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SHARPER BOUNDS FOR GAUSSIAN AND
EMPIRICAL PROCESSES!

By M. TALAGRAND

University of Paris VI.and Ohio State University

Under natural conditions on a class & of functions on a probability
space, near optimal bounds are given for the probabilities

Y f(X;) - nE(f) zM\/E).

i<n

feF

The method is a variation of this author’s method to study the tail
probability of the supremum of a Gaussian process.

P( sup

1. Introduction. Consider a probability space ({2, 2, P), and consider n
independent identically distributed (i.i.d.) random variables X, ..., X,,, valued
in Q, of law P. Consider a function f on Q. (We make the convention that by
“function”” we mean ‘measurable function’ and by ‘“set” we mean ‘“measura-
ble set.”) For n large, the quantity ¥,J,f(X;) —nEf is approximately
N(O, Vrn (Ef%)'/?). One could say that one of the objectives of empirical process
theory is to understand how well this approximation holds uniformly over a
class of functions. Consider such a class of functions .%. We are interested in
this paper in the quantity

sup | 3 f(X;) — nEf’,
feFlizn
which for simplicity will be denoted by
Z f(X;) - nEf” .
i<n F

Observe that this need not be a r.v. (i.e., it might fail to be measurable).
Measurability questions for empirical processes are, however, well understood,
and in order not to waste space on these, we will assume once and for all that
 is countable, so that no measurability problem will arise. We are interested
in bounds for

A1) ) =7, -

Y F(X,) - nEfn > M\/'rf).
i<n F

This question has been studied in particular by Massart [10] and Alexander
[1], following classical work by Kiefer [8] and Dvoretzky, Kiefer and Wolfowitz
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[3].

Throughout the paper we will assume that % is uniformly bounded. One
reason for this hypothesis is that it is often desirable, from the point of view of
statistics, that % has good properties independently of the underlying proba-
bility, in which case % has to be uniformly bounded [2]. Another reason is
that we need to have very sharp bounds when % consists of just one function
f, and that, when f is bounded, we can appeal to the work of [7]. Assuming %
uniformly bounded, there is then no loss of generality to assume that &
consists only of functions f such that 0 < f < 1. This allows us to control the
contributions of each individual function f to (1.1). It then remains to have
hypotheses that ensure that % is not too large. The hypotheses we will use
are classical. We first recall two standard notions.

Consider a metric space (T,d). We denote by N(T,d,s) the smallest
number of (open) balls of radius ¢ needed to cover T'.

Consider now two functions f}, f, on Q. We define the bracket [ f;, f,] as

[fi, ol ={Ff; fisf<fa}.
For two sets C,, C,, we define similarly
[C1,C.] ={C;C,cCcCy).
We can now state one typical result,
THEOREM 1.1. Consider a (countable) class € of (measurable) subsets of

Q. Assume that there exists a number V > 1 and a number v > 1 such that
either of the following holds.

(1) Given ¢ > 0 and any probability @ on () that is supported by a finite set,
we have

V v
(1.2) N(€,dg,¢) < (;) ,
where
(1.3) dg(Cy1,Cy) = Q(CLAC).

(ii) Given ¢ > 0, € can be covered by at most (V/¢)" brackets [C,,C,] for
which P(C,\ C)) < &.

Then for all M > 0 we have

2
62M

(1.4) ro(M) <

)

K(V) (K(V)Mz)
v

M

where K(V') depends on V only.
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COMMENT.

1. An actual (possibly nonoptimal) dependence of K(V) upon V will be carried
out in the proof.

2. The condition v > 1 is assumed for convenience in the computations.
If one assumes only v > 0, the same proof shows that 7,.(M) <
K(V,v) M?* e , where K(V,v) depends on V, v only.

3. Proving that (1 4) holds for all M > 0 rather than from M not too large
requires a number of unpleasant uninspiring computations. We have, how-
ever, decided to perform these to get the seemingly final result.

An important family of classes of sets are the so-called Vapnik-Cervonenkis
(VC) classes. Their importance stems from the fact that (modulo measurabil-
ity) these are the classes of sets that behave well independently of the
underlying probability [2]. Let us recall that ¢ is called a VC class of index
(= dimension) v if it does not shatter any subset of ) of cardinality v + 1, but
does shatter at least a subset of cardinality v. (¢ shatters {x,,..., x,} if given
a subset I of {1,...,n}, we can find a C € € such that x; € C if and only if
i € 1) Very recently, Haussler (improving a previous result of Dudley) proved
that a VC class of index v satisfies (1.2) with V = 4e [6]. Thus, in particular,
(1.4) holds for such classes, where K(4e) is a universal constant. [This is why
the dependence of the constant of (1.4) upon V is not a critical issue.]

How sharp is (1.4)? In particular, what is the correct power of M in the
right-hand side of (1.4)? Historically, the most important VC classes are the
classes @, of sets of the type x + (R*)¥(x € R?) in R%. It is well known that
@, has index d. It is known in that case (by looking at the limiting Gaussian
process) that if P is uniform on [0, 1], then for n large, T (M) is at least

cM?24-2¢=2M* where ¢ depends on d only [8]. Thus one certainly could not do

better than the exponent 2v — 2 in (1.4). In the case of @, the correct power
of M is M??~2 not M2?~! This is due to the fact that the size of the
coefficient of e~2M” in (1.4) is not influenced by the ‘“‘dimension” of all ¢, but
rather by the “dimension” of the subset of € consisting of the sets C € ¢ for
which P(C) = 1/2. In the example of @, this subset is genuinely smaller than
¢, and the correct power in (1.4) should be 2v — 2 rather than 2v — 1. It is
apparently not known whether this phenomenon occurs for all VC classes. But
we would like to point out that this is a combinatorial question about VC
classes, except when v = 1, where it is known that 2v — 1 is then the optimal
power (see [16] and the discussion therein) that is unrelated to the considera-
tions of the present paper. Our methods do allow us to obtain the correct
bounds for the usual classes, as is shown by the following result.

THEOREM 1.2. Consider a class € of sets that satisfies either hypothesis (i)
or hypothesis (ii) of Theorem 1.1. Assume moreover that for some numbers
V'ZF1,v>w>0andall §>¢>0, we have

(1.5) N(&;,dp,e) < V'§¥e7,
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where €5 = {C € ¢; |P(C) — 3| < 8). Then, for M > KVw , we have
TA(M) <K(v,v,w,V, V') M2 ~20e2M",

where K(v,v', w,V, V') depends only on v,v',w,V,V'.

COMMENTS.

1. In the case of ‘Q,, P uniform on [0, 1]¢, it is simple to see that (1.5) holds
for w=1,v =d.

2. It would not be too hard to carry out an explicit dependence for
K@w,v,w,V,V')in v,v',w,V,V’ (see Proposition 2.8 below).

Another question of interest is the possibility of obtaining small values of
the numerical constants involved in (1.4) in the case of VC classes. As will be
explained later, while (1.4) holds for each M, the reasons for which it holds
when M > n'/* are rather uninteresting. Our proof, as it is written, provides
unreasonable values of the constants involved; these large values occur out of
the necessity to control the values of M near Vrn . If one restricted attention to
the values of M < n!/*  the values of the constants provided by our proof
would already not be outrageous. But we have written the computations in the
simplest possible way, without any attempt to get sharp constants, and
certainly much improvement is possible in that direction. In particular, it must
be pointed out that while our approach is unlikely ever to yield optimal
constants, it essentially does not use chaining (that makes the search of sharp
constants hopeless). We have, however, felt that the search of sharp numerical
constants is better left to others with the talent and the taste for it.

Let us now turn to classes of functions. The following result parallels
Theorem 1.1.

THEOREM 1.3. Consider a (countable) class F of (measurable) functions f
such that 0 < f < 1. Assume that either of the following holds, where V,v > 1.

(i) Given £ > 0 and any probability Q on () that is supported by a finite set,
we have

(1.6) N(F,dg,¢) < (g)
where

1/2
(L) dotf.8) = ([(F-8)"aQ) .

(ii) Given & > 0, & can be covered by at most (V /&)’ brackets [ f,, f,] for
which E(f, — f1)? < €% .
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Then, for all M > 0, we have

M\
(1.8) T4 (M) < (K(V)W) e 2’

COMMENT. Due to a different definition of distances [there is no square
root in the right-hand side of (1.3)], one should replace v by 2v to compare this
statement with Theorem 1.1. One then realizes that exactly one power of M
has been lost in (1.8) versus (1.4).

There is a large number of possible variations on the theme of this work. As
exemplified by previous work in this area, one of the challenges is to obtain
clean results through clean computations. We have given only results where
this could be reasonably well achieved. We have, however, tried to make the
basic steps of the proof stand out in sufficient generality that many variations
could be carried out with limited effort. One obvious such variation would be a
result that would be to Theorem 1.3 what Theorem 1.2 is to Theorem 1.1.
Other possibilities are suggested in Section 2 or in the course of the paper. One
interesting case, in the situation of Theorem 1.3, is when one has more control
of

1/2

(1.9) o(F) = sup (E(f - Ef)*) .
fe s

While our approach does lead to progress in that case over the previous work
of [1] and [10], we have not succeeded to produce there a clean result that could
be considered as more or less the final word. Thus we will discuss only two
reasonably simple results, with somewhat sketchy proofs.

We now discuss the methods and the organization of this paper. The basic
idea was invented in the paper [19], where I study the tails of the supremum of
a Gaussian process with unique point of maximal variance. The idea is simply
that the main contribution to P(sup,., X, > «) should come from the vari-
able X, where variance is maximal. This is expressed by conditioning with
respect to X, and using the “concentration of measure phenomenon” on the
conditioned process, in the form of the Gaussian isoperimeteric inequality. As
it turns out, this method gives optimal order bounds for the tails of the
supremum of a Gaussian process in all known cases. Unfortunately, the
subsequent uses of this approach (in particular [15]) leave room for improve-
ments. So, our first task is to spell out the basic principle in the case of
Gaussian processes (Theorem 2.3) and to demonstrate how to use it. This is
the object of Section 2. The advantage of working in the Gaussian setting is
that there are much fewer technical difficulties, so 'that the ideas stand out
more.

The program is then to follow the same overall approach in the case of
empirical processes. The techniques to achieve that have been well under
control for some time. First, one has to find a substitute for the Gaussian
isoperimetric inequality. What one needs-is only of fast decay of r4(M) for
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certain classes %. The inequalities proved in [1] and [10] would be (almost)
sufficient for this purpose, but we find it much simpler to use the isoperimetric
inequalities of [20], [21], and [23] that apparently take care once and for all of
this class of problems, in the most general situation and in an optimal way.
This is the purpose of Section 3.

