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LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING
BROWNIAN MOTIONS!

By PAUL DuPuUIs AND RUTH J. WILLIAMS?

Brown University and University of California, San Diego

We prove that a sufficient condition for a semimartingale reflecting Brow-
nian motion in an orthant (SRBM) to be positive recurrent is that all solu-
tions of an associated deterministic Skorokhod problem are attracted to the
origin. To prove this result, we construct a Lyapunov function for the SRBM.

1. Introduction. Letd be a positive integer, let S =R} = {x € R?: x; >0,
i=1,...,d}letr%r,...,r? € R? and let A be a d x d nondegenerate covari-
ance matrix. Let R denote the d x d matrix whose ith column is the vector
ri, i =1,...,d. A semimartingale reflecting Brownian motion (SRBM) associ-
ated with the data (S,r°,7!,...,r%, A) is defined precisely in the next section.
Heuristically, such a process is a continuous stochastic process that has a cer-
tain semimartingale decomposition. It behaves like Brownian motion with a
constant drift 7° in the interior of S and is confined to the orthant S by instan-
taneous reflection (or “pushing”) at the boundary of S, where the direction of
reflection on the ith face F' = {x € S:x; = 0} is given by ¥, i = 1,...,d. (At an
intersection of faces, one may use any convex combination of the directions of
reflection associated with the faces meeting there.)

In [21] it was shown that a necessary condition for the existence of an SRBM
is that at each point on the boundary of S there is a direction of reflection
that points back into the interior of S (see the next section, where this condi-
tion is formulated as the completely-S condition on the reflection matrix R).
In [24] this necessary condition was shown to be sufficient for the existence of
an SRBM and that in this case the SRBM is unique in law and has the strong
Markov property. Our interest in SRBM’s stems from the fact that they have
been proposed as approximate models for multiclass open queueing networks
under conditions of heavy traffic [8]. With this motivation in mind, it is natural
to seek conditions that guarantee positive recurrence of SRBM’s and methods
for computing their stationary distributions. We will focus on the first problem
here. (A characterization of stationary distributions for SRBM’s is given in the
paper by Dai and Kurtz [6], and a numerical algorithm which uses this char-
acterization as its starting point has been proposed by Dai and Harrison [4],
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In this paper we show that if all solutions of a related deterministic Skorokhod
problem are attracted to the origin, then the SRBM is positive recurrent. That
is, we show that a sufficient condition for the SRBM to be positive recurrent
is that all solutions of a simply related dynamical system are attracted to the
origin. Our method of proofis to construct a smooth Lyapunov function for the
SRBM. Besides its use in proving ergodicity, the Lyapunov function we con-
struct can be used to obtain bounds on moments and path excursion estimates
for the SRBM. It is also needed in the standard argument used to prove the
convergence of functionals of the invariant measures associated to a sequence
of processes that converge weakly to the SRBM. Finally, we note that our tech-
nique may be useful for establishing positive recurrence of other stochastic
processes, given the stability of a related dynamical system.

Up until this time, few conditions for positive recurrence of SRBM’s have
been given, except when d = 2 or when the SRBM is an approximate model of
a single class open queueing network. When d = 2, it follows from the work of
Hobson and Rogers [10] (for ° # 0) and Williams [25] (for 7° = 0) that an SRBM
is positive recurrent if and only if

+rird))= <0 and rI+rid) <o,

where the superscript minus denotes the negative part of a number and r!
and r? have been normalized so that 71 = 1 and 72 = 1. When R = I — P/,
where P is a transition matrix for a transient Markov chain on d states and
P has zeros on its diagonal, Harrison and Williams [9] have shown that an
SRBM is positive recurrent if and only if R~1r% < 0, where the inequality
is understood to hold for each component separately. In both of these cases,
our sufficient condition can be seen to coincide with the known necessary and
sufficient conditions. For the case treated in [9], the “stability” of the related
dynamical system is established in Chen and Mandelbaum [3, Theorem 5.2].
It is natural to ask whcther our condition is actually necessary and sufficient,
that is, if the SRBM is not positive recurrent, is there at least one solution of the
associated deterministic Skorokhod problem that is not attracted to the origin?
This is an interesting open problem.

Finally, we mention the work of Malyshev and co-workers [11, 15-17] (the
recent works [11], [16] only became known to us during the course of our re-
search), who have been working on problems and conjectures similar to ours,
but for reflected random walks rather than reflected diffusion processes. While
there appears to be some commonality in philosophy, there are differences in
our assumptions and methods.

2. Problem formulation _and statement of the main result.

DEFINITION 2.1 (Semimartingale reflecting Brownian motion). An SRBM
associated with the data (S,r%,r!,...,7%,A) is a continuous {F;}-adapted
d-dimensional process z(-), together with a family of probability measures
{P,, x € S}, defined on some filtered space (2, F, { 7;}), such that, for eachx € S,
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under P,,
2t) =w@)+r’t +Ryt) e S forall¢ >0,

where (i) w(-) is a d-dimensional Brownian motion {F;}-martingale with co-
variance matrix A such that w(0) = x P;-a.s., and (ii) y is an {F;}-adapted
d-dimensional process such that P,-a.s., fori = 1,...,d, (a)y;(0) =0, (b) y; is
continuous and nondecreasing and, (c) y; can increase only when z is on the face
F, that is, fot Lz #0ydyi(s) = 0, for all £ > 0.

TERMINOLOGY. For brevity, we shall sometimes simply refer to z as an
SRBM, in which case the probability measures {P,, x € S} are implicit.

DEFINITION 2.2 (Completely-S). A principal submatrix of R is a square ma-
trix obtained by deleting all rows and columns from R that are indexed by some
possibly empty subset of {1,...,d}. The matrix R is said to be completely-S if
for each principal sllbmatrixf? of R there exists a vector u with all components
positive such that Ru has all components positive.

It follows from [21] and [24] that the completely-S condition is necessary and
sufficient for the existence of an SRBM associated with (S,7%,71,...,r%, A), and
in this case the SRBM is unique in law.

