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ON THE UPPER AND LOWER CLASSES FOR A STATIONARY
GAUSSIAN STOCHASTIC PROCESS!

By J. M. P. ALBIN

Center for Stochastic Processes and University of Lund

We give a complete and rather explicit characterization of the upper and
lower classes for a family of stationary Gaussian stochastic processes.

1. Introduction. We shall assume that our probability space (Q, 7, P) is
complete and that {£(#)}, . r is an R-valued separable stochastically continuous
standardized Gaussian random field on a pseudometric unbounded space
(T, p). Let (T, p) be equipped with an abelian group-operation + such that the
covariance r(s, t) = E{£(s)£(2)} satisfies r(s + u,t + u) =r(s,t)fors,t,u €T
and whose bounded subsets are totally bounded in the canonical pseudometric
d(s,t) = [E{(£(t) — £€(s))%]/% We also define the entropy Ng(e) as the mini-
mum number of closed d-balls &, of radius ¢ needed to cover S € T and
Mg(e) as the largest n for which there exist ¢,...,¢, € S satisfying d(¢,,¢,)
> ¢ for each i #j, and we write Py{S} = sup{P{B}: S 2B € &}, P%S} =
inf{P{B}: S ¢ B € &}, ® for the standard Gaussiand.f., =1 - ®,0 -0 =0,
S (t,e) ={s € T: p(s,t) < ¢}, S(t,e) = {s € T: d(s,¢) < e} and o(¢,¢) = sup{0
Vr(st):seT- Sp(t, )

In view of recent tight tail-estimates for local suprema over d-compacts of
general Gaussian processes (cf., e.g., [1], [2], [3], [7], [15], [22], [25] and [28]), one
is motivated to study also the global behaviour of suprema. Here the only
tractable approach seems to be upper and lower classes.

Let ¥ be the class of functions y: T — [— o, «]. Provided that o(¢,A) — 0
not too slowly as A — o, we prove a zero—one law for the sets

E(¢) = {w € Q: theset {t € T: £(w;¢) > ¢(t)} is p-unbounded}, ¢ € ¥,

We also give an explicit characterization of when the different values for
P{E(4)} occur, that is, we determine the upper and lower classes for £(¢).
Consider the Euclidean case (T, p, +) = (R, | - |, +) and assume that

0 < liminflt — s|™%(1 — r(s,?))
t—os
(1.1)

< limsuplt — s|"%(1 — r(s,t)) <o

t—os

for some « € (0,2]. Following the discovery of the tail behaviour for the
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suprema of such a process in Pickands [17, 18] and also in [5] and [20], upper
and lower classes were studied for increasing ’s in ¥ by Pathak and Qualls
[16], Qualls and Watanabe [19, 20], Watanabe [26] and Weber [27]: Assuming
lim,_, . r(s, loglt — s| = 0, they proved that

(12)  PLEW) =0 <« [(1vu(0)"2(u(0)dt <=

for increasing ’s in ¥, while P{E(/)} = 1 when the integral is infinite.

For (T, p, +) = (R™,| - |, +) Kbno [12] and Qualls and Watanabe [21] showed
that, if ¢ = peo| - | with ¢: [0,%) — (0, ») increasing, if (1.1) holds and if
r(s, t)(log|t — s|)*T2n/min{e,2=a} 5 ( a5 |t — 5| — o, then

(13) PEW) =0 = [ ()" 2(y(1)dt <o,

The proofs of (1.2) and (1.3) use crucially that ¢ is increasing and for more
general ¢’s there are no corresponding results in the literature.

The contribution of the present investigation is a characterization of when
P{E(y)} = 0 valid for all € ¥. Since our methods do not use any order
structure we can also prove our results on a general space. )

2. The main result. Our main result is the following theorem.

THEOREM 1. Assume that there is an R € (0,V2) such that
(2.1) limsup N, (x¢) /Ny (e) < for somex € (0,1),
el0
and such that for each C > 0 and s € T there is an increasing sequence
« o, (n)f; _o, with 0,(0) = 0 and lim, ,,0,(n) = © for s € T, satisfying

(2.2) sup Y Nsp(s,gs(nﬂ))(R)exp{—C/o-(s,gs(n))} < o,
S€T (n>0: o(s,0,(n))>0}

Then E(y) € & with P{E()} zero or one for each € ¥, and moreover

(1v tiengnt//(t))q)

P(EW)} -0 = YN,
(2.3) n=1
x| inf y(t)) <o

t

for some covering S, = S(¢t,,r,),n=1,2,..., of Twithr, <R for all n.

