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ASYMPTOTIC BEHAVIOR OF THE TWO LEVEL MEASURE
BRANCHING PROCESS!

By Yabpong WU

Carleton University

In this paper we consider a multilevel branching diffusion particle system
and its diffusion approximation, which can be characterized as an M(M(R%))-
valued process. The long term behavior of the limiting process is studied.
The main results are that if d < 4, then the two level M(M(R%))-valued
process suffers local extinction, and if d = 4, then the process has a self-
similarity property.

1. Introduction. The study of one level measure-valued branching
processes which arise as small particle limits of one level branching diffusion
particle systems in R?, d > 1, has developed over the last 20 years.. During the
last few years considerable interest has also developed in dynamic multilevel
models [see, e.g., Dawson, Hochberg and Wu (1990), Wu (1993a, b)]. A dynamic
multilevel system consists of objects at different levels. At any given level, it
is assumed that each object (particle) of that level can be deleted or copied.
Collections of objects (particles) at one level comprise objects at the next higher
level. Once an object is copied, it is assumed that subsequent alterations may
cause it to differ from the object from which it was copied.

In this paper, we consider a multilevel critical branching diffusion particle
system and its continuous limit which was formulated by Dawson and Hochberg
(1991). The question of the asymptotic behavior of critical measure-valued pro-
cesses is of particular interest. If a one level measure-valued critical branching
process has finite initial measure, then it follows from elementary properties
of critical branching processes that the total mass converges to zero in prob-
ability as ¢ — oo. On the other hand, Dawson (1977) showed that if the spa-
tial mechanism of the one level measure-valued process is Brownian motion
or a symmetric stable process on R?, and the initial state of the process is
Lebesgue measure on R?, then existence or nonexistence of a nontrivial limit-
ing distribution is equivalent to transience or recurrence of the spatial motion.
Etheridge (1990) obtained a similar result for a more general class of spatial
mechanisms. In this paper, we study the asymptotic behavior of the two level
M(M(R®))-valued critical branching process Y(z). Again, if the total initial mass
fM(R,,) wW(RHY (0, dp) is finite, then the total mass fM(Rd) WRHY (¢, dp) converges
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to zero in probability as ¢ — oo. In this paper we consider a class of initial
conditions for the two level process which are locally finite but have infinite
total mass. The first of these intuitively corresponds to infinitely many level-2
particles (or “colonies”) each of which contains one level-1 particle X, ¢ 7 8s,.
For technical reasons we prefer to work with a translation invariant analogue
of this measure, which leads us to the following choice of initial measure:

Y(0, A) = vy(A) = / / 14 ()85, (dps) dx,
Rd JM(R9)

where A is a measurable subset of M(R%).

DEFINITION 1.1.  The two level M(M(R?))-valued process Y(¢) is said to suffer
local extinction if, for every compact set B in R¢ and ¢ > 0,

(1.1 lim P{/ wBY (¢, dp) > 5} =0,
M(R?)

t—o0

that is, the total mass contained in a compact subset of R? converges to zero
in probability.

We now present the main results of this article. The first result proves
Dawson’s conjecture about extinction of the two level measure critical branch-
ing process.

THEOREM 1.1. Let Y(0) = vy as defined above. If d < 4, then the two level
process Y (t) suffers local extinction.

We should underline an important difference between the cases of d < 2 and
d > 3. In the former case the one level process itself suffers local extinction and
the proof is somewhat simpler. In the case d > 38 Dawson and Perkins proved
that the one level process has an infinitely divisible stationary distribution with
canonical measure R, € M(M(R?)). In fact the proofin Section 3 also shows that
the system experiences local extinction if the initial measure is given by either
Y(0) = v or Y(0) = R,. Moreover, properties of R, also play an important role
in the proof of Theorem 1.1.

In the next theorem we establish a self-similarity property of the process
Y (¢). To do so we let

(1.2) Yi(t, A)= Y(kzt, k‘d/z{,u: JieA, st. u(x:% € ) =7i(- )})/@—d/2

for each & > 1, where A € B(M,(R?)) and B(M,(R?)) denotes all Borel subsets of
M,(R?). Under this rescaling transformation, we obtain the following theorem:

THEOREM 1.2 (Self-similarity property). If d = 4 and the initial value of
process Y(t) is the canonical equilibrium measure R, of the one level measure
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branching process, then the rescaled process Yi(t) has the same distribution
as Y(¢).