A key to our proof of positive recurrence is the form of Ito’s formula for an
SRBM. Let f € C2(R?), and define Df(x) and D?f(x) to be the gradient and
Hessian of f at x. For a square matrix A, let tr A denote the trace of A. Let (-, )
denote the usual inner product on R?. If z is an SRBM as in Definition 2.1., then
for eachx € S, P,-a.s., for all ¢ > 0,

£(2®) = £(2(0) + /0 t (%tr [ (ee)A] + <Df(z(s)),ro>) ds

+ /Ot <Df(z(s)),dw(s)> + f\i: /0 ‘ <Df (2(s)), ri> dy;(s).

For the following, let C([0, c0), R%) denote the set of continuous functions from
[0, o) into R?. Associated with the geometric data S and R is a version of the
Skorokhod problem (SP).

DEFINITION 2.3 (Skorokhod problem) Let ¢ € C([0, 00), R?) with 4(0) € S.
Then (¢,7) € C([0,0), R?) x C([0, 00), R%) solves the SP for ¢ (with respect to S
and R) if the following hold: g

(i) ¢(2) = ¢(t) + Rn(t) € s for all ¢ > 0;
(ii) nissuchthat, fori = .,d,(a)n;(0) = 0, (b) n; is nondecreasing and (c) n;
can increase only when ¢ is on F‘ that is, fo 14, 20} dmi(s) = 0, for all £ > 0.
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For x € 8S, we define

d d
2.1) rx) = {Zqiﬁ:Zqi =1,¢q; >0, andg; > Oonlyifx; = 0}.
i=1 i=1

Note that in the definition of the Skorokhod problem, the “pushing term” Ry
ensures that ¢ remains in S; furthermore, this term only changes when ¢ is on
88 and in this case the change points in the direction of an element of r(¢).

The above formulation of a Skorokhod problem is related to the problem
of finding strong solutions of the stochastic equation defining an SRBM. Our
formulation of the Skorokhod problem is the same as that in [2], [19] and [18]. It
was shown in [2] and [19] that under the completely-S condition there is always
a solution to the SP. Examples given in [2] and [18] show that uniqueness does
not always hold.

DEFINITION 2.4. We say that a path ¢ € C([0, 00), R?) is attracted to the
origin if for any € > 0 there exists T' < oo such that ¢ > T implies |4(¢)| < e.

Our main result relates stability properties of solutions of the SP when
¥(t) = x + r to positive recurrence of associated SRBM’s.

DEFINITION 2.5. An SRBM 2z(.) is said to be positive recurrent if for each
closed set A in S having positive Lebesgue measure we have E,[74] < oo, for all
x € S, where 74 = inf{¢ > 0:2(¢) € A} and E, denotes expectation under P,.

THEOREM 2.6. Assume that the matrix R = (rl,...,r?) satisfies the com-
pletely-S condition. Let z(-) be an SRBM associated with (S,r°,r1,...,r?,A).
Suppose that the ¢ component of all solutions of the SP for unreflected paths ()
of the form (t) = x +r%,¢ > 0,x € S, is attracted to the origin. Then the process
2(-) is positive recurrent and it has a unique stationary distribution.

In order to prove the positive recurrence we will construct a Lyapunov func-
tion. The properties that we require such a function W(.) to have are as follows.

1. W() € C%(S\ {0}).

2. Given N < oo, there is an M < oo such that x € S and |x| > M imply
Wi(x) > N.

3. Given ¢ > 0, there is an M < oo such that x € S and |x| > M imply
|ID*W(x)|| < e.

4. There exists ¢ > 0 such that

(DW(x),r°) < —¢ forallx € S\ {0},
(DW(),r) < —c forall r € rz), € 85 \ {0},

The new feature here (as compared with the situation for processes without
reflecting boundaries) is the presence of multiple constraints on the gradient
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of W for points on the boundary. The existence of such a Lyapunov function
is established in the next section. Given such a function and the form of Ité’s
formula for an SRBM, the proof of positive recurrence and existence of a sta-
tionary distribution is quite straightforward [12, 13]. Uniqueness follows also
by a standard argument once Lebesgue measure has been established as a
reference measure [9]. For completeness, we provide a sketch of the proof of
positive recurrence and existence and uniqueness of a stationary distribution
in the appendix.

3. Construction of the Lyapunov function. We will construct the
Lyapunov function in a series of propositions. To begin, we introduce some
notation. Define In(x) = {i:x; = 0}, and let A be the collection of all sub-
sets of {1,2,...,d}. The function In(x) partitions S according to the equation
In(x) = A, for A € A, into the interior (A = @), the relative interiors of faces
of codimension 1, and so on. Let e; denote the unit vector in the ith coordi-
nate direction. The set of inward normals to S at x € S is defined to equal
{Sicmmygiei: i > 0,i € In(x); T e mwq: > 0}. This set is empty if In(x) = @. For
any A € A, all x satisfying In(x) = X have the same set of inward normals to S
at x. In the development given below we will often abuse terminology and refer
to ¢ alone as the solution to the SP for a given .

PROPOSITION 3.1. Assume that the matrix R = (r',r2,...,r%) satisfies the
completely-S condition. Then the following conclusions hold.

(i) For each A € A, \ # @, there exists a vector d* such that

3.1 d* € r(x) forall x € S such that In(x) = ),
(3.2) (d*,e;)) >0 foralliec

(ii) Foreach X € A, X # @, there exists a vector n which is an inward normal
at each point x € 8S satisfying In(x) = ), such that (ny,r*) > 0, foralli € A\

Proor. The first statement is actually just a restatement of the com-
pletely-S condition. The second statement is a direct consequence of the fact
that R is completely-S if and only if R’ is completely-S, where the prime denotes
transpose [21]. O

We next describe a vector field v(-) on R?. Let M(x) = {i: (x,e;) < 0}, and define

) ro, for xe S,
v(x) =
d®  for x¢S.

Note that v(-) possesses a radial homogeneity: v(ax) = v(x) for any x and any
a > 0. The definition of v(-) is illustrated in Figure 1 for the two-dimensional
case. The vector d{1:2} has the nice property of pointing toward S at all points
x for which \(x) equals {1,2}, {1} or {2}.
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T2
*
= it} S

_ — — = = = = = — zq

r2 = d{z}

Fic. 1.