REMARK 1. Note that, by (2.2), given ¢ > 0 and ¢, € T, we have r(¢,¢)) <e¢
for_p(¢,t) > k and k large, which yields S(¢y, y2(1 — ¢)) c S, (¢, k). Thus
O, is d-totally bounded for & < y2 so that N, () < and each covering
{S(t,,r,) of T with r, < R is infinite. Also observe that (2.1) means O-regu-
larly varying entropy at 0 (cf. e.g., [5a)).
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Proor (<=). We have, for ¢ <8 < R/3, (since Ng(e) < Mg(e) < Ng(e/2)),

NﬁR/3+a+s(8/2) NﬁR(8/2)
(2'4) Mﬁa(s) = Nﬁa(g) = MﬁR/3(28 + 28) = NﬁR(48)/NﬁR( R/3) ,

and (2.4) trivially extends to & < 8 < -R. Letting / be the smallest integer
having x> 85/¢, K; = sup,., Ny(xe)/N,y(e) [<= by 2D] K,=
K,N,(R/3)and y = —log K, /log x, we get K! < K(85/¢) and hence

-1

(2.5) M,(s) < N,(¢/2) < Ny(R/8) [1[ Ny (45x*+) /N, (452%)]
. k=0
< K,(88/¢)” fore <& <R.

Now, by (2.5), limsup, | , loglog NﬁR(s)/log(l/s) = 0 so {é(t)};cp, has an
a.s. bounded version; compare [6], [8] and [24]. Since Ns,,(t.,, 5)(R) < o for
tye T, 8 > 0, p-separability yields that {{(£)};c 5,5 i a.8. bounded so

E{ sup §(t)2}s2E{( sup §(t))2}<oo;

teS,(ty, 8) teS,(ty, 8

compare [8], [9] and [13]. Since £(¢) is stochastically continuous, we get

d(t,t,)° < + [G (£(t) — £(8,))" dP < 2 + 4[G sup )g(s)2 dP — 2
€ esE€S,(tg, 8

~as p(t,ty) = 0, where G, = {0 € 1E(w; t) — E(w; ty)l > €}, so d(¢,ty) — 0 as
p(¢,¢,) = 0. Hence d-open sets are p-open and so {¢(¢)};cr is d-separable. In
view of &(¢)s (trivial) d-stochastic continuity, it follows readily that any
countable d-dense subset of &, is a separator for {¢(£)},c .-

Take a, = min{(1 — x'/?)/?/4, R/2} and t € T, let C, = {t} and let C,, be
a (a/u)x"net in S(¢,a/u) [ie., for each s € S(¢,a/u) there is a v € C, such
that d(s,v) < (a/u)x"] with d(s;,s;) > (a/u)x™ for C, s, # s, € C,, so
#C, <M,, ((a/u)x"). Write p, = (1 - x/2)x(n~V/2 and C = U%_,C, and
choose ¢,(s) € C, with d(¢,(s),s) < (a/u)x™ for s € C. (Samorodnitsky uses
a similarly constructed set C in [22].) Then £(s) = £(¢) + TN L€t (s) —
£(¢, _(s))] for some N for each s € C. Adapting ([4], the proof of Theorem 6)
to the present context, we get

{&(s) > u + 1/u, &(t) <u}
N
c L_Jl{g(t,,(s)) — E(ta—1(8)) > Pu/u, £(2a(5)) > u,

E(tn_1(s)) <u+ 1/u}.
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Thus, since d(¢,(s),,_(s) < d(¢,(s),s) + d(s,¢,_(s)) < 2Aa/u)x®Y,

P{ sup £(s)>u+1/u,é(t) < u}

seS(t,a/u)

_ P{ U {£(s) > u + 1/}, £(t) < u}
(2.6) Ry

< i X X P{£(sg) — £(s1) > pn/u,s

n=1s,€C,_; SzecnﬂS(sl,2(a/u)x"‘1)
£(sy) > u, £(sy) <u +1/u}.

Now take a € (0, a,] and u > 1 so that r(s;, s5) = 1 — d(sy, §)%/2>1—
2a/u)? > 3/4 for d(s, s,) < 2(a/w)x"~ ", which yields

1 _ ‘1(31’32)2 a\? om— Pn
(r(31932) - 1)5(81)  2r(sy, 82) £sy) < 8(2) w0 < 2u

for £(s,) < u + 2/u. Hence we have, for d(sy, s9) < 2a/u)x™",

2
P{g(%) = &(s1) > %n, £(sg) zu,é(sy) <u+ ;}

< P<§(32) - "(31’32)—1§(31) > %, £(sz) 2 u}
(2.7) VBr(sy s)pa/(28) |
V1 +r(s1,83) d(s1, S2) (x)

3(1 — x/?)
Toaxo 077 |2():