Since R, is an invariant measure of the one level measure branching process,
it is natural to choosq R, as the initial value of the process Y(¢) in Theorem 1.2.

2. Description of the model. In order to describe the model in this paper,
we introduce some additional notation:

. N(R?) denotes all integer-valued measures on R%;

. M(R?) denotes all positive measures on R%;

. M(M(R?)) is the collection of all positive measures on M(R?);

. Cp(R) is the Banach space of bounded continuous functions on R with ||f|| =
Sup,cp lf(x)l’

. C2(R) C Cp(R)is the subspace of bounded twice-differentiable functions on R;
c(Rd) denotes the collection of continuous functions on R? with compact sup-

port;

7. C2(R?%) denotes the collection of twice-differentiable functions on R? with

compact support;
8. C:(R?) is the collection of positive continuous functions on R? with com-
pact support.

W N =

gwcn

We define R? = R? U {7}, T being an isolated adjoined point. Let M (k%) be
the space of p-tempered measures introduced by Iscoe (1986) with the p-vague
topology, that is, the smallest topology making the maps yu — (¢, u) continuous
for ¢ € C, (Rd)U{¢,,} where d < p < d +2 and, for x € R?,

1
1+| |

(2.1) Pp(x) =

and

¢o(1) = 1.

Iscoe (1986) verified that M, is locally compact with the p-vague topology.
Let

2.2) M2(RY) = {u € M (M, (&%)): / $p)u(d)(dp) < oo}.

We endow MZ(R?) with the smallest topology which makes continuous the
maps

Vo / / S dvdp)

for all ¢ € C.(R%) U {0}
The basic process in this paper is an Mz(Rd)-valued process Y(¢). Since the
process suffers extinction in a finite time When started from a finite measure,
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interesting asymptotic behavior of the process can only occur when the initial
measure of process Y (¢) is infinite. It will turn out that the state space M ﬁ(Rd)
contains a rich enough class of infinite measures for our needs.

We will not discuss in detail the construction of the process in this paper but
explain briefly how it can be characterized as the continuous limit of a two level
branching diffusion particle system.

Now we consider a multilevel branching random field which is a natural ex-
tension of the multilevel branching model introduced by Dawson and Hochberg
(1991) and can be described as follows.

We consider a two level branching random field. By “two level” we mean that
the system consists of particles at two different levels. Each level-2 particle
(i.e., superparticle) is a collection of level-1 particles (i.e., particle) in R%. We say
that a superparticle is of size i if it consists of exactly i particles. We suppose
that after an exponentially distributed time, each particle undergoes a level-1
binary branching process, that is, it either dies or produces a copy, each with
probability -;—, with the branching rate v, in which case we note that the total
number of superparticles is unchanged. We also assume that each superparticle
performs a level-2 binary branching process with the branching rate v, after
an exponentially distributed holding time with the parameter 7,. During the
holding times of both level 1 and level 2, each particle moves in R¢ according
to the d-dimensional Brownian motion. The entire system can be represented
as a random atomic measure on N(R?):

oo n;
(2.3) Ya)=) > bm By o 1O,

i=1 k=1

where x; ;, -(¢) denotes the location in R? of the rth particle in the kth superpar-
ticle X; () of size i at time ¢, n; is the number of superparticles of size i at time
t and ny(¢) denotes the number of null superparticles at time ¢, where the term
“null superparticle” means that it does not contain any particles.

To study the continuous limit of the two level branching diffusion particle
system, we rescale the system as follows: If B(}, »(R%)) denotes the Borel o-
algebra of M,(R?) [Iscoe (1986), page 90], then for A € B(M,(R?)) and ¢ > 0,
we define

Yalt, A) = 1¥a(nt, A,) where A, = {u: 2u € A}.