We next define a family of smooth set-valued functions on R?. In the definition
we will be careful to preserve the radial homogeneity property of v(-). We first
define mollified versions of v(-). Let p:R* — R be a function such that

33) p)eC®®Y), suppp() C {x:]x| <1} and /R pwdr=1,

where supp p(-) denotes the support of p(-). For b > 0define ¢(b) = [ fpa p(x/b)dx] L.
The mollified versions of v(-) are defined for x # 0 by

v (x) = c(a|x|)/ p(x —y>v(y)dy, a>0.
Re

alx|

For A C R? we define the distance d(x,A) = inf{|x —y|:y € A}. When A is
a closed convex cone, that is, a closed convex set with the property that x € A
implies ax € A for all @ > 0, the distance function has the following radial
property: d(ax,A) = ad(x,A), for all x € R? and o > 0. It should also be noted
that d(x,A) is a Lipschitz continuous function of x € R%.

Next let g:R — [0, 1] be a smooth function that satisfies g(z) = 1, for z €
[0,1/2], and g(z) = 0, for z € [1, 00). Recall that F* denotes the “face” of 8S that
is orthogonal to e;: F* = {x € 8S:x; = 0}. Foreachi =1,2,...,d, a > 0andx #0,
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e S5 (5

“ d(x,S) d(x,S)\] .
- (852) o-o( 259 o

Note that the radial homogeneity has been preserved in the definitions of the
vi(x), i =0,1,...,d, and that these functions are Lipschitz continuous on any
closed set that does not contain the origin.

For A C R? let convA denote the closure of the convex hull of A. We then
define set-valued functions K%(x), for x # 0 by,

we define

and also

K*(x) = conv{v{(x), i=0,1,2,...,d}.

The definition of K%(0) is actually unimportant, and we simply use K2(0) = {r°}.
We also define a set-valued function K(x) by stipulating that v € K(x) ifand only
if there exist sequences {a,}, {x,}, {vn} such thata, | 0, x, — x,and v, — v as
n — oo, and v, € K (x,) for each n.

We note the following important properties of K?(-) and K(-). The properties
follow from the construction of the K?(-) and the definition of K(-).

PROPOSITION 3.2.

(i) For each a > 0, the set-valued function K°(-) is the convex hull of d + 1
vector-valued functions that are locally Lipschitz continuous on R%\{0}.
(ii) Foreacha >0, o> 0 and x € R%, K%ax) = K%(x).
(iii) If d(x,8) < alx|/2, then r° € K%x). If d(x,F*) < a|x|/2 and x # 0, then
rt € K%x).
(iv) Let A\1(x) = {i:x; < 0}. If d(x,S) > 0, then K(x) is contained in the convex
hull of {d*: \1(x) C \}. See Figure 1.
(v) If x € S°, the interior of S, then K(x) = {r°}, and if x € 8S\{0}, then
K(x) equals

conv({ro} u{r:ieIn@}u{dtic In(x)}) = conv({ro} u{rie In(x)}).

(vi) K(-) is radially homogeneous on R?\{0} in the sense that if x # 0 and
v € K(x), then v € K(ax) for all a > 0.

(vii) K(x) is an upper-semicontinuous function of x € R*\{0} in the sense that
Xp — X, Uy — U, Uy € K(x,) = v € K(x).

" By a solution to a differential inclusion of the form ¢ € H(¢) we mean an
absolutely continuous function ¢:[0,00) — R? such that &) € H($(@)), for
a.e.t. We consider the solutions to a differential inclusion as taking values in
C([0, 00), R%). We can use any metric on this space under which convergence of
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functions is equivalent to uniform convergence of the corresponding restrictions
on each compact subset of [0, o).

We consider solutions to the differential inclusion ¢ € K%(¢). The remarks
following the definition of the Skorokhod problem suggest that this differential
inclusion can be viewed as a perturbed version of the SP with () = x + r¢. In
particular, one should compare the properties of K(x) given in Proposition 3.2(iv)
and (v) with the set-valued function r(x) defined in (2.1). The approximating
problems are in some respects easier to work with because K%(x) is smooth in
x # 0. This connection is made more precise in the following result.

PROPOSITION 8.3. Let ¢2, v € I'(a), index the set of solutions to
¢'7a € I{a(¢)¢z)7 ¢a(o) = xa7

where {x*, a € (0,11} is any bounded set in R%. We then have the following
conclusions:

(i) The set {¢3(-):y € T(a), a € (0, 1]} is precompact.

(i) Suppose a indexes a sequence of numbers in (0, 1] that converges to zero.
For each a in the sequence, let v(a) € I'(a). Suppose that ¢%,) — ¢ and x* — x
asa — 0. (a) If x € S, then modulo a rescaling of time (this point is clarified in
the proof) ¢ is a solution to the SP for the path ¥(t) = x + r%. (b) If x ¢ S, then
o¢(1) € S for some 7 < 0o. Furthermore, modulo a rescaling of time, ¢(- + ) is a
solution to the SP for the unreflected path (t) = ¢(1) + r°t.

REMARKS. Our main use of the proposition will be to show that if all so-
lutions to the SP for 1(t) = x + r% are attracted to the origin, then so are the
solutions to the perturbed system for small @ > 0. Essentially the same proof
as that below can be used to show that solutions to the SP [for 4(¢) = x + r%]
form a precompact set if their initial conditions lie in a bounded set and that
the limit of any convergent sequence of solutions to the SP is also a solution to

the SP.

PROOF OF PROPOSITION 3.3. Part (i) follows from Ascoli’s theorem and the
fact that the sets K%(x) are uniformly bounded over all x and a. Note that this
uniform boundedness also tells us that the limits of the ¢%, as a — 0 are
Lipschitz continuous and, therefore, absolutely continuous.