In Section 4 we prove (variations of) classical estimates on the tails of the
binomial law. These are obtained by brute force through Stirling’s formulas.

In Section 5 we use these ingredients to mimic the proof of Theorem 2.3 and
to obtain the basic inequality in the case of classes of sets. The proofs of
Theorems 1.1 and 1.2 are then completed in Section 6.

In Section 7 we consider the case of classes of functions. The main difficulty
there is that, in contrast with the case of sets, it is a priori not obvious how to
work conditionally on the event {L,_, f(X,) — nEf > u}. But, fortunately,
there is an almost miraculous way to go around the problem (Theorem 7.1)
using moment generating functions and an extreme point argument. This
method, however, gives no hope of reducing the power of M in (1.7) to v — 1.

Finally, in Section 8 we discuss the case of classes of functions for which one
controls the quantity of (%) considered in (1.9).

Throughout the paper, K denotes a universal constant that may vary at
each occurrence. Specific constants are denoted by K, K,, and so forth.

2. Gaussian processes and partitioning lemma. First, we recall the
following result, due essentially to R. M. Dudley, and which we will use many

times.

ProrosiTION 2.1 (Metric entropy bound). Consider a centered process
(Y,), < p. Suppose that there is a distance d on T such that, for all u > 0, we
have

Vs,teT, P(X,-X|>ud(s,t))<2exp(-u?).
Then

(2.1) EsupY, < K[ \log N(T, d, ¢) de.
0

teT

Concentrations of measure properties are essential in the understanding of
Gaussian processes. The following convenient inequality is one of the many
forms of these properties and is closely related to the Gaussian isoperimetric

.inequality. It is due to Maurey and Pisier [13]. (For our purposes, it is
essentially irrelevant to have the best constant in the exponent; the proof then
becomes simpler.)

ProposiTiON 2.2. Consider a bounded Gaussian process (X,),cp. Then,
setting o® = sup, .y EX}?, we have, for all u > 0,

u2
(2.2) P(supXt — EsupX, > u) < exp(— __2)
teT teT : 20
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We now turn to the basic inequality.

THEOREM 2.3. Consider a Gaussian process (X,),cry and set H =
E sup, . X,. Consider a r.v. Y such that the family {Y, X,,t € T} is jointly
Gaussian. Assume that

(2.3) VieT, E(Y(X,-Y))<0o.

Set o = (EY?)'/2, a = sup, . +(E(X, — Y)*)'/2
Then, ifa <o, u = H, we have

Pl suox 1 (u—H)*
> < — -
(sup% 2 u) < 3 ol -5z
(2.4) ,
a (u—H) u—H
+——ﬁexp VST +(b( ),
a*+ o 2(0* +a%) o

where ®(u) = [(1/ V2w )e " /% ds.
If, moreover, we have u > 2H, u > H + o, then we have

u au 1/au\? 2uH
(25) P(ts;ng,zu) SCI)(;) 1+K?exp§(?) )exp —;2—,
where K is universal.

CoMMENT. Observe that (2.3) holds in particular if EY? > sup, . EX2.

Proor. For t € T, we set
B E(X,-Y)Y) B E(X.Y) - o2

t =
0'2 0'2

We set
Z,=X,- (1+a,)Y,

so that E(Z,Y) = 0. Simple algebra now shows that
Vs,teT, E(Z,-Z) <E(X,-X)"
Thus it follows by the Sudakov-Fernique [4] inequality that

(2.6) EsupZ, < H.
teT

(We should also mention here that there is a more elementary argument that

yields E sup,.r Z, < 2H.)
Now, we write

P(supX, > ulY = w) =P(sup(Xt ~Y)>u-wlY= w)

teT teT

- P(sup(Zt +ta,Y)>u—wlY= w)
teT
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For w = 0, since a, < 0, we have
sup(Z, + a,w) < supZ,.
teT teT
Since E(Z,Y) =0 for all ¢t € T, the process (Z,),.r is independent of Y.
Also, EZ? < E(Z, + a,Y)? = E(X, — Y)? < a® Thus, from (2.6) and (2.2), we
get, for w <u — H, w > 0, that -

(v —w - H)2
(2.7) P(f:gXtZulY=w) sexp| - ———5— |-
For w < 0, since
[E(X,-Y)Y)| a
la,l = 3 <—x<1,
o o
we have
sup(Z, + a,w) < |w| + supZ, = —w + supZ,,
teT teT teT

and thus, for u > H, by (2.2) again
P(sup(Z, +aY)>u—-wlY= w) < P(supZt > u)

teT teT
(2.8) (- H)’
< - .
ol )
We have
x w2
P X, > = P X, >ulY = —-—|d
() = Pl v = ) e - 55
0 u-H *
= + + =1+ 1, + I.
IR RS A
By (2.8), we have
1 (u - H)?
Ils§exp T Tz |

By (2.7), we have, setting u — H = s, by a routine computation,

S | (s —w)® w? 4
I, < —x0V2 P 2a? 2q2 | *¥
a s? s?
- Va2 + o2 °xp 2a¢*(a™?2+07%) 2a®
a : s2

=———e — —————
V2 tof P72+ 0%

This proves (2.4).



36 M. TALAGRAND

We now turn to the proof of (2.5). First, we observe that

(u—H)? (u — H)? (u — H)?02
exp(—T) = ex (—m) X (—mz—)).
Now, since u > o + H, a < o, we have

(u — H) o2 a? Ka
exp(—m) < exp(—4—a2) < -

so that the sum of the first two terms of the right-hand side of (2.4) is at most

Ka (u - H)?

r p( ‘m)
Since

1 1

pranpei i i
this is at most, setting ¢ = ua/o?,
(u - H)* u2a2) Ko £2 ( (u—H)z)

QIQ
N )

9.9 Ka
(2.9) —exp

257 207 | S T fexP g exp 207
If we recall the well-known fact that, for x > 1,
(2.10) P(x) > —l—exp(—ﬁ)
2xV2m 2 )

we see since u — H > o that the right-hand side of (2.9) is at most

& (u-H
Kfexp—z——(b( - )

To conclude, we observe that
O(x —y) < e®P(x)
if x > 1, y > 0. Indeed the function
f(y) = e*®(x) — &(x ~ y)
satisfies f(0) = 0,

() = 20e*®(x) — S==e*7¥"/2

’

so that f'(y) = 0 by (2.10). O

+ As it turns out, Theorem 2.3 seems to be a universal tool to get proper
bounds on the supremum of a Gaussian process, by breaking the index set into
suitable pieces to which one applies the basic inequality. We first consider a
simple case that is closely connected to our further results on empiricals. We
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will then sketch out several applications of Theorem 2.3 that demonstrate its
power and that also have versions for empirical processes. The following is (an
improvement of) a result of Samarodnitsky [15]. (It should be recalled that the
results of [15] were actually obtained after this author pointed out the relevence
of the approach of [19)).

THEOREM 2.4. Consider a Gaussian process (X,),c p. Let o = supt;_T EX2.
Consider the canonical distance d on T given by d(s,t)* = E(X, — X,)*. As-
sume that for some constant A > o, some v > 0 and some 0 < gy < o we have

A v
e<gyg=N(T,d,¢) < (—) .
£
Then for u > o¥(1 + Vv )/e,] we have

(2.11) P(supX > u) (?u) ‘I’('li),
teT vo

where K is universal.

CoMMENTS. If &, = o, the condition on u is u >o(1+ Vv). It is not
restrictive as we cannot expect an interesting bound unless u is of order at

least E sup,., X,, which can be of order as large as Vv ylog(eA /o) .

The method of proof is as follows. Consider a < o and H > 0. We partition
T in N pieces (T}), .y, each of diameter < a < o, and for each of which
E sup,.r, X, < H. By (2.5) we get, when a <o,u >H + o, u > 2H,

1 au 2uH
1+K—exp2( ))exp( 5 )
o? o

(2.12) P(supX, > u) <N<b( )

teT

As it turns out, the only way the term e/ ** does not have a catastrophic
influence is if uH /o2 is bounded independently of u. If we brutally partition
T in N < (A/a)’ sets T; of diameter 2a, by Proposition 2.1, we get only

a A 1/2
H< fz \/log(A/s)v de < Ka\/a(log ;) .
0

Then one has to take a of order u~(log )~ !/2, and then N gets too large [an
extra term in (log u)"/? appears]. To get around this difficulty (which will
creep up again in the proof of Theorem 1.1), we need an (essentially well
known) partitioning lemma (see [12]; con51derably more subtle results are
obtained in [22]).

LeMMa 2.5. Consider a metric space (T,d) and p,q € Z, p < q. Consider
a partition &, of T, such that each set of &%, has dzameter < 479, Consider
integers k;, p < [ < q. Then one can find an mcreaszng sequence (#)), ;<4 Of
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partitions of T with the following properties:

(2.13) Each set of &, has diameter less than or equal to 441,
(2.14) Each atom of &, contains at most k; atoms of &, ;.
card &,

(2.15) Vi<gqg, card# <N(T,d,47") + 7
l

Proor. The partitions &, are constructed by decreasing induction over /.
We show how to construct &, once &,.; has been obtained. Set N =
N(T,d,47"). Consider points (¢;); . 5 of T such that each point of T is within
distance 47! of at least one point #;, i < N. For i < N, define A; as the union
of all the sets of &, that intersect the ball centered at #; of radius 4.
Thus, since each set of &,,; has diameter < 47!, A, has diameter at most

2471+ 2471 =471"1,
Define now C; = A;\ U ;_;A;. These form a partition @ for T, that is coarser
than &, ;. Certain atoms of @ might contain more than k; atoms of &, ;.
Any such atom can be in turn partitioned in sets, all of which except one are

the union of exactly &, atoms of &, ,, the exceptional set being the union of
at most k; sets of &, ;. This constructs &, and (2.15) is obvious. O

COROLLARY 2.6. Suppose that in the preceding lemma we have N(T, d,4™")
< (A4Y)’ for I > p and card F, < (A49)°. Then, if k; = 2+ 4" for all I, we
have card &, < 2(A4')".