We can show that when n — o0, Y,,(¢) converges weakly in Dy, oo)(Mf,(R“’)) to
an M %-valued process Y(¢) which can be characterized as the unique solution of
the martingale problem for the limiting generator G which is given by

(2.4) GPF(v) = <(£F'(V, ), 1/)> + 72<(F "(v), 6m(d/.tz)1/(du1)>>,

where ((g(p), v)) = [g(pv(dp) and we take the class of test functions F(v) on
M?2 in the following form:

(2.5) Fw) =f(<<h1((h2, ), '/>>),



858 Y WU

where v € M2, hy, f € CXR), hy € CAR?), and

7 _ OF(v) _ i
2.6) F'(v, p) = () " de [Fv+€6,)],_,

=/ ({(h1(tha, ), v)) ) a (o, 1))-
In (2.4), £ denotes the generator of the M ,(R%)-valued branching process, that is,
LF' (v, p) = L1F' (v, p) + LoF' (v, p)
@ = ((Gha(thn, 2), ) )t (G, 1)) (B, )
s f(((ra((ha ), 2)) )Y (o, 1)) (3, ),

where A is the d-dimensional Laplacian and

o= [AF M
(2.8) LiF' (v, p) = /A e uldx),
, _ 82F'(v, )
(2.9) LoF'(v, p) =2 / / W@c(dy)ﬂ(dx).

The Laplace transition functional of the M’ %-valued process Y(¢) is given by

L: yap=E [exp(— H(WY, du)) ’ Y(0) = u]

M,(R?)
= exp{—/ u(t, /.L)u(du)},

where u(t, 1) is a solution of the weak form of the following differential equation:

oult, pu)
(2.11) ot
u(0, p)=H(u)

and H(p) = h((¢, u)), ¢ € C.(R?) and h € Cy(R).

(2.10)

= Lu(t, ,U) - '72u2(t, //')7

REMARK 2.1. If [y gy w(BH1(dp) < oo, then (2.10) and (2.11) can be ex-
tended to ¢ € C,(R?) and in this case if H(u) = (1, p), then we obtain

Oult, ) _ 9
Framial L (2, w,

u(0, p) = (1, p) = (RY).
Solving the above differential equation, we have

u(0, 1)
1+ tyu(0, )
__ uEH

1+ tyou(R4)

u(t, u) =
(2.12)
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Therefore,
tl—i>lcl>lo E [exp(— /M ) WRHY(t, du)) ‘Y(o) = ,,]
(2.13) = tll.‘?oexp( /M,,(Rd) u(t, u)u(du))
d
= ll)l‘glo exp( /M & i—%u(dﬂ))

=1

This verifies the fact that the two level process Y(¢) goes to extinction if the
initial measure is finite.

3. The extinction of the two level measure-valued branching pro-
cess. In this section we will prove Theorem 1.1. The method of the proof for
local extinction we use here was suggested by Dawson and is different from the
arguments used previously in the one level case. Before presenting the proof,
we consider some preliminary facts.

Let u(¢, u) denote the solution of the equation (2.11) with initial values
u(0, p) = (¢, p) for ¢ € Cc(R?), vg = 85, dx and define T by

/ [1— exp{ — (¢, )} (WToldp)
M, (RY)
/ T;[1 —exp{ — (¢, )} (wWwo(dp)
M, (RY)
/Rth[ —exp{ — (¢, -) }](6:)dx
= /Rd [1—exp{ — (v(®), &) }]dx
= / [1—exp{ —v(¢, x)}]dx
Rd

Here T} denotes the semigroup of operators associated with the one level M ,(R%)-
valued branching process with generator £, and v(¢, x) is the unique solution of
the following nonlinear differential equation:

(3.1

ov(t,x) )
(3.2) 5 = Avlt,x) — v, x),
U(O,x) = ¢(x).
Note that
lim supu(t, x) = 0,
(3.3) t—oo

1—exp{—v(t, x)} =~ v(t, x) ast— oo,
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and hence
/ [1—exp{—(s, ) }](WT;vo(dp)

(3.4) R~ / v(t, x)dx

= [ 11— exp{ ~ (8, )} Rl

Therefore we conclude that
(3.5) Tivy = R,

where R, denotes the canonical equilibrium measure of the one level M,(R%)-
valued branching process [cf. Dawson and Perkins (1991), Chapter 6, for the
definition and properties of R..].

As mentioned above we need to consider the two level process-with an in-
finite initial measure. In particular, we will now verify that the state space
M%(Rd) of the process Y(¢) contains infinite measures vo(du) = [p, 6s,(dp) dx
and R..