We next consider (a) in part (ii). As a first step, assuming that ¢%,) — ¢ as
a — 0, we prove that

M) e K(4(2)) forae.t>0.
This is basically a direct consé(;uence of the property
a, — 0, Xp — X, v, — U, v, € K**(x,) = veKx)

For the proof, fix any T' < co. Define the measures p%(-) on the Borel subsets of
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R? x R? x [0, T] by
WA xBx0)= [ 1650 (#0®) ds,

for Borel sets A, B and C. The boundedness of K%(x) in x and a implies that
{u®(-),a € (0,1]} is tight. Suppose that a subsequence of a’s tending to zero has
been extracted such that both 4%(-) and ¢%,,(-) converge. Let u(-) and ¢(-) denote
the respective limits. For simplicity of notation we will retain @ as the index.
For £ > 0, we define

S. = {(x,ﬂ):ﬁ e |J {B:d(B,EW) < e}}

ly—x|<e

We first claim that p*(S¢ x [0, T1) = 0 for all sufficiently small @ > 0, where
the superscript ¢ stands for complement. Since the sets K%(x) are uniformly
bounded for all x and a and {x?, a € (0, 1]} is bounded, there is an M > 0 such
that |¢2(s)] < M for all s € [0,7] and a. It follows that it suffices to show
{Gx,3): x| < M, B € K4x)} NS¢ = @ whenever a > 0 is sufficiently small. If
the last equality were not true, then by the boundedness of K%(x) there would
exist sequences x, — x, 3, — (8 and a, — 0 such that 8, € K%(x,) and
(xn, Bn) € S¢. From the definition of K(x) we have g € K(x), while (x,, 8,) € S¢
implies d(3, K(x)) > ¢, a contradiction.

We next claim that S, is closed. To prove this, let x, — x and 8, — 3 with
*xn,0,) € S.. Then there exist y, with |y, — x,] < & such that
d(B,,K(y,)) < e. By extracting a convergent subsequence, we can assume
yn — y, with |x —y| < e. Since the upper semicontinuity of x — K(x) im-
plies d(3,K(y)) < liminf, d(3,, K(y,)) whenever y, — y and 3, — 3, we have
d(3,K(y)) < ¢, and thus (x, 3) € S..

Using the convergence of u® to 1 and the fact that S, is closed, we now see
that u(S. x [0,T1) = T, for all £ > 0. We next assert that N..S. = {(x,3):8 €
K(x)}. The inclusion {(x,0):8 € K(x)} C N.>oS. is obvious. To prove the re-
verse inclusion, assume (x,3) € N.50Se. Then for each n < oo there is a y,
such that |x — y,| < 1/n and d(8,K(y,)) < 1/n. Sending n — oo and us-
ing the upper semicontinuity of K(-) shows that § € K(x). If we now com-
bine this representation with the fact that u(S. x [0,T1) = T, for all £ > 0,
we see that u(N.5oS: x [0,T]) = u({(x,5,8):8 € K(x)}) = T, and therefore
p{(x, B,8):6 ¢ K(x)}) = 0.

Since R? and R are Polish spaces and p(R? x R?® x [0,s]) = s, for each s €
[0,T1], an argument similar to that used to establish the existence of regular
conditional probability distributions (cf. Ethier and Kurtz [7], page 502) shows
that there is a kernel ug(-) such that for each s € [0,T], us is a probability
measure on the Borel subsets of R? x R?, for each pair of Borel sets A,B ¢
R%, s — us(A x B) is a Borel-measurable function on [0, T], and for any Borel
sets A,B e R% and C c [0, T] we have

WA x B xC)= / us(A x B)ds.
C
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Since pu({(x, 3,t):8¢K(x)})=0, we know ps({(x, 3):6 ¢ K(x)})=0for a.e. s. Itis also
easy to show from the convergence ¢* — ¢ that u(Usecjo,m [{#(s)} x R? x {s}h=T,
and therefore p,({#(s)} x R?) = 1, for a.e. s € [0, T]. Thus if (#5y 1*) — (¢, p) in
the appropriate product topology, these facts together with the representation

‘lf,(a)(t) = RO R x4 Bui(dx x dfB x ds) + x°
imply
9(t) = Bus(dx x dB) € K(¢(t))  for a.e.t € [0,T).
{#(s)} xK (¢(s))

Since T was arbitrary, it now follows that ¢(z) € K(¢(¢)), for a.e. t € [0, c0).

We next prove that if ¢(-) is any Lipschitz continuous function that satisfies
#(0) € S and ¢(t) € K(¢(2)) for a.e. t, then ¢(t) € S, for all t > 0. We will prove
the existence of 6 > 0 such that

d .
(3.4) % [ie{nllgl’d}@(t),ei)] > 6,

for a.e. ¢ such that ¢(¢) ¢ S. This clearly implies ¢(¢) € S, for all ¢ > 0. The argu-
ment uses the properties of the vectors d* described in Proposition 3.1 in an es-
sential way. For each ¢ > 0, define a translated version of S by
S.={y=x-c(,1,...,1:x € S}. For any y ¢ S, let ¢ > 0 be such that y € S,
and let )\, = {i:y; = —c}. According to Proposition 3.2, K(y) is contained in the
convex hull of {d*: )\, C A} (see Figure 2). Since (d*,e;) > 0 whenever )\, C A
and i € )\, there exists § > 0 such that (v,e;) > 6, for allv € K(y), alli € \, and
ally ¢ S.

Because the mapping x — min;e(; . 4)(x,e;) is Lipschitz continuous, the
composed function min;e(y,... 4} (¢(t), e;) is absolutely continuous. Let ¢ be such
that this composed function and ¢(-) are differentiable at t and y = ¢(¢) ¢ S.
The definition of )\, implies the existence of ¢ > 0 such that (¢(s),e;) > —c, for
all s € [t,t +¢], i € \,. Thus, by choosing ¢ > 0 perhaps even smaller, we can
ensure that min;c(; . 4y (4(s),e;) = miney (#(s),e;), for all s € [¢,¢ + €]. Since
#i(¢) = —c for all i € )y, we also have

(3.5) 1113\1: (¢(s),e;) — l;lé&lyl ((2),e;) = 1121)\? (p(s) — p(t),e;).
Define vy = (¢(¢ + b) — ¢(2))/b. Since ¢(-) is Lipschitz continuous, we can assume

the existence of a subsequence of {v,, b > 0} that converges to a limit v as
b | 0. For simplicity we retain b as the index of this convergent subsequence.

We have A
b
vp = % / ¢t +s)ds and ¢(t+s) e K(¢(t+s)) fora.e.se[0,b)].
0 .

Thus the upper semicontinuity and convexity of K(-) imply v € K(y). Together
with (3.5) this implies

i . - ’
o N > 3= 3.
i i (#0.0] > lim mintoned = mine)
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Since v € K(y), this implies (3.4).