Proor. By decreasing induction over /,
2(A 4+ 1) v

2(A4Y)".
, < 2(A4) O

(A4))" +

We go back to the proof of Theorem 2.4 and we show how to partition T to
deduce (2.11) from (2.12). There is no loss of generality to assume T' finite. We
consider g large enough that s,z € T = d(s,¢) > 479 We use Corollary 2.6
with £, =[2-4°]1+ 1 < 3 - 4%, and, for each [ < g, with 4/ < ¢, we find a
partition of T in N < 2(A47%)” sets (T}); . 5 such that, for m > [, we have,
for all i < N,

N(T;,d, 4 ™*") < (3-4)"7".
Using Proposition 2.1, we have by a simple calculation

(2.16) EsupX, < Kfv4~'.
teT;
“We now take for ! the smallest integer such that 4~/ < Vv o2/4Ku, where
K is the constant of (2.16). Thus, assuming, as we may, K > 1, we have
4! <¢, provided u > Vvo?/e,. We have N < (16KAu/ Vo o?)Y, since
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47! > Vv o?/16Ku. Also we have
H<vo?/4u, a<4'"*'<Vwo?/u.

Observe that, since u > Vv o, we have H < Yv o < u/4, and we have a < o, so
that the result follows by (2.12). O

Our next application is an improvement of another result of Samarodnitsky
[15] that is related to Theorem 1.2.

ProposITION 2.7. Consider a Gaussian process (X,),r and denote by d
the distance induced by the process on T. Set o = sup,.(EX?)'/?, and, for
6> 0, set

T,={t€T; E(X?)>0®— 8%}.
Consider numbers v = w > 1 and assume that for all 6§ >0, ¢ >0, ¢ <
8(1 + Vv)/ Yw , we have
(2.17) N(Ts,d,e) < Ad%e™".
Then, for u > 20vVw , we have

Aww/? u\"" (u
(2.18) P(supX, > u) < 7 K”*"’(?) q>(—).

teT g

Proor. We set 8, =0, 8, = Vwa?/u, and, for k > 1, we set 5, = 25715,
For k > 1, we set U, = T5 \ T;, . Setting g = 8,(1 + Vv)/ Vw , we have

o?(1+ 1/17) - ctw

€o 6,

=u’

and thus, setting o2 = o2 — §7_, and applying Theorem 2.4 to U, we get
P( sup X, > u) < Aa,;#(—Ku—)vq>(—u—).
telU, \/170'k2 (Y
Denote by %, the largest integer such that 8, _, < /2. Since u > 2Vw o, we
have ko > 2 and 8, _, > 0/4. For k < k,, we have of > 30%/4, so that

» Ku \'o u?
P(supthu)sASk 7;? ZeXP _m .

tel,

Since we have

we see that
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Now, we have

u?s?_, u?di_,
6¥ exp| — = 5% + 67 —
k§1 * Xp( 204 ) ' k§2 y exp( 204 )

< 6{”(1 + ) 2wk exp(—w22k'3))'

k=2
< (K§,)".
Thus, if we set T = U, £,Us» We have, recalling the value of §,, that
w/2 u \vw u
(2.19) P(ts:%)lxt > u) <A Kw+v(?) cp(;).

For ¢t ¢ T', we have
E(X?)<o®-6f_,<0®—0%/16 = 150%/16.

Thus, if we use (2.17) for 6 = o and we apply Theorem 2.4, we see that for
u > ovw we have

2.20) P sup X,2u)=<A Ku ) 2o
. > < w .
( et N R P

To conclude, it suffices to check that for x > Vw we have ®(4x/ V15) <
(Kw)“/?x~*®(x), so that the left-hand side of (2.20) is dominated by the
left-hand side of (2.18). O

ComMENT. If we suppose w > 0 rather that w > 1, the only difference lies
in the dependence in w of the right-hand side of (2.18).

We finish this section with two more applications of Theorem 2.3. The
following was proved in [17] using also the concentration of measure phe-
nomenon, but in a different way.

ProrosiTiON 2.8. Consider a Gaussian process (X,), r. We assume that T
is compact for the natural distance d and that the process (X,),cr is continu-
ous for d (see, e.g., [19] for complete definitions). Let o = sup,.(EX)'/2.
Then, given ¢ > 0, we can find u(e) such that

N u2
u= u(s) ==P(Sl‘lg)(t = u) < exp(ue - 572-)
te

SKETCH OF PROOF. Since the process is continuous, we have

limE sup |X;,-X,=0.
-0 g(s,0)<é
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Fix ¢ > 0 and pick & > 0 such that

E sup IX,-X|< 802/8.
d(s,t)<é

Set a = 0?/e/4u . By (2.5) we get, for u large enough that a < 5, that
. u Eu AN

P(supXt > u) < N(T, d,a)d)(—)(l + K exp —)exp(—)

teT o 4 4

KN(T,d cp( z (eu
< — — .
< (T,d,a) O_)exp 2)
Now, by Sudakov minorization, for all n > 0, we have

N(T,d,a) < exp%

for a small enough. Thus, taking n = o*¢%/8, we have N(T,d,a) < expeu /2
for a small enough (i.e., u large enough). This completes the proof. O

COMMENT.

1. In [17] a result of the same nature is proved when the process (X,);cr is
only assumed to be bounded; but this does not seem to follow from
Theorem 2.3.

2. It should be pointed out that, instead of (2.5), one could use the cruder
inequality

P(supXt > u) < 2exp(—(u—_H—)2),

2
teT 20

which follows immediately from (2.2).
We now turn to the main result of [19].

ProPOSITION 2.9. Consider a Gaussian process (X,),c r; suppose that T is
compact for the canonical distance d. Suppose that there is a unique point
s € T for which

EX? = supEX?.
teT

Forh >0, set T, = {t € T; EX, X, > 0% — h?.
Assume that E sup, . p X, < © and that

E sup, 1, X,

li =0.
pm —— 0
Then

. P(SupteTthu)

lim =1.

u—0 (I)(u/O')
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Proor. Consider 1 > n > 0. Consider k such that
(2.20) h < 2h,= Esup X, < n°h.

teT,
We can and do assume h, < on2 Since we have assumed that T is compact,
we have

sup EX? < o2,
teT,,

since otherwise there would be s’ & T}, (so that s’ # s) for which EX2? = o2,
and this contradicts the hypothesis that there is a unique point of max1mal

variance.
By Proposition 2.8 we see that it suffices to prove that for some universal

constant K we have

P( sup X, > u) < (I)( )(1 + Kn)

teTy,

for u large enough. We fix u and we set @ = 02/nu. We set V_, = &. For
k > 0, we set
Vk = Tzka, Uk = Vk AN Vk—l'
Consider the smallest integer p such that 2P« > h,. We have
T,,c U U.

0<k<p

Setting H), = E sup,y, X;, we see by (2.20) that for £ <p we have H, <
4an?2*. Setting
b, = sup (EIX, - X,1*)"”,

tev,
we see (since s € V}) that
(2.21) b, < KH, < Kan?2*
By (2.5) we have

u
P( sup X, > u) < CI)(——)(I + Kn exp Kn?)exp 27
telU, o

< CI)( )(1 + Kn).

To estimate P(sup,cy, X; > u) for k > 1, we appeal again to (2.5). We now
take the r.v. Y of Theorem 2.3 to be Y, = (1 — (a2 12 /0% X,. [It is then a
simple matter to see that (2.3) holds by definition of T}.] Then we have, since
E2pand hy <on?

h
(E(Y, - %)% = (a2"")? /e < —a2h ! < na2k.
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It follows from (2.21) and the triangle inequality that if we set
1/2
a, = sup (EIX, - Yk|2) ,

tev,

then a; < Kn’a2*. Thus by (2.5) we get (since n < 1)

P( sup X, > u)

tey,

u

0'(1 - (a2k_1)2/0'2)

< CIJ( )(1 + Kn2* exp( Kn?2%"))exp( Kn2*)

< cp( “
0'(1 — (a2F71) /0'2)

)exp(Kn22k).

We observe that, for x < 1, we have (1 — x)™! > 1 + x, so that

u u a2 1%y
Ju, ()

o(l- (a2t )/0?) @ 20°

Also, it is immediate to see that, by a change of variable,
P(x+y) <e ™P(x)
for y > 0, so that, recalling the value of «,

<I>(0(1 - (a:k'l)z/o-z) ) < @(;)exl)(_ (aZka-i) uz)

u 22k
< CIJ(—)eXp(— ——)
o 47

Thus we have

y P(supthu)scp(ﬁ)( y exp(—22k(%—Kn))).

l<k<p ‘t€l, O/ \1<k<p

For n sufficiently small, this latter sum is < 7. This completes the proof. O

3. Isoperimetric bounds. We first recall some general tools. Through-
out the paper, we denote by (¢;); ., an independent Bernoulli sequence [i.e.,
P(e; = 1) = P(¢; = —1) = 1/2] that is independent of the sequence (X)), . ,.
We denote by P, and E,, respectively, the conditional probability and the
conditional expectation given (X,), _,,.
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Lemma 3.1 (Giné and Zinn [5]). Consider any class & of functions on a
probability space. Then we have

(3.1) E| ¥ f(X,) — nE(f) S2E Zﬁif(Xi)“
i<n i<n F
Vi>o0, ( Zf(X)—nE(f) >4t)
(3.2) i<n
S4P( Y& f(X) Zt).
i<n F

The following is also an idea from [5].

CoroLLARY 3.2. Consider a class & of nonnegative functions on a probabil-
ity space. Then

<nsupE(f)+2E
F  feF

Z & f(X;) ”
F

i<n

Bl Y f(X)

i<n

Proor. We observe that, for all f € %, we have

X f(X,) —nE(f)| +nE(f)

i<n

Y (X)) <

i<n

<| X f(X,) - nE(f)

i<n

+ nsupE(f).
fe F

To get the result, we take the supremum over f on the left-hand side, we take
expectations, and we use (3.1). O

Lemma 3.3 (Ledoux and Talagrand [9], Theorem 4.12). Consider a class F
of functions such that —1 <f<1 forfe &. Then

<4FE

£ e f(X) Hy

i<n

zef<x>f

i<n

Combining Lemma 3.3 and Corollary 3.2, we get the following result.

CorOLLARY 3.4. Consider a class ¥ of functions on a probability space and
assume that —1<f<1 forallfe &. Set 0® = sup;c o E(f?). Then

(3.3) E| Y f2(X) <no?+ 8E

i<n

Z & f(X,) ”
F

i<n
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Throughout the paper we will use the following notation: We consider for
L,S > 0, the function ¢; ¢(¢) defined for ¢ > 0 by

t2
qDL,S(t) = % ift SLS,

t et \V?
¢L,S(t) = Z(logﬁ) if ¢t > LS.

We observe that ¢; ¢(¢)/t increases.
We now come to the following absolutely general principle.