Il
|

<o

Combining (2.5)-(2.7) we conclude that, uniformly for u > 1, as a |0,

<_I>(u)—1P{ sup §(s)>u+—:z,§(t)su}

seS(t,a/u)
o a oy 3(1 — x?)
. n—1 . n s
(2'8) = nglMﬁa/u(( u )x )Mﬁ%a/u)x"_l(( u )x )Q( 16ax(n—1)/2 )
© ~ 3(1 _ x1/2)
< K% 21(12836 ")yQ( 16ax(n\_1)/2) = o(a).
n=
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Arguing as for (2.6) for 1,(s) = 2u + 2/u — &(s), we deduce for future use
that, by (2.5), (2.7) and symmetry, uniformly for u > 1, as a | 0,

g(u)‘lp{ inf  £(s) < u, £(1) >+ 2/u}

seS(t,a/u

<) P sup w(s) >+ Lu, m(e) <u)
seS(t,a/u)

<®u) 'L T )y
(2.9) n=1s5¢€C,_;s5,eC,N8(sy,2a/u)x""1)
P{nu(s2) - nu(sl) > pn/u’ nu(s2) > u, "7u(31) <u+t l/u}
=d(u) 'L X )y
n=1s5¢€C,_;s5,eC,NS(sy,2a/u)x""1)
P(£(s)) — £(85) > po/u, é(s)) 2 u + 1/u,
£(sy) <u+2/u}=o(a).

In order to proceed we observe that, by (2.5), fora < 1and § < R,
Ngy(ae) < Ny(e)Ng(ae) < K2(8/a)yNﬁ5(s) fore <R,
N,(ae) <Ny (aR) < K2(8/a)yNﬁ8(s) fore > R.

Further u —2/u =4 >(1/2u > 1for u > 2,sothat & + 1/4 < u, and

(2.10)

1 2
@(2) < ~6(7) < —e*(u) = le*B(u),
where ¢(u) = (2m)~ /2 exp{—u?/2}. Now

P{ sup  £(s) > u+ L/u, &(8) < u} <®(u) forus1
seS(t,a/u)
for some sufficiently small a € (0, a,] [cf. (2.8)]. Hence we conclude

P{ sup £(s) > u}

se by

< Nﬁs(a/u)[P{ sup é(s) >u,é(t) < ﬁ} + P{&(t) > a}

se8(t,a/u)

< Nﬁs(a/u)[P{ Ss(up )g(s) >a+1/@, é(t) < 12} + Q(ﬁ)]
seS(t,a/a

< %esz(S/a)yNga(l/u)g(u) foru > 2and 6§ <R.

Obviously the right-hand side is at least 1 for 1 < u < 2, and taking K,
= 182K ,(8/a)’ it therefore follows that

(2.11) P{ sup £(s) > u} <K;N,((1Vv u)—l)i)(u) ford <R andall u.
se by



82 . J. M. P. ALBIN

Assume that the sum (2.3) is finite for a covering {S,} = {SG,,r,)} of T
with r, < R. Taking m = sup{p(¢,,¢,): 1 < n < J} where

EJN@"((I v inf w(0) ) inf ue) < e/,

completeness yields that E(y) € % with P{E(¥)} = 0 since, by (2.11),
PYE(y)} < P°£(t) > y(t) for some t € T with p(t,,t) > m + R}

< P{ U {§(t) > si;lgfﬂ&/x(s) for some ¢ € Sn}}

(n:p(ty,t,)>m}

ad . -1 .
< K3n§JN§rn (1 v tlensf;gb(t)) )@(tgngnw(t)) <e.

(=) Write ({S,}; ) for the sum (2.3) and assume that Y({S,}; ) = o for
each covering S, = S(¢,,r,), n=1,2,..., of T with r, <R.

Taking ¢t €T and 2 <u; <u,< --- with Plsup, . g s, ) €(t) > u,} <
n~2 [recall that {£(¢)},. Syten) 18 @.8. bounded], the function ¢*(#) = u, for
t € S,(¢y,1) and y*(¢) = u, for t € S (ty,n) — S, (ty,n — 1), n > 2, has

PYE(y*)} < '}iﬂPO{g(t) > ¢*(t) for some t € T — S (t,,n)} = 0.
Clearly P,{A U B} < P A} + Py{B} so that Py {E(y A ¢*)} = P{E(W) Vv
E({*)} < Py{E(y)} and so, by completeness, it suffices to prove that
(2.12) o(t) = (4(2) AyY™(t)) v 2 has P{E(¢)} = 1.