There is one more fact that is needed before we can show that the function ¢ is
a solution to the SP. Suppose that ¢(-) is a Lipschitz continuous function and that
&) € K(¢(t)) for a.e. t > 0. Since, for all x € S, K(x) is contained in the convex
hull of the vectors r° and {r*:i € In(x)}. (Proposition 3.2), by the argument given
in the Appendix, there exist measurable functions ¢;:R, — R, i = 0,1,...,d,
such that, for a.e. ¢,

(3.6) ¢y =qo@r’+ > qd)r,
ieIn(4(®)

and ‘

3.7 qo(t)+ Z qi(t)=1.
’ ieIn(4())

The property that is needed is that there exists ¢ > 0 such that gy(t) > ¢ for
ae. t.Fixany A€ A, A # @, and let L = {x € S:In(x) = A\}. For any Borel subset
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M C [0,T] n{¢: ¢() € L}, define
M) = /MI{¢(t)EL}¢(t)dt'

We claim that in an almost-everywhere sense the derivative I {¢(t)eL}<jS(t) al-
ways lies in the smallest linear space containing L. This fact follows from the
following one dimensional version: If ¢: [0, 7] — R is an absolutely continuous
function, then I(4¢)-0} #(@) = 0, for a.e. t. A proof of the last statement is outlined
in [7], pages 334-335.

It follows from the preceding paragraph that (I(M),e;) = 0, for i € A, and
therefore ({(M),n,) = 0 (recall that the vectors n), are in the positive cone
generated by e;, ¢ € A, as described in Proposition 3.1). Owing to the fact that
(r,ny) > 0, fori € ), there are a > 0 and b > 0 (not depending on T') such that,
for a.e. ¢ for which q¢(¢) < e and ¢(t) € L,

(nx, 8@®) — qo@r°) > b > 0.

Now suppose that given any ¢ € (0,a) there is a set M C [0, T] N {¢: ¢(¢) € L}
of positive measure such that on this set g¢(¢) < ¢ almost surely. Then a.e. on M,

(na, @) = (nx, (&) — o) + {nx,go®)r°) > b —c.

Thereforeifc < b, we contradict ({(M),n,) = 0. Using the facts that the elements
of A are finite in number and g(¢) = 1 for a.e. ¢ such that ¢(¢) € S°, it follows
that there exists ¢ > 0 such that go(¢) > ¢ for a.e. t.

Now let a(s) = fos qo(7)dt. We claim that ¢(a—1(¢)) is a solution to the SP for

¥(t) = x + r%, where a(a~1(¢)) = ¢t. Note that, for a.e. ¢,

d .
9(@7®) = $(a”'®)

1

qo(a=1@®))
(-1

Z qi(a (t))ri

=r qo(a—l(t)) .

ieln(¢(a10))

Thus, setting

nl(t)_/(; 1{¢,(a_1(s))=0} qo(a'l(s)) @,

we obtain the desired result. This completes the proof of (a) in part (ii) of
the proposition. .

Finally we consider (b) in part (ii) of the proposition. The first statement
follows from the fact that (3.4) holds for a.e. ¢ such that ¢(¢) ¢ S, while the
second statement in (b) follows from part (ii)(a) of the proposition. O

The next result needed is the following.
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PROPOSITION 3.4. Assume that all solutions of the SP for i of the form () =
x +1%, x € S, are attracted to the origin. Then the following conclusions hold:

(i) Given c > 0, there exist r > 0 and ag > 0 such that, for all a € (0,ay),
¢ € K%¢) and |$(0)| <r

imply
l¢@®)| <c forallt>0.

(ii) Givenr > 0 and R < oo, there exist T < oo and ag > 0 such that, for all
a < (0,ao),

$ € K%$) and |$(0)| <R

imply

|¢@®)| <r for somet <T.

Proor. We first note that part (ii) follows from Proposition 3.3 by an ele-
mentary argument by contradiction. Suppose that we now apply part (ii) of the
proposition with R = 1 and r = . Define

C= sup sup sup |¢(2)],
a€(0,a0) $eKa(¢),|(0)|<1 0<t<Ty

where 7, = inf{¢:|¢)| < %}. By again using an argument by contradiction,
it follows that C < oo whenever ay > 0 is sufficiently small. Then, by radial
homogeneity of K¢, part (i) of the proposition follows with this choice of ¢y and
r=c/C. O

Henceforth we assume that the hypothesis of Proposition 3.4 holds. We are
now ready to begin the construction of our Lyapunov function. The first step
adapts an idea due to Massera [20]. We will prove that the stability of solutions
of the differential inclusion ¢ € K%(¢), for small a > 0, implies the existence
of a function V(.) that is nearly the Lyapunov function we seek. Owing to the
fact that we are dealing with a differential inclusion, it is appropriate to define
V4(-) as the maximum value function for a certain deterministic optimal control
problem. Our first step will be to define this function and to show that it has
some of the desired properties. However, we can only show that the function
Ve(.) is Lipschitz continuous. Thus, in order to make the function suitable to
serve as a Lyapunov function for an SRBM, a mollification is needed. This will
comprise the second step of the construction.

Let g: R — [0,1] be in C®(R) and also satisfy g(z) = 0, for z € (—o0,1],
g(2) =1, forz € [2,00), and dg(z)/dz > 0, for all z. Define k(x) = g(|x|).
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PROPOSITION 3.5. For each x € RY, define
Vo) = sup / k(1) dt,
0

where the supremum is over all solutions to
peK¥¢), ¢0)=x.

Then there exist ay > 0 and ro > 0 such that, for all a € (0,aq), V%(x) = 0 for
|x| < ro, V2() is finite and locally Lipschitz continuous on R® and

(DV*(x),u) < -1,
for almost every x such that |x| > 2 and every u € K%x). In fact,

(3.8) max (DV*(x),u) +k(x) =0 forae.xc R%.

Proor. It follows from Proposition 3.4 that there are ¢y > O and ry > 0
such that, for all a € (0,ay), all solutions to ¢ € K%¢) with |¢(0)| < ro satisfy
|¢(#)| < 1, for all £ > 0, and hence V*(x) = 0, for |x| < ro. Furthermore, given
R > 2, there are T < oo and ag > 0 such that Proposition 3.4 (ii) holds with
r = ro. It follows that 0 < V%(x) < oo, for all x such that |x| < R whenever
a > 0 is sufficiently small. However, the radial homogeneity of K%(-) actually
guarantees that 0 < V4(x) < oo for all x, whenever a > 0 is sufficiently small
(not depending on x).