TueEOREM 3.5. Consider a class & of functions on a probability space.
Assume that 0 <f <1 forall fe &. Set

Y & f(X;) o= sup (E(f - Ef)?)
feF

1/2
, .
i<n F

H=E

Then, setting S = no? + H, for some universal constant K,, we have

L f(X;) —nE(f)

i<n

t2K1H=P(

> t) < exp(—ex,, s(2))-
7

REMARK. The author hopes that the relative case with which Theorem 3.5
is disposed of will convince the reader to learn how to manipulate the isoperi-
metric inequalities of [20], [21] and [23].

Proor. There is no loss of generality to assume that the probability P has
< no atoms. Consider a function 8 which to each finite subset F of () associates
a number 6(F). Assume the following:

(3.4) FcG=0(F) < 6(G),
(3.5) 6(FUG)<6(F) + 6(G),
(3.6) O0(F) <card F.
Since we assume that P has no atoms, the points X;,..., X, are almost

surely distinct. We can consider the function Z = 6({X}, ..., X,}). When this
function is measurable, it follows from the isoperimetric inequality of [21] that,
for some universal constant K,, we have, for ¢t > K, EZ,

t et
. P(Z>t ——1 .
(3.7 (Z = )sexp( X, OngEZ)

This inequality can also be derived from the newer and simple inequality of
[23] (but the derivation is less immediate); but the inequality of [21] itself has
now received a very simple and elementary proof [24].
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Consider the class « of functions f — Ef for f € &. Thus

T F(X;) = nE(f) H Lex)| .
t<n t<n
Also, we observe that (averaglng in X,,..., X, inside the supremum rather
than outside) '
E| Y & Ef s H,
i<n
so that, by the triangle inequality,
E|Y &8
i<n
We apply (3.7) to the functions
0({x17 ] xn}) = Es E gig(xi) ’
i<n &z
and
(s 5) =| Do
z<n

respectively, to get that, for u > 2K, H, v > 8K,S, we have

u eu
(3.8) P(Ee iieig(Xi) Lz u-) Se"p(‘le"gﬂ’z—H)’

v ev
(3.9) ( E;g ) < eXp(‘ K, 6 8K, )

[We have used that, by Corollary 3.4, we have E|Z, _, 8% X))ll-< 88S.]
We now appeal to the isoperimetric inequality of [20] to get that, for

t > 4E,|L; _,&;8(X)l.s, we have
t2
| geecn] 2 ] <2em - AT O
Thus we get
P( Yeg(X)| = t) < 2exp(—~tz~) ( Yeg(X)| = ‘i)
isn & . 32v i<n 4

Y&

i<n -

Y
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We use (3.8) with u = ¢/4. Thus, for ¢t > 8K, H, v > 8K, S, we have

P R ¢? t . et
>t] < -—— |+ -
o0 =P T | TP\ T 8K, ¥ 8K,H

N v ) ev
exp K, og 8K,S )"

If t <8K,S, we take v = 8K, S, and we observe that v > ¢2/v to obtain
the result. If ¢ > 8K, S, we take

Y &:8(X;)

i<n

et -1/2
K,S

and the result follows by simple calculations. O

v = t(log

Let us observe a simple property of the function ¢; ¢(2).

LeMMA 3.6. One can find a number K(L) depending on L only such that
(3.10) . Vit<K(L)WS, ¢, s(K(L)t/S) > 1122

CoMMENT. The number 11 could be replaced by any other.

Proor. If K(L)#/S < LS, then

K(L)* |

o1 s(K(L)tS) = 77t

If K(L)t/S > LS, then we have

K(L)t/S . etK(L) \"?
) (og e ) .

Since the log is at least 1, if K(L)tVS > 11¢2L, the result holds. Otherwise, we
have ¢ > K(L)VS /11L, so that since ¢ < K(L)VS, we have

(eK(L)2 i
log

P, S(K(L‘)t‘/g) =

t2
> —
L

QDL,S(K(L)t\/—g) 11L2

Thus it suffices to take K(L)?> = 11L2? exp(11L)%. O
Here is a simple corollary of Theorem 3.5.

COROLLARY 3.7. There exist two universal constants K, ay > 0, with the
following property. Consider a class F of functions on a probability space and
sassume that 0 < f <1 forall f € F. Assume that

supE(f— Ef)2 < a,.
fes .
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Let 4
H=E| Y &f(X) ” .
i<n F
Then, if
(3.11) n>K,H, Mn >K,H,
we have

(M) < K; exp(—11M?).
ComMENT. The number a, will be used throughout the paper.

Proor. We set S = na, + 8 H. Thus, by Theorem 3.5, we have
Mn 2 K\ H = r(M) < exp(~gx, s(MVn)).

We observe (and this will be used many times) that, since |f(X,) — Efl < 1, we
have (M) = 0 unless MVn < n, so that one can always assume M < Vn .

We now use Lemma 3.6 with ¢t = Myn, S’ = n/K(K,)®. We observe that,
since M < Vn, we have t < K(K DVS’, Thus, by (3.10), we have

ok, s(MVn) > 11M2.

Since ¢ ,(¢) is an increasing function of x, we are done if S’ > S. But this
occurs if ay = 1/2K(K,)% n > 16 K(K,)’H. O

4. Binomial coefficients. Certainly it is hard to say something new
about binomial coefficients. However, we have not found in the literature the
exact property we need here. In any case, the reader might appreciate that we
give a computationally very simple derivation, of the bounds we need. Consider
1 <k <n — 1. Using Stirling’s formulas as, for example, in Robbins [14], we
get

n KVn n"
(k) = Ve(n— k) R (n—k)"

Setting ¢ = & /n yields
(n) Kvn ( 1 )”
< .
k)= Jr(n—k) |41 — 1)}

Thus, given a > 0, we have

n

Ha-a(2) s %((%)t(ij)l_j |
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Setting u =t —a =k/n — a, we get
(4.1) a®(1 —a)n_k(Z) < ﬂexp(—n‘l’(u,a)).
T VR(n— k)
where
Y(u,a) = —(u+a)loga + (u + a)log(u + a)
+(1 - (u +a))log(l - (u+a))
-(1-(u+a))log(1l -a).

To understand better the function ¥, one checks by direct computation that
(0 0 i 0 0
( ,01) - Y 5;( ’ a) -

and
2y 1 4
dur  (wte)(l-a-u) 1-4(u-(}-a))?

In particular, we have

oo (o))
)

The function A(B) = (u — B)? + B2 is minimum at B8 = u /2, so that

Thus

v 16 1
(42) E(u,a)z4u+?((u—(§—a)

4 2
—_— +_
au(u,a)z ut gu

and thus
ut
(4.3) Y(u,a) > 2u® + 3

LemMmA 4.1.  Assume that ay < o < 1 — a, (where a, has been introduced
in Corollary 3.7). Then, for all k such that an <k < n, we have

. : K 4
ak(1 - a)n_k(;:) < -—‘/—;—-exp(—n(Zu2 + ur)),

where we have set u = k/n — a.
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Proor. If k <n(l —a,/2), we have n — k > na,/2, so that
Vn 11
—_— S —
VE(n %) ~ Vn y/a2/2

and the result follows from (4.3) in that case. .
If k>n(1-ay/2), k <n, we have u > a,/2, so that by (4.1) and (4.3)
(and since n — &k > 1)

ak(1 —a)n_k(Z)

K ,  ut .
< ﬁ\/(—lTﬂ) exp(—n(2u + Z))[\/Eexp(—nao/m)]

and the result follows since the last term is bounded independently of n. Only
the case £ = n remains. It is left to the reader. O

COROLLARY 4.2. Assume that ag <a <1 —a,. Consider 0 <w <u < 1.
Then

4

K u
e exp(—n(2u2 + T) + 5nu(u — w))

Y a1 _a)n—l(rlz) <

I2n(w+a)

Proor. Consider the function h(x) = 2x2 + x*/4. It is convex, so that for
all x we have

h(x) =2 h(u) + (x —u)W(u).
Thus, by Lemma 4.1, we have

L d-a(7)

I>n(w+a)
< —exp(-nh(w) L exp((me - (I na))K(u)
< —— eX —n u € nu — —na u .
‘/E P I2n(w+a) P

We observe that 4u < #'(x) < 5u. If we denote by [, the smallest integer with
ly = n(w + @), we have

Y exp((nu—1+na)k(u))

I>n(w+a)

= (1 —exp(—k(u))) 'exp((nu — Ly + na)k(u))

K
< ) exp((nu — Iy + na)h (u))

IA

K
;exp(5n(u—w)u). . |
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5. Basic inequality: the case of sets.

THEOREM 5.1. Consider a class € of subsets of . Consider a certain set
C, € ¢ and assume that a, < P(Cy) < 1 — a, (where a, has been determined
in Corollary 3.7). We set

H=E ZEiICACO(Xi)“ , a=supP(CacCy).
€

i<n ce?

Then, if M > 4/a,, we have

KMH M*

Vn 4n |’

K 2
T.(M) < Me‘zM exp(KaM2 +

We first present a lemma that will allow us to bring in classes consisting
only of small sets.

LemMA 5.2. In the situation of Theorem 5.1, consider the classes of sets
&, ={C,\C;Ce€), € ={C\CyCect).
Consider a subset I of {1,...,n} and the event
Q,={ieleX C,l.

Set k = card 1. Consider the random variables defined on Q; by

) _P(C)
&0 S PR 7n) P
_ . P(©)
(5.2) F, = i§IIC(Xi) (n k)P(Cg) {2.
Then on Q; we have
2a
(5.3) || X 1.(X;) —nP(C)| <|nP(Cy) —E||1 + ;l——) + F, + F,.
i<n € 0

Proor. Consider a set C € €. We observe that
C=(CNCy) U (Cy\(Cy\0C)).
Thus \
card{i < n: X; € C} = card{i < n; X; € Cy}
+ card{i < n; X; € C\ Cy}
—card{i < n; X, € C;\ C}.
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Now we observe that

P(C\C o ChCo) | PCNGy) P(Q\C k
n ( O) (n )P(Q\Co) _P(Q\Co),n ( N 0)—(n_ )l
a
< —|nP(Cy) — k.
24
A similar inequality for
P(Cy~ C) kP(Cy\ C)
n _ e )
° P(Cy)

completes the proof. O

Consider the probability P, on Q given by P,(A) = P(A n C,)/P(A).
Consider i.i.d. r.v. Y3,...,Y, distributed according to P,. Then, conditionally
on );, F; is distributed like

V(k) =| X 1c(Y;) — kP(C)

i<k

1

Thus we will be able to bound the tails of V(k) using Theorem 3.5.