If A is a measurable subset of M(R?), then it is easy to see that vy, € M(M
(R9)) and

Vo(A) = / / 1465, (dp) dx
Re JM,R?)

= | 1a(6)dx.
Rd
Moreover,
[ [ ontomasman
M,(R%) JRe
3.6) - / / bo(y5uldy) dx = / 4 () dx
Rd JRe Rd

< oo

and therefore, vy € M4(R?).

As stated in the introduction, the one level measure branching process with
spatial Brownian motion in R¢ and with initial value given by d-dimensional
Lebesgue measure converges to an equilibrium invariant probability measure
in dimension d > 3 and suffers local extinction in dimension d < 2. Theorem
1.1 states that if d < 4, then the two level M(M(R?))-valued process goes to ex-
tinction. Our proof in dimensions d = 3, 4 in fact uses the invariant probability
measure R, of the one level process. Let S; denote the Brownian semigroup.
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Then

/ b (AR ()
M, (R R

t—o00

= lim / / ¢ p)u(dx) T vo(d )
M,(R)JR

= Jim [ Tugp, )(60ds
(3.7) "
=lim | (S:¢,, 6;)dx

t—o0 Rd

- lim / S, (x)dx
t—o0 Rd

=/ Pp(x)dx < 00,
Rd

and therefore R, € M%(R9).
Our proof of Theorem 1.1 requires the following lemmas.

LEMMA 3.1. Let Ry denote the Borel o-algebra in R%. Then for each B € Ry
and d > 3, we have

(3.8) R, ({,u: -:—,u(\/ZB) > a}) = {9-2/2R _ ({u: w(B) > a}),

where R, denotes the canonical equilibrium measure of the one level measure
branching process.

PrRoOOF. See Dawson and Perkins (1991). O

LemMA 3.2. Ford > 3, s > 1, we have

(3.9) (s, 1) Roo(dp) — 0

\/{M:(Sdb’ p)<e/sd=2/2}
as e — 0, where ¢ € C}(R?) and S; is the Brownian semigroup.

PrROOF. Observe that for ¢ € Cx(R?), ¢ # 0,

_ —df2gen) =
Ssp(x) = [ (2ms)~%/ 2exp % #(y)dy

(3.10) . .
_ —d/205n) _L° Y —2xy
_/(27rs) exp{ 35 }exp{ %5 }¢(y)dy.
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Therefore there exist two positive constants 0 < C; < Cg < o0, such that

2
Cls“d/2exp{ il i } < Ssix) < Czs‘d/2exp{ I;L }

uniformly in x for fixed nontrivial ¢.
Now we define a new measure p, € M,(R?) in terms of u € M,(R%) by

1 x
(3.11) us(B) = gp({x. _ﬁ € B}),

where B € R,.
Since (3.10) implies that

C1s~%/2( exp _R u) < (S <;$,u)<Cs"’/2 exp II m
! 2s |’ 4 2s J’
and

|2 e x|?
Cls‘(d_z)/2<exp{—|—2—|-}, /J's> < (Sso, ) < Cas @ 2)/2<exp{‘"%}’ lu3>’

thus, together with Lemma 3.1, we have

oo ({1: (S5, 1) > a})

<R ({u: Cgs‘(d‘z’/2<exp{ } > })
(3.12) |2
=s@-2/2R ({#: C2s—(d—2)/2<exp{ 5 } #> > a})
2 1
= s@-2/2R__ ({ﬂ: <exp{—%}, N> S E';s(d—z)/za}> .

For a > 0, we define

v((a, )) = Roo ({,u: Czs‘(d‘2)/2<exp{~¥}, us> > a})

()
o fom - F}) Gor).

and

A\

(3.13)
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Then it is easy to see that

(3.14) v((a, 00)) = s(d"Z)/2§(<Cis(d‘2)/2a, oo))
2

and

(3.15) dF(a) = s<d-2>/2d17<cis<d-2>/2a)
2

if we define F(a) = ([0, al) and F(a) = ([0, al).
Using this notation, we have

/ (Ss¢, WRoo(dp)
{1:(Ss ¢, u) < /s@d-2/2}

<

Czs—(d—2)/2

\ .
X <exp{— % }, /J’S>R00(dl'l’)