We next prove the Lipschitz property. Fixx € R%\ {0}, and let R = |x|+1. Pick
ao and r according to Proposition 3.4(i) with ¢ = 1, and then choose @ smaller if
necessary and T such that part (ii) holds for this choice of r. It will then follow
from Proposition 3.4 that, for a € (0, ay), all solutions to

(3.9) p €K% ¢),  ¢0)=y,

satisfying |y| < R also satisfy |¢(¢)| < 1, for ¢ > T'. In particular, this means that
Io? k(@) dt = foT k(¢(t))dt whenever ¢ solves (3.9) and |y| < R.

For the given x and a € (0, a0), choose ¢ which solves (3.9) with y = x and also
satisfies

Ve(x) < /oo k(o)) dt +e.
0 .

Recall that the sets K%(x) are locally Lipschitz in x in the sense described in
Proposition 3.2. Fix any é € (0,1). By a modification of the classical ordinary
differential equations argument based on Gronwall’s inequality, we may prove
the existence of a constant C < oo such that, given y satisfying |y —x| < 6, there
is a solution ¢? to .

(3.10) #” € K*(¢?), ¢’(0)=y
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satisfying

(3.11) sup |¢(t) — ¢”(t)| < Clx —y|.
0<t<T

Let C’ be the Lipschitz constant of k(-). Given y, choose ¢ satisfying (3.10) and
(3.11). Since |y| < |x| + 1 < R,

v -vo < [ T R(p0) di +c - / T h(p0) de
0 0

T
- /0 [£(6) — k()] dt + ¢
< C'CTjx —y|+e.

Sending ¢ — 0 and exploiting symmetry, we conclude that V°(.) is locally
Lipschitz continuous on R?,
Now let x be a point at which V4(.) is differentiable. We wish to show that

max (DV%(x),u) = —k(x).
ucKe(x)

Fix u € K%x). Using the Lipschitz property of K%(.), there exist § > 0, ¢ < 00
and u(y), defined for all y satisfying |x —y| < 4, such that

u(y) € K*(y) and |u(y)—u|§c|y—x|.

Clearly u(y) can be chosen to be Lipschitz continuous in y. For each € > 0 and
y € R%, let ¢¢7(-) be an e-optimal trajectory that starts at y:

$= () € K*(¢=7(®)), ¢=%(0) =y,
Ve(y) < /ook(qba’ Y(s))ds +e.
0

We define a controlled trajectory that starts at x as follows. For ¢ € [0, 7], where
v > 0is chosen small enough to guarantee that |¢(s) —x| < é for s € [0,~], we let

@) =u(s®),  $0)=x.

Suppose ¢(v) = y. Then we define ¢(¢), for ¢ > +, to equal ¢ (¢ — 7). There is
a constant C; < oo such that |¢(¢) — ¢(0)] < Cj¢. Together with the Lipschitz
property of u(-) this gives |u(¢(2)) — u| < Ct, for some C < oo and all ¢ € [0,~].
Integrating ¢ = u(¢) gives

(7 — $(0) — yu| < Cy*/2.
By the definition of V%(x),

=] ki -
Ve(x) > /0 k(¢(s)) ds > /0 k(¢(s)) ds + V2 (g(y)) —e.
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Sending £ — 0 and using the continuity of k(.), we have
Ve(x) > vk(x) + V*(x + yu +0(7)) +o(7).
Since V4(-) is differentiable at x, this implies
(DV*(x),u) < —k(x).

Next let v, = 1/n, and let ¢, = o(7y,) (e.g., &, = 1/n?). The uniform bound-
edness of the sets K%(y) in y € R? implies the boundedness of the vectors
[¢°»*(~,) — x]/». Thus we can extract a convergent subsequence (also indexed
by n), with limit u, say. The continuity of K%(-) guarantees that u € K%Zx).
We have

Vex) < /oo E(¢°*(s)) ds + &
0
“Yn
< /0 R(6%()) ds + e + VO(67%(3).

Using
¢ (1) = x + uyn + o(1n),
we have
Ve(x) < k(@)Yn + n + VA(x) + (DV(x), u)yn + (7).
Dividing by v, and letting n — oo gives
(DV*(x),u) > —k(x),
which completes the proof. O

For the remainder of the proof we will fix ¢y > 0 such that Proposition 3.5
holds and a € (0, ag).

PROPOSITION 3.6. The function V®(x) grows at least linearly, that is, there
exist constants C; > 0 and Cg such that V%(x) > Cq|x| — Co.

PROOF. Let B = sup, sup,cxe) |#|. Then we have the lower bound
(|x] — 2)/B on the time at which any solution to the differential inclusion that
starts at x reaches the set {y:|y| < 2}. The proposition now follows from the
fact that k(y) > 0, for y € R?, and k(y) = 1 whenever |y| > 2. O

In the next proposition we consider in a more precise fashion the rate of
growth of V%(.) in the radial direction. In particular, we show that for each fixed
x # 0, V%(ax) is a monotonic function of & > 0. Note that the radial homogeneity
of K°(-) has not been preserved by V4(.) since k(-) is not constant. Unfortunately,
this seems unavoidable.
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PROPOSITION 3.7. Let x # 0 be a point at which V°(.) is differentiable. Then
(DV*(x),x/|x|) = V(x)/|x|.

PROOF. Let ¢=*(-) be defined as in the proof of Proposition 3.5. Thus
Vo) < /0 Tr(©) deve.
Owing to the radial homogeneity of K%(x), for all ¢ > 0, the function 6°(¢) =
(1 +¢)p=*(@/(1 + c)) satisfies
6°(t) € K*(6°®)), 6°(0)=(1+c)k.

Thus 6°(-) can serve as a candidate path in the supremization that defines
V4((1+c¢)x). The monotonicity of k() in the radial direction implies that the cost
along the path 6°(-) satisfies

/ “RE®)dt = L+0) / "R+ 05 x0) dt
0

0
>(1L+0) / R(¢5%(0) dt
0
Thus V(1 + ¢)x) > (1 +¢)(V%(x) — €). Since ¢ > 0 is arbitrary V°((1 + ¢)x) >
(1 +¢)V%x), or
V(1 +¢)x) — Vx) > cV(x).
Sending ¢ | 0 gives the desired bound. O

Recall the mollification function p(-) and its properties as stated in (3.3). For
each b € (0, 1], we define a smoother version of V%(-) via

Vab(x) = c(b) / ) ve(y)dy.