Now take x,y > 0. Then we have, for 0 < r(s,t) < 1,
P{{(s) > x, £(2) >y}
<P{&(s) > x, £(2) >y, £(t) = £(s)}
+P{&(s) > x, £(2) >y, £(2) < £(s)}
< P{£(8) —r(s,t)€(s) > (1 —1(s,t))y, £(s) > =)
+ P{£(s) —r(s,t)E(t) > (1 —r(s,t))x, £(¢) >y}

1-r(s,t) 1-r(s,t)
1+r(s,t)y 1+r(s,t)
Further we have, for —1 < r(s,t) < 0,

{(s) > x, £(2) > v}

c {6(t) —r(s,8)E(s) > (1 —r(s,t))y, £(s) > 2}, y <x,
T {E€(s) —r(s,t)E(t) > (1 —r(s,8))x, £(8) >y}, y > x,

=2 P(x) + @ x| 2(y)-
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and repeating the above arguments we therefore readily conclude
P{&(s) > x, &(t) > y)
< @(3d(s,8)y)2(x) + (3d(s,8)x)2(¥)
for x,y > 0 and r(s, #) < 1 [the left-hand side is 0 for r(s,¢) = —1].
Take a (p/v)-net {s;}}_; in &5 with d(s;,s;) > p/v for s, # 5,. Since
A y
(2.14) Mﬁ“(kp/v)(p/v) sKZ(BW%?) < K,(8k)”

for 5§ < R and k > 1 [again using (2.5)], we obtain, by (2.13),
Y P{¢(s;) > v, £(s;) > v)

i#j

(2.13)

n [26v/p]

<20(v) )., Y > q_)(%d(si’sj)v)

i=1 k=1 {l<j<n:kp/v<d(s;,s;)<(k+1p/v}
<2n®(v) ¥ Ky(8(k + 1))’ ®(3kp) < 3n2(v)
k=1

for v > 0, § < R and some p > 1 (not depending on § or v). Since, by (2.10),
N,(1/v) < K5(8pPN,(p/v) < K,(8p)yn for 6 < R, we readily deduce, taking
K4 = 1K;1®(1)X8p) > and v=u V 1, for u € Rand 6 < R,

P{ sup £(¢) > u} > P{ sup £&(s;) > v}

ted; 1<i<n
(2.15) 2 n2(v) - Ejl’{f(si) > v, £(s;) > v}
> 3n®(v)

> K, Ny((1Vu) Y)@(u).
Now, combining (2.11) and (2.15) we get, for each choice of {S,,},
KX ({S);0)> ¥ P{ sup (1) > inf 20y

n=1

(2.16) > Z p{ supg(t) > mf :/;(t) A «/f*(t)} {sup £(t) > 2}
tes,

n=1 teS

> K,2(2) Z({Sn};tlf) = .
Let r,=sup{r>0: rinf g, . ¢(s) <a} for a <R A1, t€T, so that
a/y*(t) <1, < a/2. Taking §, 1 r, with 8, inf, g 5, ¢(s) < a, we get

a/(selslztfr)gp(S)) lgr:oa/(seél(ltf:b‘k) (S)) hm ak =T
(2.17)

o af( inf o)) <timaf( inf  (s)) < limr+e =,
/(seS(t,r,)gD( ) el0 /SGS(t,rt+e)¢( ) el0 ¢ ¢ ¢
Ordering #/={ACT: Aas#te€A=d(st)>r, Ar} partially by A <
B < A C B, a chain {A,} ¢ . has upper bound U{A,} so that, by Zorn’s
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lemma, . has a maximal element <. Here ¢’s maximality readily yields
U,ceS;, =T, where S, = S(¢,r,). Further, since #<€ N S, (¢y, n) <
Mg X0 n)(a/u ) < ®, we have #¢€ < R, and, by (2.16), Z({S,}; ¢) = ». Writing
¢, = inf, . g ¢(s) we therefore obtain, by (2.17),

(2.18) Y 2(¢) = Z Ns("t/a)‘b(%) = L({Sh;¢) ==

tet
Now let
of =@t 2/¢,
J, = {w € Q: ¢(w;t) > ¢f,inf g €(w;s) > <p,},
ey ={te €:m <p(t,t) <N}
Letting I, be the indicator of oJ,, we get
Py( E(¢)) =Po{ N U U {&Gs)>es) forsomesest}}

m=1N=m secgV

NnU{x 1,>0}}

m=1N=m te{"{"
(2.19) 2 2
> lim sup lim sup / Y I,dP| /E ( Y It)
m —oo N-o {Ztegnl\!llt>0}te_g”1:] tEg,,I,V
. 2
>1- liminflimianar{ y It} E{ y I,}) ,
m— o N> tE{WIlV teg”{\,

where the second inequality follows from Holder’s inequality. Write
s, = PlE(s) > ¢oF, £(8) > ¢} — P{é(s) > ¢F)P(£(2) > ¢f} fors,te €
and note that, since ®(¢}) > 1e%/2®(¢,), we have, by (2.9) and (2.17),