Lemma 5.3. Consider a class F of functions and set

Z & f(X;)

i<n

H=E

F

Consider a subset C, of Q, with ay <a=P(Cy) <1—a, Consider the
variables (Y;); _, as above. Then

E| Y & f(Y,)| <KH.
i<k F
Proor. We observe first that
E| Y & (X)) >E,| Y &f(X))
i<n 4 X, €Cy €
Thus, if we set
G, =E| Y& f(Y) ” ,
i<l F

taking expectations we have
H> Y o(1- a)"_l(';)Gl.
O<l<n

Thus there exists ! > an such that G, < 2H. Since k <n <l/a,, we have
E(G,) < E(G)/a,. O
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We now observe that

a
sup Py(C) < —.
Ce?¢ Qg

Thus we see from Theorem 3.5 that

where S’ < K(na + H). Certainly the same bounds do hold for P(F, > ¢|Q);),
so similar bounds (with different constants) hold for P(F; + F, > ¢|Q;). We
observe that these bounds are independent of %.

ProrosiTiON 5.4. We have

L 1¢(X;) — nP(C) + W,

i<n

2a
SnU(l + —

Qo

€

where the random variables U and W have the following properties: W > 0,
and for all t > 0, u > w > 0, we have

(64) PUzw,W=>t) < il exp(—nh(u) — ¢(t) + 5nu(u — w)),
Vnu

where h(u) = 2u? + u*/4, and where
o(t) = 0 ift <K,H,
o(t) = ok, s(t) ift=K,H,

" where we have S = an + H.

Proor. We set U =(1/n)lna — L, _,1c(X,)|. On each set (;, we define
W = F, + F,, where F, and F, are given by (5.1) and (5.2). Thus we have

{(U=w} = U ({Q;lcard I — nal > w}.
Thus

P({U > w))

IA

- 1)+ oda-om(3)

I>n(w+a) l<n(a—w)

roda-am (1) T oa-ate(7),

I>n(w+a) Izn(w+1-a)

so that, by Corollary 4.2, we have

P{U = w}) < \/gu exp(—nh(u) + 5nu(u —w)).
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The result then follows from the fact that
P(W = tlQ;) < K exp( —¢(t))

whenever I c {1,...,n}. O

We now go back to the proof of Theorem 5.1. We keep the notation of
Proposition 5.4.

Consider the function ¢ defined in the proof of that proposition. The
function ¢(t)/t increases. We define u by u(l + 2a/a,) = M/ Vn, and we
note that u < 1. We consider the smallest d > 1/u such that ¢(d)/d > 11u.

Suppose that nU(1 + 2a/a,) + W > Myn .

Consider the smallest / > 0 such that

nU

1+2—)>M\/E—(l+1)d
)

Then, if I > 0, we have

<Mn -

so that W > Id. Thus, since W > 0, we can find ! > 0 such that
(I+1)d

n

2a
nU(l + —
ay

W=>Iid, Uzu -

By Proposition 5.4 this implies

(M) = ( X 15(X;) - nP(C)

i<n

>M1/Z)

K h S5u(l + 1)d ld
< T (—7h(w)) T exp(Bu(l + 1)d - o(id)).

For [ > 1, we have
o(ld) = lo(d) = 11uld > 5u(l + 1)d + lud
so that -

Y exp(5u(l + 1)d — ¢(Id)) < ¥ exp(—lud) < K
I>1 =1

as ud > 1. Thus we have

K
(M) < T exp(—nh(u))exp(5ud).

To estimate d, we use (3.10) with ¢ = uK(K,)VS to see that ok, s(dy) =
11dyu, where d, = KuS, so that we have d < max(1/u, KH, KuS), *and thus

HM
ud < K|1+ —

= +aM2).
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To conclude the proof, it remains to evaluate exp(—nh(u)). We write

M M M
h(u)Zh ﬁ +(u—7—i)h’(ﬁ)
5 M 5 M M
=MW ) (72—_“)77
M M?
>h ﬁ —KGT.

Theorem 5.1 is proved. O

6. Classes of sets. Our aim is to prove Theorem 1.1. The hardest case is
(i), where condition (1.2) holds. Until further notice, we assume that € is a
class of sets that satisfies (1.2), where V > e. The necessary modifications to
cover case (ii) will be indicated later on.

LEMMA 6.1. Consider a class € of sets that satisfies (1.2) and points
Xq,...,%, of Q. Set

b= Z 1o(x;) ‘ .
i<n £
Then we have
Vn
E|Y glo(x) || < KV buv logT .
i<n £

Proor. Consider the distance 6 on C given by
(A, B) = (card{i < n;x; € Aa B})"".
Thus we have 6(A, B) = ‘/ ndg(A, B), where d, is the distance on ¢ given
by (1.3), with @ = (1/n)L, _ ,8%,. By (1.2), we have

Vn\"’
(6.1) N(€,8,e) = N(&,dg,&%/n) < (5_2) .

The diameter of ¢, for the distance 8, is at most v2b . By Proposition 2.1, we
have

o

E| Y g;1c(x;)

i<n

< [ log N(€,5,¢) de.
0

Using (6.1), the result follows by a routine (;omputation. a

€
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PROPOSITION 6.2. Set a = sup¢c» P(C). Then we have

-V
(6.2) E|Y 1.(X,)|| <2na+Kv log;—,
i<n £
v \% V2
i<n £ n a a

PrOOF. Step 1. Consider the r.v. b = [IL; _,1o(X)ll <.

From Lemma 6.1, we have
/ Vn
< Ky/ bu log T .
€

The function x — x log(Vn/x) increases for x < n (provided V > e). Thus, if

we set b’ = max(b, Eb), we have
Vn
< K‘/ b'vlog —
s b
Kbl n
< ! —_.
< vlog o

Since Eb’ < 2Eb and since EVd < VEb' , we get

/ Vn
. < K4/ Ebv log —EZ .
Step 2. By Corollary 3.2, we have
Vn
Eb < na + KV Ebvlogﬁ .

If Eb > 2na, we have Eb — na > Eb/2, so that since Vn/Eb < V/a,

\%4
Eb < K/ Ebv log >

(6.4) E,

Z e;1c(X;)

i<n

E, Z g;1c(X;)

i<n

(6.5) E| ¥ &lc(X))

i<n

and thus Eb < Kvlog(V/a). Thus, in any case, we have (6.2). And (6.3) then
follows from (6.5). O

We now show that we need only be concerned with sets C such that
aOSP(C)S].—aO.

ProPOSITION 6.3. Consider a class € of sets that satisfies (1.2). Assume
that supy e » P(C) < ay. For M > 0, we set

L 1o(X;) - nP(C)

i<n

(M) =P(

>M1/E).
¢
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Then we have

K
(66) VYn=1,VM>K,/vlogV, (M)< Mexp(—2M2).

Proor. Set

H=E| Y &lc(X))

i<n

‘{

It follows from Corollary 3.7 that (if K is large enough) (6.6) holds when-
ever

(6.7) n>K;H, Mn >K,H.
Now, it follows from (6.3) that

vV v\'2
H SK\/Ez—((aO + —log—)log—) ,
n a, a,
so that (6.7) holds as soon as n>KpwlogV, M > K,y/vlogV. Since, as
already noted, we have n > Myn, we have n > K,vlogV as soon as M >
K,jvlogV. O

After these preliminaries, we go back to the proof of Theorem 1.1. We
assume M > K, \/vlogV.

By Corollary 4.2, we can assume a, < P(C)<1-a, for C € ¢. The
method of proof is similar to that of Theorem 2.4. We will split € into sets to
which Theorem 5.1 will apply. We will take a = v/M?2.

Consider the smallest p such that 4 7*! < a. Consider q > p, which will be
determined later. We construct the partitions of T' = € given by Corollary 2.6,
with k,=[3-4"]1>2-4°. Thus N = card &, < (KVM?/v)’. Consider the
atoms (¢)); _ y of &,. Set

H,=E| Y &ilc ac(X;)

i<n

)

J

where C; is an arbitrary element of <. Set H = sup;_, H;. We will apply

J
Theorem 5.1 to each class 53 Thus we need to control

K,MH M*

(6.8) o o

For this, we evaluate H.

PROPOSITION 6.4. Assume 3(q — p)v < n479. Then

(69) Hcx< K(\/E[\M‘p + /g4 + /4" 7log V] + qu + vlog V).
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CoMMENT. This proposition replaces (2.16) in the Gaussian case, in the
proof of Theorem 2.4. If we had H < KVno4~?, the proof would be much
simpler. The larger M, the larger are the extra terms of (6.9). It will require
rather significant work to show that the term —M*/4n in (6.8) absorbs these
extra terms for all values of M < Vn. (This would be easier to do if one
restricted to the case M < n'/%) : :

Proor. Let us fix j < n. Then, by the usual chaining argument, we have

H< )} E Zeif(Xi)‘
p<l<q llisn 2,
+Esup| X & f(X;)

r<Rlli<n A

There, card 2, < (3 - 4°)'"?, and each function f in Z, is of the type
1¢ — 1o, where P(C aC') < 47!*1 Also, R < (3 -4°)?7?, and, for a certain
set C, € ¢, &4, consists of the functions 1, — 1, for C € ¢, where

¢, ={Ce¢;P(CaC,) <47}

Let us observe that

Z 8i(10 - 10,)(Xi)

i<n

9
= Z Eichc,( X;)

i<n

(6.10)

b

r r

9 . C . .
where = means equality in distribution. Let us also observe that the class
{CaC,, Ce ¢} consists only of sets of probability < 479%1 and satisfies

(2.1).
Now we have to evaluate the expectation of the supremum of a family of
r.v.’s when we control their tails. This is standard.

PROPOSITION 6.5. Consider (not necessarily independent) r.v. (Z,), _ g.
Assume that for numbers A, L and B we have
(6.11) t>A=P(Z|>t) <exp(—¢L p(t)).
Then, if log R < B, we have
Emax|Z,| < K(A+ LyBlog R).

Proor. We write, for any number W > A,

Emax|Z | = 'I:P(l;nsaljeclzrl > t) dt .

r<R

< f:min(l, Y P(Z,| > t))dt

r<R

=W+ [‘;R exp(— ¢, 5(¢)) dt.
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Since ¢;, p(t)/t increases, we have

f;exp(—qoL,B(t)) dt < f;exp(—tLv‘(fm) dt

eXP(_‘PL,B(W))~

B (PL,B(W)
We take now W = max(A, Ly/B log R), so that if log R < B, we have
oL, 8(W) = ¢, p(LyBlog R ) =log R > log2. ]

We return to the proof of Proposition 6.4.