Recall from Proposition 3.2 that r° € K%(x) whenever d(x,S) < a|x|/2 and
r' € K*(x) whenever d(x,F?) < alx|/2, x # 0. By combining the fact that the
support of p is contained in the unit ball with Proposition 3.5, we see that there
exists M < oo which depends on the fixed value of a but which is independent
of b € (0, 1] such that

(DV“’b(x),r()) < ;1 for all x € S and |x| >M,
(DV**@),r) < -1 forallr e rix), x € 8S, |x| > M.

We now fix such an M.
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The function V%?(.) is nearly the Lyapunov function we seek. The only re-
maining difficulty is in proving |D?V®®(x)| — 0 as |x| — oo. Our third and
final step in the construction of W(.) is intended to circumvent this problem,
and incidentally it will allow us to remove the restriction that |x| > M in the
inequalities immediately above.

According to Propositions 3.6 and 3.7 there are M; € [M,00) and ¢ € (0 00)
such that (DV*(x),x/|x|) > ¢ whenever |x| > M; — 1. Let U = sup,; |,j<p, V*(),

and choose My € [M7, ) such that |x| > M, implies V%(x) > U + 3. Thus we
have the following properties:

1. Ve(x) < U, for |x| < M;y;
2. {x:Vex)=U+2} C {x: M1 < |x| < Ma};
3. (DV*(x),x/|x|) > c whenever |x| > M; — 1.

Part of the conclusion of Proposition 3.5 is that V(.) is locally Lipschitz continu-
ous. It follows from this and the properties of V4(-) just listed that for sufficiently
small b € (0, 1],

1. Vab(x) < U + 1, for |x| < Mj,
2. {x:Ve(x) = U +2} C {x: M < |x| < Ma},
3. (DV®b(x),x/|x|) > c/2on the set {x: M1 < |x| < Mp}.

Fix such a value of b.

Define the set L = {x: V®®(x) < U + 2}. (Since a and b are both fixed at this
point, we drop them from any new notation.) Thus 0L is alevel set of the function
V@b(.), and the outward normal to L satisfies all of the desired properties of the
gradient of V®?(.). The fact that DV*®(x) # 0 on SL implies that 6L is C2. We
will build the desired Lyapunov function by requiring that all of its level sets
be multiples of L. Thus W(.) is defined by the equation

{x:Wx) <l}={lx: xeL}.

Note thatx € 8L implies V*b(x) = U+2 and also |x| € (M1, M5). Since V*(x) <
U + 1 whenever |x| < M; and (DV*%(x),x/|x|) > c¢/2 whenever |x| € [M;,M;],
we conclude that L is “star-shaped” with respect to the origin, that is, if y is any
pomt in L, then the relative interior of the line segment connectmg the orlgm
to y is contained in the interior of L. Thus, for each x € R?, there is a unique
[ € [0, o) such that x € (IL), and therefore W is well deﬁned

Together with the fact that 6L is C?, this implies that the function W(.) is
in C2(R? \ {0}). A proof is as follows. Fix x # 0. Let a € 8L and 7 € (0,0) be
such that na = x. Let v be the outward normal to dL.at «. Define 5 = v, and
suppose that {¢;, i = 1,...,d} forms an orthonormal basis for R?. Since 8L is
C2, there exists an open nelghborhood N, of o and a C? function g such that
B8 € N,NAL implies 83 = (1, - . -, Ba—1), where (Bq, ..., d)is the representation
of 8 with respect to the coordmate system defined by {e;, i = .,d}. Note that
gplai,...,a4-1) =0,fori = .,d—1.Let N, be an open nelghborhood of x with
the property thaty € N, only if there is B(y) € N, N 8L and 7(y) € (0, c0) such
that y = n(y)B(y). The existence of such a neighborhood follows from (v, a) > 0.
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Of course W(y) = n(y) fory € N, and F(1(y),y) = 0, where
1 1 1
Fln,9) = 2y4 - (- . _).
my nyd 8 nyl nyd 1

Since F,(n(x), x) = —x4/n(x4)? # 0, the implicit function theorem implies 7(y) is
C? in an open neighborhood of x. Since x # 0 is arbitrary, W(-) € C2(R%\{0}).
By construction the function satisfies

W(ax) = aW(x) fora >0, x # 0.

Thus for given € > 0 there exists M < oo such that x € § and |x| > M imply
|D2W(x)|| < e. We conclude that the function W(-) satisfies all of the properties
required of the Lyapunov function.

APPENDIX

COMPLETION OF THE PROOF OF THEOREM 2.6. Let W(-) be a function pos-
sessing the properties listed after the statement of Theorem 2.6. Choose r < oo
such that %tr [D*W(x)A] +(DW(x),r°) < —¢/2, for some £ > 0, and W(x) > 0
whenever |x| > r and x € S. Define 7, = inf{¢:]2(¢)|] < r}. If |x| < r, then
E,[7;] < oo is automatic. For the remainder of the proof we assume |x| > r. For
n > r, define 7 = inf{¢: |2(¢)| € (r,n)}. Then It6’s formula implies that, for each

t>0,

B [W(zlt )] - W) < —=Exlt A7),

and therefore
E,[t A1) < 2W(x)/e.

Sending ¢ — oo gives E,[7"] < 2W(x)/e. Since 7* 1 7+ as n — oo, it follows that
E.[1] <2W(x)/e < 0.

Next let A be an arbitrary closed set in S having positive Lebesgue measure.
We may assume without loss of generality that A C {x: || < r}. According to
the previous paragraph E,[7;] is uniformly bounded as x ranges over any fixed
compact set. It is proved in Lemma 7.9 of [9] that P,(z(1) € A) = ps(x) > 0,
for all x € S. (Although Lemma 7.9 in [9] is proved only for a special class of
SRBM’s, the proof carries over since Lemma 7.2 in [9] holds for all SRBM’s [24]
and the only other property needed is that an SRBM behaves like a Brownian
motion in the interior of S.) Therefore, for sufficiently large M(x) < co, we have

P, (z(l) €A and |z(t5| < M(x) for all ¢ € [0, 1]) > pa(x)/2.

