o, 0, € V* we have, setting o' = so + (1 — s)o,
sJ®(r+0) + (1 —8)J%(7y + 0p)
>J¥r + o) =2 J®(7) - o'(¥)
=s[I%(7) = o (V)] + (1 = 5)[T (7o) = oo(¥")]

because J® is constant on K2, . Setting either o = 0 or o, = 0 we see that
—¥' € 9dJ*®(7) N dJ *(7y). Lemma 4.9 thus shows that

(1) U €%(70) C Lp(® + V),

and its last sentence implies further that Z(® + ¥') = Z,(® + ¥). Hence
€%(1) C Go(® + V) for all 7 € K2, , and the proof is complete. O

4.4. Approximation of Gibbs measures by microcanonical distributions.
This section is devoted to the proof of Theorem 3.1. We begin with a lemma of
general interest which refers to the general setting of subsection 3.1. That is,
we fix any ® € % and a vector ¥ = (¥!, ... ¥¥) of potentials and consider
the function J® =J§ in (3.2) and its effective domain D = D, defined
by (3.3).
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LeEmMA 4.11. In the setting described above, the following statements are
equivalent.

(1) D is not contained in any hyperplane.
(ii) J?® is essentially smooth, that is, D° + & and J® is differentiable on
D° with |grad J ®(x)| - © as D° 2 x - 4D.
(iii) The function p: t = P(® + ¢t - W) on RY is strictly convex.
(iv) The sets Zo(® + t - W), t € RN, are pairwise disjoint.

Proor. (i) = (iv) Suppose there exist two distinct s,¢ € RN such that
(D +s - W)N AP+t W)+ . It then follows that for each cube A there
exists an " € Q such that (¢t —s) - H¥“" is constant A*-almost surely;
compare the proof of the implication (iv) = (i) of Theorem (2.34) in Georgii
(1988). Since v, < A* for all v € P, with I(v) < », we see that (¢ —s) -
VA(H,;""”A) takes the same value for all these v. Hence (£ —s) - (-, W) is
constant on {I < «}, and this means that D is contained in a hyperplane.

(iv) = (iii) Suppose p is affine on a nondegenerate interval [s, ¢] ¢ RY, and
let u = (s +t)/2. Then

I<I>+u~\l’ — lI<I>+s~\I’ + qu’*’t"l’
2 2 ‘

By the variational principle stated in Remark 2.2, this implies that
B#Gg(P+tu W) CGy(P+s - W)NGp(d+1¢ W),

in contradiction to (iv).

(iii) = (ii) Up to trivial transformations, J® is the convex conjugate of p.
The strict convexity of p thus implies that J? is essentially smooth; compare
Rockafellar (1970), page 253.

(ii) = (i) This is trivial. O

We now confine ourselves to the particular case when ® =0, N =1 and
thus ¥ =¥ for some ¥ € %,. We set z = (A5, ¥). Since I attains its
minimum 0 at AS only, a glance at (2.9) shows that z is the unique point
where J = J$ attains its minimum 0. By convexity, this implies that J is
strictly decreasing on ] — «, z] N D.

LEMMA 4.12. Suppose Zo(¥) contains a measure u + AS. Then {u,¥) €
D and {u,¥) < z.

Proor. By Lemma 4.11, p is strictly convex. For otherwise D is a single-
ton (containing 2), and (2.2) implies that IY =1 and thus Z,(¥) = {AS);
compare Remark 2.2. Hence, the left and right derivatives p’_ and p’, of p
exist, coincide for all except at most countably many points, and are strictly
increasing. Using Theorem 16.14 and Remark (16.6) of Georgii (1988), we thus
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obtain that for any v € Z,(2¥),
(412) —z<p'(0) <p_(1) < —(p,¥) <p'(1) <p_(2) < (v, ¥).
As z € D and (v, V) € D, the lemma follows. O

We are now ready for the following:

Proor oF THEOREM 3.1. Let u € Z(¥) be given.

(i) Suppose first that u = AS. Lemma 4.11 then shows that D = {z}, whence
Theorem 2.4 implies that

= lim A%(- ¥) < 2),
= lim (-Kpa, ¥ < 2)

that is, the conclusion of Theorem 3.1 holds with ¥* = ¥ and ¢, = 2. So we
can assume that u # AS. We set ¢ = (u, ¥). By Lemma 4.12, ¢ € D° and
c<az.

(i) Let o/={A;: j > 1} be a countable generator of % which consists of
cylinder events and is stable under finite intersections. For each n > 1
there exists some ¥" € %, such that [|[¥" — ¥lly < 1/n, Go(¥") ={u,},
Kp,, ¥>—cl <1/n and
(4.13) max |p,n(AJ~) — [,L(AJ-)I <1l/n.

l<j<n
This follows from a theorem of Sokal combined with an earlier result of
Robinson and Ruelle; see Corollary (16.38) of Georgii (1988). We can assume
without loss of generality that w, # AS for all n. For, if u, = AS for infinitely
many n, then (4.13) shows that 4 = AS on &/ and thereby on %. We let
z, = (A5, ¥") denote the unique point where J, = J9. reaches its minimum
0, and we set c, = (u,,, ¥"). Then

le, —cl <I®™ = ¥llo + Kp,,, ¥ — ¢l <2/n.

By Lemma 4.12, ¢, € {J, < »}° and ¢, < z,. Thus J, reaches its minimum
over ] — o, ¢, ] exactly at c,. An analogue of inequality (4.12) also shows that
B =1 is the unique number B such that £, (B¥") contains some v with
(v, ¥") = c,. Equation (3.5) thus implies that

= lim (- , Py <e ).
Hp = lim (I<pa, ¥™) < c,)

Consequently, there exists a sequence (A,) of cubes with A, 1 S such that the
associated microcanonical distributions,

vy = Mo([py,, U™ < ),
satisfy the inequality
max |v,(A;) — u,(A;) <1/n.

l<j<n

Combining this with (4.13) we see that each accumulation point of (v,) equals
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u on & and thus on . In view of Lemma 4.6 and an obvious extension of
(4.10) in the spirit of Remark 1.4, (v,) is relatively compact. Hence v, — ». O
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