(2.20) E(L} = &(¢7) — P(£(t) > oF, inf £(5) < 0.} > de™20(p)

for t € ¢ and a < a,, for some a; < R A 1. Since, again by (2.9) and (2.17),

ar{ 7 zt} Y [PlE(s) > of, £(8) > oF) — P{JIP(J})]
te€N (s,)e€Nx €N

IA

)y K, ( > P{f(t) > ¢f, lnff(v) <¢’t})2

(s,)e€Nx€N te€N
+2 T ®(eNP(E) > ¢f, inf £(v) < ¢,
s, 0 ENxEN veS:

L waro@| T 9(@*))2,

(s,)e€NxEN NteglN

IA
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(2.19) and (2.20) show that in order to prove (2.12) it suffices to prove

(2.21) liminfliminf( ) Ms,t)/( Y @(got))zso fora < a;.

o N
me 7% Vs, neeNxeN te €N

Given an integer % > 1, partition €~ x €2 into
eih={(s,0):d(s,0) > R0 < r(s,0) <k (o) + (e1)] )

a3 ={(s.0:d(s,0) > Bor(s,0) > k7 (e0) + (1] ),

€3 n={(s,8):0<d(s,t) <R, r(s,t) > 0, 3o, < ¢, < 20,},

&4 v={(s,£):0 <d(s,t) <R, r(s,8) > 0, 0, > 20, 0r ¢, > 2¢,},
{

€o n={(s,8):d(s,t) > 0,r(s,t) <0} U{(s,):5=t]}.

Now we have, by (an analysis of the proof of) [14, Theorem 4.2.1],

(222) |, <] 2mV1-r(s0)" 21+7(5,0) |’
" for 0 <r(s,t) <1,

0, for r(s,t) <0,

- and using that 2¢*¢¥ < (¢¥)? + ¢})? and ¢(¢¥) < 50F P(p¥) we thus get

r(s,t) 1-r(s,t) .., £12
*= Vawd(s, )1+ r(s,0) exp{ -~ ()" + (470"
e/ Pp(oF)d( )
(2.23) < VZ Rkot ot
1/(2k)
. 16¢1/¢ 9\;1;_(;;)@(%) for (5,t) € €L

Further, again by (2.22), for ¢} > ¢¥, d(s,¢) > R and r(s,t) > 0,

@) s,
2 4L+r(s0)

r(s,t)
< ex
Mg, ¢ 27 R p

_dereel) [ B¢
= T8mr OT 8/
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Thus, taking C = R?/(48k) in (2.2) and using /2x e * < 1 and (2.17),

sup P(¢,) " Y [T

sedy) et (s, 0eEhE, ot =pt)

[oo =) 4(P;k

IA

sup
se€l

XX z R

I=2n=0gcgl. l<¢f<i+1,0,(n)<p(s,t)<o(n+1), r(s,t)>0}
R?(g})" R?
X ex _— )€ -
P 12 %P\ 7 48kr(s,0)

sup Z Z 2Ms (s,gs(n+1))(__)
s, l:l=2 {n>0: 0(s,0,(n))> 0} V3T R ° l1+1

y _R2l2} B C
exp{ 24 exp{ o-(s,Qs(n))}

C
sup [ )> NSp(s,os(n“))(R)eXp{_ m}}

se€N | {n=0:0(s,0,(n)>0}
8K, =2 (1+1)y R??
X ——Y |8 -
V37 R? Ez( ) eXp{ 24
[again using (2.5)]. Since
Z Q(QDt) =< NSp(tO,m)(a/um)9(2) < ®

te "

IA

IA

}EK5<OO

so that, by (2.18), lim _,, Lic enP(p,) = o, we deduce, by symmetry,

Zs el s 2K
(2:24) liming 0SBl gy e T8
Vo= (Lican®(er)) Nowo Y, cnP(¢,)

=0 fora<a,.

Clearly we have, by (2.13), (2.14) and (2.17), for s € €7,

Z /"’s,t

{telgﬂllvz (S,t)E{”?:’N, ‘PtZ‘Ps}

S§ »E

=1 te gl la/2p,)<d(s, ) <R AU+ Da/2p,), ¢,< 20}

. X 2®(¢,)P(3d(s,t)0,)

<28(95) X Moy, e an(@/(20,))2(3a) < Ke2(o,),
=1
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where K, does not depend on s. Arguing as for (2.24)-we thus get

(2.25) liminf( Y Ms,t)/( Y 9(<pt))2=0 fora <a,.