C2s—(d—2)/2

/{u:cls—<d—2>/2<exp{—|x|2/2}, )< efsd=2/2)

8.16) = /{M:czs—(d-z)/z(exp{—|x|2/2},us)S Ce/(Cys9=2/2)}

x|
X (€XPy =5 0, s R (du)
CzE/(Cls(d_z)/Z)
= / av(da)
0

/Cze/(Cls(d_z)/z)

as@-D/2gF (i §d-2/2 a) .
C

0

If we let b = (1/C3)s'9~2/2q, then

e/Cy -
3.17) / (Ss, WRoo(dp) < Cy / bdF(b).
{u:(Ss b, p)<e/sd-2/2} 0
Since
/ (S48, 1) Rooldps) = / Ty(6, YW Rool(dr)
(3.18)

= / (6, 1) Roo(dp) = Co < o0,
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and for ¢/C; < 1 we have

E/Cl ~ 1 ~
/ b dF(b) < / b dF(®)
0 0

Jx[?
- exp{ = "1, 1 )Roo(di0)
{u:(exp{—|x|2/2}, u)<1}
1 / |2
- L cl<exp{—— 1 YRoo(dp)
(3.19) C1 J{uCaexp{~Ixi2/2}, <Cs} 2

)
Cy {1:(S19, n)<C2}

IA

1
<o / (S1¢, 1)Roo(dps)
1
< 00,
hence
{p:(Ss b, ) <e/sd-2/2}
(3.20)

e/Cy -
<C, / b dF(®)
0

—0 ase—0.
m}

Proor oF THEOREM 1.1. We consider the two cases (i) d = 1, 2 and (ii)
d = 3, 4 separately.

Cask (i) (d = 1 and d = 2). Recall that the one level M ,(R?)-valued process

with the generator £ suffers local extinction for d < 2 [see Dawson (1977)]. If
d < 2, then from (2.10) we have

E [exp {_ / (1 — exp(—(g, u)) Y(t, d,u)HY(O) - uo]
M,(R%)

= eXp{— / u(t, M)Vo(dﬂ)}’
M,(R4)

where ¢ € C(R?) and u(t, u) satisfies equation (2.11) with

u(0, p) =1 —exp{—(¢, u)}.

(3.21)
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Note that

exp{— / u(t, u)uo(d,u)}
M, (RY)

(3.22) =exp{—/ / u(t, M)(ng(d/.l,)dx}
Ré JM,(RY)

=exp{—/ u(t, 6x)dx}.
Re

Since for each ¢ > 0, and u € M,(R?),

t
u(t, u) = Tsu(0, p) — 72/0 Ty—s[uls)] 2(u)ds >0,

it is clear that
u(t, p) < Twu(0, -Xp).

Therefore together with (3.1) we have

exp{— [ utt, 6x)dx}
> exp{— |, o, ~)(6x)dx}
- exp{— /Rd [1 —exp( - (v, 6x))] dx}
= exp{— /Rd [1 - exp( - v(t, )] dx},

where v(z, x) is a solution of (3.2). From (3.3), we see that

exp{—/Rd [1 —exp( —v(¢, x))] dx}

(3.24) > exp {_ / u(t, x) dx}
R4

—1 ast— oo.

(3.23)

Therefore from (3.22)—(3.24) we conclude that

exp{—/ u(t, ,u)uo(du)} —1 ast— oo.
M .(Rd

(R

This implies that the theorem is true for the case of d < 2.

CasE (ii) (d = 3 and d = 4). The method we will use in this case is based
on properties of the canonical measure R, of the one level measure branching
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process. Again from (2.10), for ¢ € C}(RY),

E[exp{— / HOudOY du)}‘Y(O) - 1/]
M, R4) JRd

= exp{— / u(t, ,u)u(d,u)},
M,(R%)

P

(3.25)

where u(¢, p) satisfies (2.11) with initial value u(0, ) = (¢, u).
In the remainder of this section, we always assume that d > 3. It is easy to
see from (3.23) that for each ¢ > 0, and . € M(R?),