In the case of 9, it follows from Theorem 3.5 (or, if one prefers, from
Bernstein’s inequality!) that, for fe 2, if we set a =47'%1, Z =
IX; < & f(X,)] satisfies (6.11) with

L<K, A<KVna, B<na+vna.

Since v > 1, we have logcard 2, < 3(! — p)v. Thus, if we have 3( — p)v < na
and na > 1, we have

E| Y & f(X) ’ < K(Vna + Vna \/logcard 7, )
i<n 9,
<KVn47'y(I - p)v.

By (6.10), Proposition 6.2 and Theorem 3.5, the variables

Z Ei(]-C - 10,)(Xi)

i<n

Z, =

satisfy (6.11) for L < K, B = na + A, where a = 479! and
v 1% V\?
(6.12) A=K/r§((a+ —log—)log—) )
n a a
Thus, by Proposition 6.5, provided that
3(¢ —p)v<B,

we have

Z & f(X;)

i<n

E sup

r<R

&,

i

= K(A+ yu(q — p)(A + na))

SK(A +v(g —p)A +yu(q —p)na).

Since @ = 479%! < 4 - 4779 we have

, vV 1
og— 2 ;{-(qu),
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so that KA > \/vna(q — p), KA > v(q — p), and thus
Y& f(X)| <KA<K(/ond 9(q+logV) +v(q+1logV))
i<n &,

<K(Yvnd~% + yund TlogV + vg + vlogV).
To complete the proof, it suffices to observe that '

Y 472 <K/47P,

l=p

E sup

r<R

Proposition 6.4 is proved. O

Since 477 < v/M?, we are left with the task to show that we can select
q > p such that

(6.13) 3(q —p)v<n4™?

and that we can control
4

KM M
R = —‘/T(\/vqn4‘q +vg + yund™9logV +vlogV) — s
n

For that purpose, we simply pick the largest g for which (6.13) holds. We
observe that

n n
(g -—p)a"P < 4P < o

< 377
so that ¢ — p < K log(Kn/M?). Also, by the definition of ¢, we have
(6.14) n4 971 <3(q+1-p)v < 3qu,

so that, using that y/q logV < 2(q + log V), we have

4

R KMy + logV
= ‘/;(q ogV) an

We first bound
KMv M*
Vn 17 8n’
Since 4 P*! > v/M?, we have p < K log(4M?/v), so that, writing ¢ =p +
(q — p), we have q < K log(Kn /v) and

R1=

R KMU | Kn M*
<K— _ - .
1="Vn i 8n .
Taking the supremum over M of the right-hand side yields
v \1/3 n\1/3
RlsKv(;) (logK;) < Kuv,

since n > v, as follows from the inequalities n > VM, M > K, /o logV .
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Thus we have

KMvy 4

T logV — B

Observe that, if M < Vn /logV, we have R < Kv. On the other hand, ta.kmg
the supremum over n of the right-hand side gives

R < Kv +

R < Kv[l + M——z—(logV) ]
Thus we have proved the following.

THEOREM 6.6. Under condition (i) of Theorem 1.1, if M > K \/JvlogV and
if either n > M2(log V)? or M > Vv log V, we have

KVM? 2
(M) < ( " )ezM,

where K is universal. To deduce (1.4), it then suffices to take K(V) large
enough that the right-hand side of (1.4) is greater or equal to one when
M < Vv logV.

We now turn to the proof of Theorem 1.1 under condition (ii). For a class &
of functions and & > 0, we denote by N;(%,¢) the smallest number of

brackets [ f;, f»], such that E(f, — f1)* < £, needed to cover &. An essential
ingredient of the proof is as follows.

PRrOPOSITION 6.7 (Ossiander’s bracketing theorem [11]).

i<n

E Zf(Xi)—nEf” sK\/Efw log N (7, ¢) de.
F 0

Suppose now that € is a class of sets that satisfies condition (ii) of
Theorem 1.1, and that moreover all the sets C of €’ are contained in a certain
set C, with P(C,) = b. Then, by Proposition 6.7, using a computation similar
to that of Lemma 6.1, we get

%
E| Y f(X;) - nEf” gKanblogz— ,
i<n €’
V
Zs f(X,) <K‘/‘vnblog3.

This in particular apphes to€'=7¢ When b =1, so that

E| Y & f(X) <K\/vn logV.

i<n

so that, by Lemma 2.7 of [5], we have

(6.15)
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The estimate (6.15), used instead of (6.3), is sufficient to make Proposition 6.3
work [by first breaking ¢ into pieces to which (6.15) applies]. The rest of the
proof of Theorem 1.1 is nearly identical to what it was in case (i), with the
major difference that each class ¢, is now contained in brackets [C,, C;] with
P(C,\C,) <477 and satisfies N, (€,,Ve) < (V/e)’. Thus, in the proof of
Proposition 6.4, the quantity A for (6.12) can now be replaced by

Ky/nv4a~91log(47V) ,
and the conclusion of Proposition 6.4 can be reinforced to
H < K(\/nv4_qq + Kynv4~1 logV).

We then take g as before, so that by (6.14), we get

n
n47? < Kv log ik

so that
4

R<Kv+K Mo 1 " logV

<Kv+ K— o -—.

< Kv ey og 775 log "

It is simple to see that if n > M2 logV loglogV, then R < Kuv.
Also, it is simple to see that

v M?
R < Kv 1+—M—§longogV ,

so that R < Kv for M > \/vlog V loglog V. Thus we have shown the following
result.

THEOREM 6.8. In case (ii) of Theorem 1.1, if M > Ky/vlogV and if either
n>M?logVloglogVorM > yJvlogV loglogV, we have

2 v
K(KIM )e—2M2’

Tﬁ(M) < M

v
where K is universal.
We now explain how to prove Theorem 1.2. We observe that, for all B
and u,
(u —B)° + B® = u® — 3Bu? + 38%u

o8 2
=u(u2—3,8u+3[32)z£‘—+ﬁu

8 4’
since
u2 2
u? - 3Bu + 3p% > 5 " BT for all B.
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Thus, by (4.2), we get

o . ud w1l 2
— >4u+ —+ —|= —
oy (@) = dut 4(2 a)

and thus

v 92l1 11 2t
(u,a) = 2u +16(2 a) +32.

Only the obvious changes are needed to the proof of Theorem 5.1 to obtain
that if moreover all the sets in ¢ satisfy |[P(C) — 3| > B, then the conclusion
still holds with the term e~ 2M"1+8%/16) ingtead of e~2M". Again, only obvious
changes are needed to show that if ¢ satisfies either condition of Theorem 1.1
and moreover all the sets in ¢ satisfy |P(C) — 1| > B, the conclusion holds
with the term e 2M°1+8%/16) jngtead of e 2M”. The dependence in B is
certainly not sharp, but this statement suffices to derive Theorem 1.2 the way
Proposition 2.8 follows from Theorem 2.4.

We now discuss some possible variations on Theorem 1.1. One such varia-
tion in case 2 is to consider more general ways to control the bracketing
entropy than just assuming polynomial decay. One can, for example, assume
that

N ((€5¢) < o(e),

where ¢ satisfies ¢(e/2) < Agp(e) (polynomial-type control) or log ¢(e/2) <
B log ¢(¢) for some B < 4 (exponential-type control). The main difference from
Theorem 1.1 is that the statements are not so clean, since it is harder to
optimize the size of the pieces in which ¢ will be broken for applications of
Theorem 5.1. Let us also note that in the case where we assume log ¢(¢/2) <
B log ¢(¢), Lemma 2.5 is not needed, and the proof greatly simplifies.

Another variation would be to assume that all the sets in ¢ satisfy
P(C) < a < } and to obtain a bound for 7,(M) of the type

K M
Polynomial term in M X — exp( —n¥ ( T ,a | + perturbation term |,
n

M

with the smallest possible perturbation term. In order to get a clean result,
when a = 1, we have replaced —n¥(M/ Vn,2) by —2M? — M*/4n and we
have arranged that this little room given by the extra term M*/4n kills all
the perturbations. It seems, however, that one can go through the same proof
keeping the term —n¥(M/ Vn ,a) and tracking the perturbations (although
the detailed careful computations remain to be done).

4. Moment generating functions. When the function f is not the
indicator of a set, it is not obvious how to obtain results conditioned on the
event (X, _, f(X;) — nE(f) > Myn}. A substitute for this is obtained through

the next result.
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THEOREM 7.1. Consider a function f on a probability space (Q, P) and
assume that 0 < f < 1. Set a = Ef and assume thatay, <a <1 — a,.

Consider a class < of functions on ). Assume that for all g in &, we have
Eg = Efg = 0. Set

H=E

Y &.8(X, )” o= sup(Egz)l/z, b= supllglle.
i<n ged

Let S = ac® + bH.
=)
t
< Kexp(—n‘l’(a, ;) - go(u)),

Then, fort >0, u > 0, we have
where ¢(u) = 0 ifu < K,H, and ¢(u) = ¢, s(u) foru > K,H

L g(X)

i<n

P(Zf(Xi)—nEfzt;

i<n

(7.1)

CoMMENT. It should be sajd that moment generating functions are not a
sharp tool. For example, they do not allow us to capture the correct factor in
front of the exponential in (4.1) (see [7]), thereby creating an irretrievable loss
of one power of M in (1.8). The use of this technique is, however, motivated by
the success of Theorem 7.1.

Proor. Step 1. By approximation, we can assume that # is finite. Con-
sider the set

H#={h:0<h<1,Eh=qa,VgeZ, Ehg = 0}.

This is a convex subset of the unit ball of L*(P) that contains f. Provided
with the weak* topology o(L*(P), L(P)), this is a compact set, Let us fix A
and p and consider the function # on # given by

Since the exponential is convex, 0 attains its maximum at an extreme point
of #.

Step 2. We show that an extreme point of # is of the type 1,. Indeed,
consider & € &# and assume that P(B) > 0, where B = {0 < & < 1}. Then,
for some ¢ > 0, we have P(B,) > 0, where B, = {¢ <h <1 — &}. Since we
assume that « is finite and since there is no loss of generality to assume that
P has no atoms, we can find a function w that is 0 outside B,, such that
lwlle < €&, Ew = 0 and E(wg) = 0forall g in . Then A + w and A — w both
belong to #, so that k is not an extreme point.

Step 3. Thus we have shown that for some set A with 1, € #, we have
0(f) < 6(1,). Since 1, € #, we have P(A) =a, and E(gl,) =0 for all g
in Z.