N=e (s,0€62 & tecN
Further we have, for s € €Y, by (2.5), (2.17), and (2.22) and using the facts
that ¢, > 2 and that x? exp{—Kx?} < (B/(2K))?/?,

Z /"’s,t
(ted):(s,DEEh N, 0> 205}
r(s,t)

3 V2md(s,t)y1 + r(s,t)

2 te€VN: lp,<p<U+Dep,, r(s,8)>0,0<d(s,t)<R}

N I G b
P\ + 1 (s, )

s

<
l

> (I+ 1o, ﬁ( a )exp{_(lz+1)¢f}

= =2 ‘/577(1 (l + 1)‘Ps 4
= 4K,(8R(l + 1)p,/a) (I + 1)¢? (1? - 1)¢?
< 9(‘[’3)1;2 3\/,;(1 eXp{_ 4 }
> Ky(2+y) "2(8R(L+1)/a)'” .
< Q(sos)lgz oo R exp{—(I* - 3)},

and invoking a by now familiar argument we thus obtain

) (2.26) liminf( Y ,us’t)/( Yy Q(got))2 =0 fora<a,.

N== \s,0edt y tegN
Finally we have, by the lower option in (2.22), for a < a,

YiceNl P — @(o* 2
(2.27) liminf > < liminf = ax(2(¢) —(;P‘) ) _
N oo (Etef;:;'g(¢t)) N-oow (Eteg”lyg((Pt))

Combining (2.23)-(2.27) we see that (given a < a,) the left-hand side of
(2.21) is at most O(1/k), and so (2.21) follows from sending & Te. O

Z(s,t)efnsl’Nﬂ's,t

COROLLARY 1. Assume the hypothesis of Theorem 1 and that d is a
complete metric. Then there exists an invariant (w.r.t.+ ) Haar measure u on
Borel sets of (T, d) with u(&,) < o for 8 < V2. If A is a version of this Haar
measure, then P{E()} = 0 if and only if there is a covering S, = S(t,,r,),
n=+1,2,..., of T with r, < R such that

(228) ¥ |1+ A(@n)NﬁR((l v tiégnl,,(tl)‘l)]@(tign«/f(t)) < .

n=1
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PrOOF. Since d(¢ — s,t, — so) < d(s, sy) + d(¢,¢,), the map (s,¢) > ¢t — s
is d-continuous. Hence (T, d, +) is a locally compact (Hausdorff) topological
group and u exists and is Radon where, by Remark 1 and local compactness,
O, is compact for 8 < V2. Now, by (2.4) and (2.10),

KzNﬁR(5/2) < KzaNﬁR(E) <1+ Kza)‘(ﬁa)NﬁR(e)
KlNﬁR(48) - 512‘3’K1Nﬁﬂ(6) - 5127YK,A(OR)

Nﬁa(e) < 1+

for ¢ >0 and 6 <R, and so the sum (2.3) is finite when (2.28) holds.
Conversely (2.28) holds when the sum (2.3) is finite since, by (2.14),

NﬁR(e)
Nﬁs(g)

< Nﬁn( R/2)MﬁR/2((R/2) A (25))Mﬁ(3/2>/\(23)(6)
K,16°N, (R/2)A(&r)
MEr /0 ns)

K,16°N, (R/2)A(&r)*
<
MOr ,4)M C5)

for 6 <R. O

REMARK 2. There is no loss of generality in requiring d to be complete (but
it is a restriction to require d to be a metric): There is a unique extension of
£(t) to a separable stochastically continuous Gaussian £*(¢) on the d-comple-
tion T* of T, and NZ&(e) = Ng,r(e) for S ¢ T*. So if {£(¢)},c r satisfies the
hypothesis of Theorem 1, then {£*(¢)}, c r+ satisfies the hypothesis of Theorem
1 with (T*,d) complete. Given € ¥ we define y*(¢) = y(¢) for t € T and
Yy*(¢) = o for t € T* — T. Since £*(t) is locally bounded we then have E(y) =
E*(y*).

Corollary 2 sharpens [22] and [28] (but they do not require stationarity); the
reader easily spots what conditions of Section 1 one can omit.

CoRrOLLARY 2. Assume that there is an R € (0, V2) such that (2.1) holds.
Then there are constants Cy,Cy € (0,©) such that

B P{Supteaﬁ(_tl) > u} <C, forueRandse]|0,R].
Ny((1Vu) H)d(u)

1

If in addition d is a complete metric and A is a version of the Haar measure,
then there are constants C,,C, € (0,) such that

C, < Plsup. 4,6(1) >_ul} <C, forueRands€][0,R].
[1+ME)N((1 v u) )| e(n)

In homogeneous space we have the following criterion for (2.2) to hold.
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ProposiTiON 1. If p(s + u,t + u) = p(s,t) for s,t,u € T and if there is a
function f: R = R such that, writing %, for an open p-ball of radius e,

Ng,...(R) Ng,...(R)
2.29 1< liminf —Z% = < limsup ——22__~ < o,
(229) LY TN R S RSP TNL(R)
then (2.2) holds if o(e) = sup{0 V r(s, t): p(s,t) > &} satisfies
(2.30) lim o(4)log Ng(R) = 0.