(3.26) "o /0 Ty [ 2 < Tu(OXp)
and so
o / /0 Ty [0 2GS Roo(d)
(3.27) < / Tyu(0)(u)Rooldp) = / (0, R oo(dps)

- / (6, 1) Rooldps) < o;

therefore we obtain that

t—o0

t
lim / / uX(s, p)ds Roy(dps)
0

(3.28) = tllglo / /0 t Ty_s [u(s)]2(,u)dsRoo(d,u)
< 0.
Next we show that
(3.29) lim / u(t, WRoo(dp) = 0

by contradiction. Suppose that
(3.30) Jim / u(t, j)Roo(dpp) = 1 > 0.
By Lemma 3.2, for any fixed s > 1, there exists ¢g > 0 such that

(3.31) (Sst, 1) Rooldps) < -é-

/{Mi (Ss¢, u)<eg/sd—2/2}
From (3.23) we know that, for each s > 0,

(3.32) u(s, p) < (Ss¢, p),
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so we have
(8.33) / uls, WRoldp) < .
{1:(Ss ¢, p)<eo/s@—2/2} 2
Since
ou(s, p)
/ _as—_Roo(d,U)
@34 B / Lus, wRoo(dp) — 72 / u%(s, )R oo(dp)

= —72/u2(s, #)Roo(dﬂ') < 07

we obtain that [ u(s, p)Rs(dp) is monotone decreasing. Thus from the assump-
tion in (3.30), for any s > 0 we have

(3.35) /u(s, WR(dp) > tliglo/u(t’ WRo(dp) = L.
Therefore
l
(8.36) / uls, Rooldp) > 5
{1:(Ss¢, n)>e0/s14=2/2} 2
and
/ u(s, WRoo(dp)
{w:uls, w<e/s9=D/2}0{ui(Se, ) >e0/s@ =272}
€
= —Roo(dp)
/{I-“u(svM)SE/s(d—Z)/z}ﬁ{u!(Ss¢, 1) >e0/s9-2/2) s@-2/z oo\ GH
€
< @7 / Roo(dp)
(3.37) S4=D/2 J (800, ) >eo /54212y *
_€ (SS¢1 ;u')
= e Reo(dps)
s@-272 /{u:(S,¢,M)>eo/s(d—2)/2} eo/s(d—z)/z co\a [

€
=— (Ss¢, u)Roo(dp)
€0 J{u:(Se0, u)>e0/s-2/2}

g
< —Cp < 0.
€0

We choose ¢ small enough that

€ l
(3.38) aCo < Z,
then
l
(3.39) / uls, WRwo(dp) < =
(s uls, w)<e/s@=D/210{u:(Ss$, 1) >e0/s@~2/2} 4
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and so

/ U(S, /'L)Roo(dﬂ)
{w:uts, py>e/s@-2/2}

>

/ u(s, M)Roo(d,u,)
{p:uls, w>e/s@=2/2}0{p:(Ssp, ) >eo/s9—2/2}

(3.40) = u(s, wR(du)

/{M=(Sa¢, L) >eq/sd—2/2)

- / u(s, /")Roo(dlt)
{p:uls, W<e/s@=2/2}N{p:(Ssp, p) >e0/s@—2/2}

2

e~

Hence

/ u2(s’ N)Roo(d,u)

u2(s’ N)Roo(d,u)

2,
(3.41) {wiuts, p)>e/sd-2/2}

[

= s@-2)/2 u(s, WRoo(dp)

/{Mr uls, py>e/s@-2/2}
s _¢ l
- s(d—2)/2 4 .

Therefore

t—o00

¢
lim / / u?(s, WRo(duXds)
0

t
> lim c lds

t—o0 1 s(d—‘2)/2z

t
élm”nﬂ’ ifd =4
4 1

t—o00

ey 1 —(d-2)/2+1 ‘ .
(3.42) Sy o Hd#e

0, ifd =4,

“Yel 2 .. (4—d)/2 '
T gimle -1], ifd#4

o0, ifd=4,
00, lfd=3,

finite,  ifd > 4.
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This is a contradiction of (3.30) if d = 3 and d = 4. Hence we conclude that, for
d=3andd =4,

(3.43) tlll(l)lo / u(t, WRo(du) = 0.
On the other hand, for each ¢ > 0,

/ w(ty + ¢, wvo(dp)

t+t)