Zg(X)

i<n

(7.2) 0(h)=Eexp( (Zh(X)—na)+;u

i1<n
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Thus E(glg.,) =0 for all g in &. Consider now, for a subset I of

{1,...,n}, the event
Q= {zeIQXieA}.
To compute 6(1,), we write

L 14(X;) - na)

i<n

nl X g

i<n

Y. P(Q;)expA(card I — na)

)exp
Consider now the probabilities on Q:
P(C)=P(CNA)/P(A),
P,(C) = P(C\A)/(1 - P(A)).

Consider Y3,...,Y,;Z,,..., Z, that are i.i.d. distributed like P, (resp. P,).
From (7.3) we get

6(l) - ¥ P(n,)E(epr(

i

(7.3)

IA

XE(exp

L)

)

iel iel

0(1,) < Y a*(1 - a)n_k( )exp(A(k —na))Eexppu
(7.4) hen

i<k £

Y g

i<n—k

X Eexppu

Step 4. Consider now the functlon

(1.5)  £(w) = £x(p) = fj(fpe“xdx+ [I:H,Le#x exp(— oy 5(x)) d.

If we use Lemma 5.3 as well as Theorem 3.5 (after rescaling), we see that
for K sufficiently large, the last two terms on the right of (7.4) are dominated

by £(w). Thus we have
0(f) <0(1,) < §(p,)2 Y a’“(l _ a)”_keA(k—na)

k<n

= £(W)*((1 — @)e™ + ae’@"®)",
Step 5. By Chebyshev’s inequality we have
E )

< e““*““)§(ll~)2((1 —a)e * + ae)‘(l“”)".

L f(X,) —nEf > t;

i<n

i<n
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We observe (this is actually the derivation of the Chernoff bounds for the
binomial law) that

n t
infe™((1 — a)e™®* + ae*™¥) = exp(—n‘lf(—,a)).
A n

If we observe that ¢(u) = E exp uY for a certain r.v. Y, we see by Cauchy-
Schwarz that &(u)? < £(2u). Consider u > 4KH [where K is the constant of
(7.5)]. Then set

ek, s(u/4)
p= S
u

)

so that px g(x) > 4px for x > u/4. Thus
f 2ue?* exp(— g (%)) dx < f 2ue 2t dx < eTHU/2,
u/4 u/4
Thus
4
£(2p) < [u/ 2ue* dx + e H4/% < 2eru/?

and
e HuE(2p) < 2e7H4/% = 2exp(—(1/2) ¢k, s(u/4)).
This completes the proof. O

We can now state and prove the basic inequality for classes of functions.

THEOREM 7.2. Consider a class & of functions on Q and assume that
0 <f<1 foreach fin F. Assume that o = sup;c & E(f — Ef)? > a,. We set

Zei(f—f')(Xi)‘, p= sup (E(f-1H)""
f,f'es&

i<n

H=E sup
f, fles&

Then, provided that p < a,, we have

o ) KMH M*
74(M) < Ke exp| Kp“M + o

4n |’

Proor. By approximation, we can assume that % is finite, so that there
exists f, € & for which o2 = E(f, — Ef))%
For a function f e &, we set

1
0(f) = —E((f~f1 =~ E(f = f))(fi ~ Ef)).

Thus [6(f)l <p/o <p/a,<-1 and 6(f) <0 since E(f— Ef)*><E(f, —
Ef)>.
For a function f € %, we write

g(f)=r-f(1+6(r), &(f)=g(f)-E(&(f))-
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Consider the class « of all functions of the type g(f) for f€ &. We
observe that for g € & we have Eg = 0, E(f,g) = 0 (which follows from a
straightforward computation).

Since [6(f)| < 1, we have [|gll. < 4 for g € £.

Also,
(Be(£)")"* < (Eg'(£)®) " <p +0(p/o) <2p
and
E| Y s8(X)| <E| Xe&((f-f)(X) _E(f—f1))”
i<n 22 i<n F
+sup0( f)E| ¥ &,(fu(X;) — Efy)].
fe s i<n

By an argument used in the proof of Theorem 3.5, the first term is less than
4H. The second is less than or equal to (p/o)o = p. Since we certainly have
p < KH (by Khintchine’s inequality), we get

Y £:8(X;)

i<n

(7.6) E

<KH.
&

For f € &, we have
F=f(1+6(f)) +&(f)+E(&(f)),
so that, since —1 < 8(f) <0, Eg(f) = 0, we have

T £(X;) —nBf = (1+6( /)| T £i(X) — nBf) + T e(£)(X)

(7.7) < L+ o0 £ A(X) - nBR) +) T (X))
<max(0, T fi(X) ~ nEf) +| T g(Xi)”/.

Consider a number d > 0 and suppose that ¥; _,, f(X;) — nEf; > 0. If [ is the
largest integer such that ¥, _, f{(X;) — nEf; < Myn — 1d, then by (7.7) we
have

sup( Y (X)) —nEf) > Min =| T g(X)| =1,
fe\i<n i<n g
so that
P(sup( Y F(X,) - nEf) zMﬁ)
feF\i<n .
< ZP( ¥ £(X,) - nEf > Mym — (1 + 1)d; | T g(X,) zld)
=0 i<n i<n 2

+Pl|| X 8(X))

i<n

zM\/IT),
&
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where the last term occurs because of the case ¥; _, f(X;) — nEf < 0. To each
term of the sum we apply Theorem 7 [using (7.6)], and we apply Theorem 3.5
to the last term. The computation then parallels that of the end of the proof of
Proposition 5.4. [To control (M), we then apply the same argument to the
class ' ={1-f, fe #}]0O

8. Control of the variance. Consider a class % of functions on (2, such
that 0 < f < 1 for each fe& . Assume that

Vie ¥, E(f-Ef)Y’<o?<1/4.

We would like, using this information, to improve upon Theorem 1.3. In the
case of one single function, sharp bounds for

(8.1) P( E f(X,) — nEf > nt)

are better expressed when Ef = 0. In that case, setting o2 = Ef2, b = sup f,
Hoeffding [7] shows that

(8.2) P( Y (X)) = nt) < exp(-nb(t,0? b)),

i<n
where the function (¢) = 6(¢, 02, b) is best understood by the relations 8(0) =
9'(0) = 0,
1
o?+¢(b—oa%/b) -t

6'(t) =

. It can be shown that 6(¢, 02, b) is a decreasing function of o, a fact that we will
use many times.
Let us observe that

t? t? a?

8.3 0(t) = —5 — —5|b— — | +0(th),
(8:3) ®) = 5 604( b) (t4)
so that the influence of b on the right-hand side of (8.3) starts to be felt
(unless b — a2/b < 0) for nt® > o*, that is, when t = M/ Vn , for M® > o*/n .
For values of M just slightly larger (M3 > o*/n log n), the influence of the
second term on the right of (8.3) is more important than any polynomial term
in M in front of the exponential. In other words, when proving bounds of the

type

M
(8.4) 7,(M) < (LM)® exp| —ne|—, 02|,
’ n
the number a becomes unimportant for M3 > oc*/n logn, if 6(¢,0,1) —
o(t,02) > ct3 /o*(c > 0). This is in particular the case if one uses for ¢ the
function derived from the use of Bernstein’s or Bennett’s inequality for which
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one has (when b = 1)
2 /3
2y =
e(t, %) 202  6o*

This is an interesting contrast with the situation of Theorems 3.1 and 3.2,
which corresponds to the use of (8.2) for o = b, so that the approximation
6(¢) = t2 /20?2 of (8.2) remains good until nt* ~ 1, which corresponds to values
of M of order n'/* rather than n'/® (a point at which, as should have been
apparent from the proof, the sharpness of Theorems 1.1 and 1.3 becomes an
illusion).

It must also be mentioned [again because of the contribution of the second
term on the right of (8.3)] that for these large values of M, no argument using
(8.2) will be reasonably sharp unless it always uses (8.2) with b =1 — Ef
rather than b = 1. This is a level of sophistication the need for which has yet
to be demonstrated. For these reasons, we will concentrate our effort on the
values of M with M3 < o*/n (nt® < 0*) and only briefly indicate what could
be done for other values. For these values of M, one sees that changing b by a
factor 2 will not matter much. Thus we will replace the class % by the class of
functions { f — Ef, f in &}. In other words, we will assume that % consists of
functions f for which —1 <f< 1and Ef =0, Ef? < o2

Let us observe that

+ 0(t).

1 1 1 tb

= = —>
o?+t(b—a?/b)—t> " o*+th  o® ot

so that

b? £3b

202 603

In particular, if a function A satisfies Eh = 0, Eh? < 0%, h < b, we have

( nt? nt3b )

0(¢,0%,b) >

(8.5) P( Y h(X,) > nt) < exp

—_—— + [
2 3
izn 20 60

We now come to a basic observation.

LemMa 8.1. Consider a function f, || fll. < 1, Ef% < o2, Ef = 0. Consider a
function g, |lgll. < 2, Eg =0, Eg? = p2% E(fg) <0. Consider t,u > 0. Sup-
pose that

(8.6) nt®<ot, 2% /c’<u<tp/o.

Then we have

(8.7 P( Y (X)) =nt; Y g(X;) = nu) sKexp(—izz - Etj)

2
i<n i<n 20 4P
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Proor. Consider a > 0. The left-hand side of (8.7) is at most

P( L (f+ag)(X) 2 n(t + au)).

Since @ > 0, E(fg) <0, we have E(f+ ag)? <o+ a%? By (8.5) we have
(since |[f + agl < 1 + 2a)

P( T (f+ag)(X) = n(t + au))

i<n

n(t+au)®  n(t+au)’(1+ 2a)

< - .
exp 2(0? + a’?) 6o

We take a = uo?/tp?. The first term inside the exponential becomes
—n(¢2/202 + u?/2p?). For the second term, since u < tp /o, we have au < t,
so that n(¢ + au)®/o* < 8nt3/oc* < 8. Also, since u > 2*t%/02%, we have
16t%a/0* < nu?/p?, so that the second term inside the exponential is less than
or equal to 8/6 + nu?/6p% O

It is well known that bounds of the type of Theorem 3.5 can be recovered by
working through the usual chaining argument (see, e.g., [9], Chapter 11). The
importance of Lemma 8.1 is that it allows us to mimic these arguments
“conditionally on £; _ , f(X;) > ns.”