Proor. Take &y,A>0 with 1 +¢ < Ng . (R)/Ng(R)<y for x> A
and let p(0) = 0, o(1) = A and o(n + 1) = o(n) + f(o(n)) for n > 1, so that

Naoeo B/ N B) = T1 [Ny (B)Nay(R)] 2 (1 +)" = =

o(n+1) o(1)

as n — o, which yields lim,_, 0(n) = ». Taking n, such that
a(o(n)log Ng (R) < C/2 for n > n,, we now readily obtain

sup X Ns,,(s,g(n+1))(R)eXp{_C/O'(S:Q(n))}
SET (n>0: 0(s,0(n)>0} ’

ng o0
< nglNgM(R) + X Ng,,.(R)exp{-2log Ny (R)]

n=ng
ng 0
- —(n-1)
< L Ng (B)+ L yNg (R) (1+2) " V<, m
n=1 n=n,

ReEMARK 8. When (T, p) is metrizable there always exists a homogeneous
" metric generating the topology of T'; compare, for example, [11].

3. The Euclidean case. Theorem 2 extends (1.2) and (1.3) to a test for
all ¢ € ¥ and (3.1) is also an improvement ((3.2) is essentially due to Kéno
[12]. It is easy to derive (1.2) from Theorem 2 for increasing ¢’s.

THEOREM 2. If {£(¢)}, cgn is separable stationary standard Gaussian, if

(3.1) lim (0 V r(s,t))loglt —s| =0,
lt—s|—>x
and if there are constants ay,...,a,,8,C,,C, € (0,%) and functions fi,...,

f, = 0 on [0, 8] with lim, f(Ax)/f(x) = A% for A > 0 such that

C, i fi(lt; = s;l) <1 =r(s,¢)

32 7 ;

<Cy Y fi(lt;—s;) for0<|t—s|l<3s,
i=1

then E(¢) € F with P{E()} equal to 0 or 1 for ¢ € ¥, Moreover, writing A"
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for the Lebesgue measure on R™ and f;*(x) = sup{y € [0, 8]: f(y) <x},

0

P(E) =0 = ¥ [1 *A"(@k)ilf[lff*((l v tie“sfk“’(’))_z) }

E=1
xg(tlen;gb(t)) <
for some covering S, = S(t,,r,), k = 1,2,..., of R* withr, < 1.

REMARK 4. Since, by (3.2), f;(0) = 0 and, by (3.1) (cf. below), |t — s| — 0 as
d(s,t) = 0, we get f,(x) > 0 for x > 0 since otherwise, by (3.2), d(s, ¢) = 0 for
some s # ¢t. Thus 1/f; and 1/f;* make sense and d is a metric.

Proor. Here (T,p,+)=@R", |-|,+) and R=1. Take A >0 with
r(0,t) < ; for |t| > A and suppose |t| » 0 as d(0,t) —» 0. Then inf{d(0, ¢):
lt| > o} = 0 for some p € (0, A] and, picking s with |s| > o and d(0,s) <
0/(24), we get d(0,([A/o] + 1)s) < 1 so that r(0,([(A/o] + 1)s) > 3. Thisisa
contradiction since [(A/g)s| > A, and so, by homogeneity, |t —s| » 0 as
d(s,t) - 0. Further, lim, , fi(x) = 0, since liminf, ,(f,(Ax)/f(x)) X
limsup, o fi(x) < sup, <, 5 fi(x) for all A. Thus we have stochastic continu-
ity. Taking

R(t,e) = {s € R™:It, — 5| < 1f*((2nC;) "'6?), i = 1,...,n},
R(t,e) = {s € R™:It; — s, < 2((2C) "'6?), i = 1,...,n}

and g,0 > 0 with 3¢ < f*(fAe)) < 2¢ for ¢ < ¢ (cf. [10, page 11)), |t — s| <
0 A 8 for d(s,t) < g and 3n'2f*((2nC,)"0%) < 6 A 8, (3.2) easily yields

s € R(t,8) = f*((2nCy) ~"e?) > 2It, — s, = f*(fi(lt; — 51])) = s € S(¢,¢),
s €8(t,e) = It; — s <2f*(fi(lt; — s:l)) < 2£7((2C,) "'e?) = s € B(¢,¢)

for ¢ € (0,0]. Hence | - |-bounded sets are d-totally bounded, (T, d) is locally
compact and A" is a Haar measure on (T, d, +). Further, since S(¢,1) C
St 4A) and lim, , f*(Ax)/f*(x) = A'/* (cf. [10, page 10]), there are
K, Ky x9> 0 such that KTT7,f*(e®)™' < Ny(e) < K,I17_,f*(e®)~" for
e €(0,1]and K x™ < Ng4(1) < K,x" for x > x,. This proves (2.1), that (2.29)
holds for f(x) = (K,/K,)"x and [using (3.1)] (2.30). O