- / Ty 0eti(0, Wvo(di) — 2 / Tyues [00)] *(w)ds voldps)
0

¢
(3.44) = /TtthU(Oa wvo(dp) — '72// T, T:—s [u(s)] 2(,u)ds vo(dp)
0
t+t)
— 72 / Ty st—s [u(s)] w)ds vo(dp)
t

t
< [ a0, i~ [ [ Tees[u] s T ot
0
This implies that, for each ¢ > 0,

limsup | u(t, wvoldw)

t1—o00
=limsup | u(ty +¢, wWro(dw)

t1—o00

1—00

t
(3.45) Stlim [/Ttu(O, ,u)T;‘lt/o(d,u)—'yz// T [u(s)]z(#)ds T}, vo(dp)
0

t
= [ 70, R = [ [ Tecst6)]) s Restp)
0
= [ ut, woRectdn
Thus, together with (3.43), we obtain

(3.46) limsup [ w(ty, pwvo(du) = 0.

t1—o0

Hence Theorem 1.1 is proved. O

4. The rescaled process and the self-similarity property. Renormal-
ization theory has been studied for many years in the case of one level measure
branching processes [see, e.g., Dawson (1977), (1978)]. In this section, we con-
sider the same kind of question in the two level case. Specifically, we prove The-
orem 1.2 by using the Laplace functionals of the process Y(¢) and the rescaled
process Y;(t) defined in (1.2).
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Proor oF THEOREM 1.2. At first, we are going to calculate the Laplace
functional of the rescaled process Y;(¢). Let

H(p) = hy ((he, 1))
) = b (a5 )

for hy € CXR), hy € C2(R?). Then it is easy to see that the Laplace functional
of Y;(¢) has the following form:

LywH)=E [eXp{ - / H(wY(t, du)}

Yk(O)]
4.1)

_ exp{— [unte, w0, dm},

where u(t, 1) satisfies a nonlinear initial value problem.
We already know that the Laplace functional of the process Y(¢) is given by

Ly =E[exp{— [He, du)}‘Y(O)]
(4.2)

=exp{— / u(t, WY, du)},

where u(¢, p) is the solution of the following nonlinear initial value problem:
Ou(t, p)

4.3) ot
u(0, ) = H(p).

= Lu(t, p) — you?(t, w),

So we have

LB =Eexp{ - [ I ({ha, ) Yt |

—E -exp{— / k‘d/2h1(k‘d/2 / hz(%)p(dx)>Y(k2t, du)}

(4.4) L
=E exp{—/H(u)Y(kzt, dp)}‘Y(O)]

Yk(O)]

Yk(O)]

=exp{ [utkt, wr(0, aw},

where we use the fact that Y(0) = Y,(0) for any £ > 1if Y(0) = R, which will be
shown later. On the other hand, the rescaling transformation (1.2) implies that

eXP{—/uk(t, wY(0, d#)}

(4.5)
= exp{— / k4 2y, (¢, k=2 u(k ) YO, du)}.
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Equating (4.4) to (4.5) we obtain
(4.6) u(k2t, u()) = k= 2wy (t, k=42 uk ).

Therefore
@7 (0, B2k ) = k4%u(0, u()) = hy (k‘d/2<h2 (E) p,>> :

and by taking the derivative with respect to ¢ in (4.6) we have, for ¢t > 0,
Ouy, (t, B2k -))
ot
_ g2 ou(kt, 1)
B ot
(4.8) _ g2 Bu(kt, 1) Okt
- Ok2t Ot
= k422 [Lu(k®t, p) — you?(k%, 1))

= k22 L1ukt, )+ kY22 Louk®t, p) — kY2 2pu®(R%, p).