Our objective now is to (indicate how to) prove that, for M < n
under hypothesis (i) or (ii) of Theorem 1.1, we have

1/654/3,

KVMo?\" M?
(8.8) Ty(M)s( = )exp(—w)

for M > K(V,v, o). Here, and in the rest of this section, K(V, v, o) denotes a
number, depending only on V,v,o, which may vary at each occurrence.
(Figuring out the best possible dependence given by this approach requires
checking many computational details and more energy than the author has left
at this point.) Let us fix M. Consider the largest p for which

o
—g4—pt1
p=4 > [T
The approach is (as usual) to cut & into (KV/p)’ pieces « for which
M2
(8.9) TJ(M)SK"exp(—W).

Proceeding as in Section 6, «# will have the following property: there is an
increasing sequence of partitions (&), . , of & into less than (2 - 4'~P)” atoms
&, for which

g’g/ = ':Z = (E(g _g,‘)2)1/2 < 4—l+1‘
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Moreover,

, Lo 1/2
8,8 ef:(E(g—g)z) <p.
To prove (8.9), there is no loss of generality to assume that # is finite. Let
us consider f in &, such that

Vge s, Ef? > Eg?.
Set &' ={g — f; g € &}. As usual, we write

P(sup T g(X,) = Mir

i<n

< ¥ P(Zf(x,.)z(M—lp\/E)\/ﬁ,
1<i<li, i<n

(8.10)
sup £ g(X,) > (1 - Dpvon

i<n

+ P(sup Y g(X;) > lop\/ar?).
&' i<n
The last term will be evaluated through Theorem 3.5. The inequality
loVv > KM /o will suffice to make this term of smaller order. Thus we can
assume /,/v < KM /o. We fix an [ such that 1 <[ <, and set

t=(M—-1pVv)/Vn,u= (- 1)pyv/n.

We have to get bounds for

(8.11) P( Y f(X)) = nt; sup ) g(X;) = nu)

i<n &' i<n
We will assume [ > 1 and leave the easy case [ =1 to the reader. The
definition of p shows that if M is larger than a suitable constant K(V,v, o),
we have I pVv < KMp/o < M/2, so that we have ¢t > M/2V/n . We also ob-
serve that

(8.12) pYv/n <u <KMp/aVn .

We now use chaining. Consider r > p, and, for p < s < r and each atom R of
Z,, let us select h, € R such that E(fhp) is as large as possible. For R € &,
set Z(R)={g—hp; g€R}. For Re P, ,,set gp=hyp—f. For Re &,
p+1<s<r,set g =hgr— hp, where R’ is the atom of & _, that con-
tains R. Observe that by construction we have E(fgg) <0. Consider a
sequence (u ), . ., suchthat ¥, . _,u, <u/2.

Thus, if sup L; _,8(X;) > nu, then we must have either X, _,gr(X;) >
nu , for some p + 1 < s < r and some atom R of &, or sup s, L; . ,8(X,) >
nu /2 for some atom R of <.

Setting p, = 47°*!, we see that if

(8.13) 2%%/0® <u, <tp,_,/0,
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then by (8.7) we have that the quantity (8.11) is bounded by

R nt?  nu?
Z K(24 p) exp —2—0_—2'— 4p§

pP<s=<r

+ ) P( > —)

R atom of &, Z(R) 2
This last term is evaluated through Theorem 3.5. Consider q > r, such that
3(qg,— r)v < n4™24. The version of Proposition 6.4 for functions shows that

by £,8(X;)

i<n Nf’(m
< K(M(ﬁl" +479(y/q + logV)) + qu + vlogV).

We select r such that p,. ~uo/K;t, where K, is universal and will be
determined later. Since we assume M* < Vn o*, we leave the reader to check
that, for M > K(V,v, o), by taking q as large as possible, we get H(R) <
Kvnvp, (recall that Vn > M). [This observation also applies to the computa-
tion of the last term of (8.9).] Also, we see that taking M > K(V,v, o) yields
H(R) < Knp?. Thus, provided that

(8.14)

Y 8(X;)

i<n

H(R)=E

(8.15)

(8.16) KVnvp, < nu < Knp?,
we have by Theorem 3.5 that the last term of (8.14) is bounded by

2-477)° s
( ) exp Kp2

r

o 2nt?
<(2-4"77) exp|— pral B

by a suitable choice of K. We observe that

p

tp Kt
4"7P= — <K— <

Pr ou o

Thus the last term of (8.14) is bounded by
Kt v 2nt? nt?
(5m) exp(— ! )Sexp(——z)
o g g

for ¢t > Koyv/n log(1 + v), which we may assume since M > K(V,v,0).
Finally, by (8.12), we have

nt? nt>  nu?
exp(—;?) < exp(—%g - K_pz)
Observe also that (8.16) reduces to
v uo u?o?
Kvnv ry <nu < nW "
that is, ¢ > KVvo/Vn, Kt? <uoc? The first condition is automatic since

S5
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t > M/2Vn ; for the second, it suffices to see that K¢2 < o%0\/v/n = o*v/Myn,
that is, Km? < o*Vn , which holds.

We now take u, = u4~¢"# /K, where K is large enough that (8.12) implies
U, <tp,_1/0,s0 that u, <tp,_ /o for s > p. To check (8.13), it suffices to
show that u, > 2*2/02 But u, = up,/4p is of order uo/Kpt and is bigger
than 2%t2?/02% provided uo® > Kt%. According to (8.12), it suffices that
Kt3Vn < a®Vv, that is KM® < no®/v. But M3 < Vno* and we can assume
n > Kv /o2

Now, we have proved that the quantity (8.14) is bounded by

nt? nu?
K exp| — 2—0_—2‘ — K_p2 .
We then leave the reader to combine this with (8.10) to yield (8.9), and hence
(8.8).
What can be done when M2 > Vno*? The main obstacle in the above

approach using large values of M is in the proof of Lemma 8.1, namely in the
inequality

| P( Y (f+ag)(X) = n(t+ au))
(8.17) i<n
< inf(; exp(—n0(t + au,o® + a®? 1 + 2a)).

The problem is that when nt® > 0%, the value of 6(t, %, b) depends a lot on b,
so that replacing 1 by 1 + 2a creates a big decrease of 6. One situation where
this difficulty is diminished is when one has a control over ||g|l., as the term
1 + 2a can be replaced by 1 + 2allgll.. This is, for example, the case when
one considers hypothesis by (ii) of Theorem 1.3 [and one mimics the proof of
Ossiander’s theorem ‘“conditionally on X, _, f(X;) > nt”’] and in particular
when one controls the covering numbers of % for the L” norm.

Another rather fascinating twist is as follows. As pointed out in Hoeffding’s
paper, the inequality

P T £(X)) 2 nt) < exp(-no(t, Bf*,sup )
1<n

is rather sharp for functions f that take the value b = sup f on a set of
probability o2/(b2 + 2) (where o2 = Ef?). Now, if a?Eg? < Ef?, the func-
tion f+ ag cannot take the value b =1 + asup g on a set of probability
o?/(b® + 0?) [where 02 = E(f + ag)?], nor can it be reasonably close to any
such function. Thus one can expect that in such a case (8.17) is not sharp. It
can actually be shown (by adapting suitably a lemma of Bennett [7], Lemma 2)
that (8.17) can be much improved in that case. The improvments that we
developed were apparently optimal. They did allow us to prove (8.8) for the
values of M3 much beyond vn o® [the exponent being of course replaced by
—n0(M/ Vn ,a?,1)] although they were not sufficient to get a clean result for
all values of M (or even of M < o%/n).
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Should anyone be really interested in the situation studied in this section
for large M, we would like to point out a less accurate, but much simpler
method. It is simply to write that, for a class of functions & and f € &,

zﬁ(M—w)) +P( Y g(X,) >w1/;)

i<n

L f(X)

i<n

M—-w 5
52exp(—n0( 7 ,0,1))+P(

where &' ={g — f, g € Z}.

One then evaluates the last term through Theorem 3.5 and one optimizes
over w. Finally, one breaks a general class % in pieces to which (8.18) can be
applied efficiently. It should be pointed out that this rather straightforward
approach can be used in the situations considered in Theorems 1.1 and 1.3,
and that the power of M one obtains in front of the exponential is only twice
the optimal, a result that already improves considerably on the previous work
in this area. For simplicity, we will discuss this approach in the present case
only for M < o?V/n . The point of this condition is that it is simple to see that
the function 6(¢) = 6(¢, 0%, 1) satisfies 6'(t) < Kt/o? for t < o2 If we set

H=B|Ces(X)],. o= sup(E(s-1))"
ge

T.(M) < P(
(8.18)

zacs, o)

i<n

and S = np? + H, it then follows from Theorem 3.5 and the fact that
1))
Vn “\vn o’n

that (8.18) implies
T,(M) < 2exp( —nﬂ(%l

provided w > KH/ yn. Consider then the smallest number w, such that
QDK,S(wo\/;) > n6(M/Vn). Then

KwM)
T

+ exp( _‘PK,S(w‘/;)),

) <3 M), KwoM  KHM
! )“’“"(‘” (T) = ra)

If we recall that n8(M/ Vn) < KM? /a2, we see from the definition of Px. s
that if S > M2/0?, we have w, < Ky/S/n M /o, so that

<3 NEATE M2 ‘ , kam

< —nb|— | +

mo(M) < Sexp| =nb| 7= s

Let us take p =vo3/M? so that S > M?/0? whenever M® < nv?0® (the

reader should observe that this is essentially the case M2 < Vno*/K consid-
ered before). Thus, in that case, splitting % into K(V/p)’ pieces &' of
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diameter < p, we get

u KvMm?\° M X HM2 KHM
ooty < (S0 2] T )

where H is controlled by (8.15). At least for M > K(V, v, o), the last two terms
in the exponent will disappear by previous arguments, yielding a reasonable
bound, although not as good as the bound obtained previously in (8.8).

If S < M?/0?, then the definition of ¢g g shows that

KM?  [eM?\ V?
— _log| —
= Vno? og( 0'2S) ’
yielding
M KM2 eM2\"?  KHM
(8.19) 7,(M) < 2exp|—nb T \/_a log —ig +W

If it were true that S = np? knowing that % can be split into K(V/p)
pieces for which (8.18) holds, optimization over p would mean taking

Vno M?2/3
P="3r &P T W/6,3/4,278 |

But, on the other hand, we do not know how to do better than (8.15) to control
H (and, in particular, we need np > 1!). This makes optimization of (8.18)
unwieldy. A simple choice is, however, p = vo3/MZ, where M§ = nv2s8, so
that p = n=1/3v1/3¢:5/3, This can be shown to work in the usual way, at least

for M > K(V,v, o). For M > M,,, this yields
Kvnl/s \" M\ KM® [eM2\
74(M) < (;1_/30—5/3) exp( nO( ‘/_) Taot log( ) )
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