REMARK 5. Regularly varying r’s were first used by Berman [5].
REMARK 6. Theorem 1 also contains the case T = Z" for which, if (3.1)

holds, P{E(y)} = 0 & L, ,»P((¢)) < «: Since, by (8.1), S(¢, R) = {t} for R >
0 small, we have N, (¢) = 1 and Ng(R) ~ const. X x".
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REMARK 7. Theorem 1 also applies if 1 — r(s,t) ~ exp{—|logl¢t — s||"} as
[t —s| - 0, for some y € (0,1), since then lim, o N,(xe)/Ny(e) = 1. See
also [27] and [28].

4. The Brownian sheet. Let R? = {s € R": s,...,s, > 0}, let ® be the
class of functions 8: R} — R, let {W(¢)},cgn be separable zero-mean Gaussian
with covariance R(s,t) = I17_(s; A t;), define metrics p(s,t) =
%[2:; (log(ti/si))zll/z and Q(S,t) = \/i[l - H;‘=1((S,~ A ti)/(si \'% ti))1/2]1/2 on
R? and let F(8) = {w € Q: {t € R": W(w; ¢) > 6(¢)} is p-unbounded}.

COROLLARY 3. We have F(0) € & with P{F(0)} equal to 0 or 1 for each
6 € O and moreover P{F(0)} = 0 if and only if there is a covering {S,);_, of
R with closed q-balls S, of radius at most 1 such that

= 1 8(¢) o
£ orpeesov i ||
k=1 2 tesS, t]_ Xoeee th

inf __“"_”_) <o

teS, \Jt; X -+ X t,

X @

Proor. Take £(¢) = e~ 1t TtW(e24, .. e%r), t € R", to get r(s,t) =
[17_ e 175 so £(¢) satisfies the hypothesis of Theorem 2 with f(x) = x. The
corollary now readily follows from applying appropriate changes of variable
while keeping track of how these affect the p- and d-metrics. O

~ REMARK 8. Given s € R} we have p(s,t) —» « if some ¢; > ® or some
¢; 10. Corollary 3 handles these cases simultaneously: To study only one case,
let 6 be + on the relevant part of R} to rule out the other case.

REMARK 9. Sirao [23] studied Lévy’s multiparameter Brownian motion
(R(s,t)=s| + |t| — |t —s]) wrt. ¥ 2 ¢ = po| - | with ¢: RL > RL increas-
ing.

5. Two non-Euclidean examples.

ExampLE 1. Let g(t) = 1 — 2|¢ for |¢t| < ; and g(¢) = 0 otherwise. Then r:
R2 X R% - R given by r(s,?) = g(¢; — s;)g(¢, — s,) is a covariance function on
R2. Let {£(#)},cpe be zero-mean Gaussian with covariance r, put T =R X Z
and let p be the metric on T generated by that on R2 Then (T, p, +) is an
LCA topological group and {¢(¢)}, o is stochastically continuous standardized
stationary Gaussian. ’

Clearly S(¢,¢) = {s; € R: \/2(1 —g(t; —sy)) <t x{t}fort =(t,t) €T
and ¢ < V2. Taking R = 1 one therefore easily get Ny(e) =[(R /€)?] where
[x]=n if n — 1 <x < n. Hence (2.1) holds. It is also evident that p-bounded
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sets are d-totally bounded. Further (2.2) holds trivially since o (¢,0) = sup{0 V
r(s,t): s € T — S (t,0)} = 0 foro > 27172

ExampPLE 2. Let €= {e!™: 0 <x < 1} and define e!™ + ¢!™ = gim@+y),
Further equip T'= R X ¢ with ‘“component-wise’’ + and with the metric
p(s,t) = max{|¢; — s4|, arc(s,, t5)} where arc(s,, t,) is the (minimal) arclength
between s,, t, € €. Then (T, p, +) is an' LCA topological group.

Since r(s,t) = g(t; — s;)g(arc(s,, ¢,)) is a covariance function on T' there is
a zero-mean Gaussian process {£(¢)}, c » with covariance r, and £(¢) is stochas-
tically continuous, standardized and stationary. Further {s € T: |¢; —s;| <
162, arc(s,, t,) < 262 € S(t,e) C{s € T: |t; — s;| < 3¢, arc(s,, t,) < 1&?} for
e < V2, sothat [3¢71]% < N,(e) < [4e~2]2. Hence (2.1) holds (for R = 1). It is
also evident that p-bounded sets are d-totally bounded. Finally (2.2) holds
since o(¢,0) = 0 for o > 1.

Acknowledgment. I am grateful to a referee for spotting a technical
error.
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