Now let us discuss the three terms on the right-hand side of (4.8) respectively.
First, note that

Su(k?t, p) lim u(kt, u+eby) — u(k®t, p)

Sulx) e—0 €
E—d/2 [uk (t, k=42 (u(k ) + b,k ))) — up(t, k‘d/2,u(k-))}
4.9) = E-4/21im uy, (t, k_d/zp,(k D+ k_d/2€5x/k(')) —uy (t, k_d/zy,(k ))
e—0 &€
—d1: uk(ta ﬁ + k_d/2€5x/k) - Ltk(t, ﬁ)
=& ll—I}(l) k—d/2¢
- _d5Uk(t, ﬁ)
Spulx/k)’

where Ji(-) = k~/2,(k -), and

Su(k®t, p) 3_2[ _qburt, ﬁ)]
Su(x) ~ Ox2 opx/k)

= k_d

82 Sut, i) [d(x/k)]2
a(x/E2 ofix/k) | dx

= pd-2 B bt )
- Ox/k)? 6ulx/k)
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imply that \
Su(k®t, w)
2 - )
Lutk?t, )= [ AZE )
0% buy(t, In)
=k—d—2 k\ly
/ B RR Sjite ) M)
(4.10) d 02 bup(t, ) ~
—p-d/e—2 [ 9 OUr\l, B
k o o) M)
—d/2— Sur(t, )
— p—d/2-2 k\Ys
k / A 57500) (dx)
= k‘d/z‘zﬁluk (t, k_d/zj.t(k )) .
Next, by the calculation
82u(k2t, w)
Su(x) uly)
_ lim {u(k2t, L+ €165 + €26y) — u(k?t, p1+ £26y)
£1,e2—0 E1E2

B u(k%t, p+e16,) — u(k?t, 1)
£1€2

€1,62—0 €1&2

lim E-%/2 { “e (t’ E=42 (ke ) + €18:(k -) + €26, (R )))
= lim

w (£, k92 (ulk ) — e6y (k) )
£1€2

up (t, k=42 (uk ) + €16:(k -))) — up (¢, k=2 u(k ) }

€1&2
(4.11)
= k%2 lim {

€1, 82—)0

up (t, B2k ) + k=216, 4, () + k=298, 4(-))
€1&2
up(t, k=42 u(k ) — k=256, 1,(-))
€1&2
Cu(t Rk ) + R P16, 4 () — (8 R Pk ) }
€1&2

k—4/2,k-d/2%¢,

_ Uk(t, ﬁ' + k_d/zeléx/k) - Uk(t, p')
k_d/2€1k_d/282

€1, 62—)0

= -9/2d 1im {uﬂtﬁ+k4mq@ﬁ+kqu®ﬁ)—uﬁtﬂ+kdﬂq@w)

_ pd/2—d S®u(t, i)
8ii(x /RSy /k)’
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we obtain the relation

2 2
Louk2, 1) = / / Skt W (dyyudz)

Sux)6ply)

82u (, /,L)
d/2—d 3
g ’h/ / 570 Yo7y ) W)

— b—d 5 Uk(t, /J')
(4.12) = k™% / / ———5ﬁ(x)6ﬁ(y)6kx(dky)u(dkx)

82uy(t, 1) -
_ 1—-d k\l,y
=k ’“/ S5 i) = P Adz)

= k™9Louy(t, 1)

= k™% Louy (¢, k=2 ulk J).
Thus using (4.8) and relations (4.10) and (4.12), we can continue to calculate:

Au(t, k=4 u(k )
ot

= RA/224/22 Ly (1) B4k )
(4.13) + k2 2k=d Louy, (¢, k=92 (ke -))
— B2l (¢ 2k )
= Laug (t, B~k ) + K2~9/2Louy(t, k=42 (k)
20002 (1 B2k ).

That is,

Ouy(t, p)
ot

In particular, if we take d = 4, then (4.14) becomes

auk(ta ,LL)
ot

(4.14) = Laug(t, 1)+ R22 Louy(t, 1) — vk~ 9=V 2uk(e, p).

= Laug(t, p) + Loug(t, p) — youp(t, p)
= Luy(t, p) — voullt, p).

Moreover, if we let Y(0) = R, where R, is defined as in the last section, and
apply Lemma 3.1 to the case of d = 4 and ¢ = k2,

Roo ({p: k"2 u(kB) > a}) = k*Roo ({u: (B) > a}),
which implies that
Ro(A) =k %R, ( {,u LA, st ,u( ) - )})

therefore we have Y,(0) = Y(0) = R.,. Thus if the initial value of process Y(¢)
is R, then, for each £ > 1, Y, (¢) and Y(¢) have the same Laplace functional.
Hence the proof of the Theorem 1.2 is complete. O
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