Let {x;, i € N} be asequence in S that converges to x. Since the weak limit of the
sequence of SRBM’s with initial conditions x; is the SRBM with initial condition
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x, we can argue by contradiction to establish the existence of M € [r, c0) and
pa > 0 such that

P.(2(1) € Aand |z(4)) < M forall¢ € [0,1]) > pa,

for all x satisfying |x| < r. A standard argument that uses stopping times then
yields the following upper bound for arbitrary x € S:

Bulna) < =2+ sup E,,m) +Eyln].
Pa vijv|<M

We next consider the existence and uniqueness of the stationary distribution.
Fix any x € S and let z(-) be the SRBM with this initial condition. Given the
existence of the Lyapunov function, it follows from the proof of Theorem 1 on
page 146 of [14] that the set of measures {y, ¢t € [0,00)} defined by w(B) =
P.{z(t) € B} is tight (although the proof in [14] is for diffusions, it carries
over directly to our case). Hence the set of normalized occupation measures
{fit, t € (0,00)} defined by f:(B) = fot us(B)ds/t, for t > 0, is also tight. By a
standard calculation (e.g., equation (9.5) on page 240 of [7]) any weak limit as
t — oo of a sequence from the set {[i;, ¢ € (0,00)} is a stationary distribution.
Thus we obtain existence of stationary distributions. Uniqueness now follows
by the same argument as in Section 7 of [9] which shows that Lebesgue measure
is a reference measure for SRBM’s. O

PROOF OF THE EXISTENCE OF MEASURABLE FUNCTIONS q; SATISFYING (3.6)
AND (38.7) The following proofis due to Avi Mandelbaum. While there may be
other means of proving the result, we feel that this method of proof, especially
Lemma 4.1, may be of independent interest.

LEMMA 4.1. Let Abeanixjmatrix(i > 1,j > 1), B ={b e R:Ax = b,
for some x € R}, and let F be the set-valued mapping defined on B by
F(b) = {x € R,:Ax = b}, b € B. Then F is lower semicontinuous, that is, if {b"} is
a sequence in B converging to b° € B, and x° € F(b°), then there exists x™ € F(b")
for each n, such that {x"} converges to x°.

PrOOF. Let x°, 5° and {b"} be as in the definition of lower semicontinu-
ity above. Now (cf. [23], Theorem 5, page 119), there are finitely many ex-
treme points ey, ...,e; of F(b°), solutions dy,...,dn of Ad; = 0, d; € R,, and
non-negative real numbers ay,...,a, B, .. ., Om such that 2{‘=1al =1and

k m
%0 = Z age; + Z Bid;.
I=1 =1

If for each [ € {1,...,k}, we can construct a sequence {e}} such that e} € F(b")
for each n and e} — ¢; as n — oo, then, by convexity,

m -

k
2= aef+ Y Bidy € M)
I=1

=1
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and clearly x* — x°% as n — oo. In other words, it suffices to assume that x°
is an extreme point of F(b°). Assuming this, by relabeling the coordinates if
necessary, we have that 20 = (x9,...,2%,x2,,,... ,xj‘?), where 29 > 0,...,x0 >
0, x%,=---=x? =0 and the first r columns of A are linearly independent
(cf. [23], Theorem 1, page 114). Let C be the matrix consisting of these first r
columns of A, and let D denote the matrix consisting of the remaining columns
of A. Let e denote the vector of all 1’s in R/,". Consider the following linear pro-

gram:
min(e, §)
subject to
Cvy+Dé = b,
¥>0,6>0.

Since F(b") is nonempty, each of these linear programs is feasible and each has
an optimal solution, say x" = (4*,6") € F(b"). Consider also the linear program

min(e, 6)
subject to
Cy+D6 =",
v>0,6>0.

Then 7° = (x9,...,x2), 6° = 0 provides a solution of this linear program. More-
over, since (e,6°) = 0, the optimal value for this linear program is zero and
(4°,6%) is an optimal solution. By a sensitivity result for linear programs [22,
Theorem 10.5], the sequence of optimal values of the linear programs depending
on n converges to the optimal value for the linear program immediately above,
that is, (e, 6") — (e,8°) = 0, as n — oo. However, 6 > 0, and so 6" — 0. Thus,

Cy'=b"—D§" - b°=Cr" asn — oco.

Since the columns of C are linearly independent, we may multiply the above by a
left inverse for C to conclude that y* — 7% asn — co. Thus, x*= (v, ") — (7°,6°)
=x0 and x* € F(b"), as desired. O

For \ € A fixed, let & = |)\|, let A* be the d x (k + 1) matrix whose columns
are given by the vectors 7%, {r'},c, and let A* be the (d + 1) x (k + 1) matrix
obtained by adding a (d + 1)st row to A* that contains all one’s. Let Q* =
{qg =(g0,q1,...,q4) € R¥"'} and let B* = {A*q:q € @*}. By the above lemma,
the set-valued map F* defined on B* by FA(b) = {qg € @*:A*q = b}, b € B,
is lower semicontinuous and hence by Michael’s selection theorem [1, Theorem
1.11.1, page 82], there exists a continuous selection function f*: B> — @* from
F>*. Given ¢ as described above equation (3.6), for all ¢ such that In(¢(2)) = A
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and ¢(t) € K(¢(t)), define

o) = £ ( ¢(t)),

1
p(t
0, fori ¢ A,

where j; denotes the position in an ordered A of the element i € . In particular,
the (j; + 1)th column of the matrix A* is 7.

Once ) is allowed to range over all of A, the q;, t = 0,...,d, will be defined
for a.e. £ and they can be defined to be say zero on the remaining exceptional
set of #'s. It is then readily verified that, for each i, q;: R, — R, is a measurable
function and that (3.6)—(3.7) hold for a.e. . O

NOTE ADDED IN PROOF. Stimulated by Theorem 2.6, J. G. Dai has proved an
analogue of this result for queuing networks (see “On positive Harris recurrence
of multiclass queuing networks: a unified approach via fluid limit models,” to
appear in Annals of Applied Probability). More precisely, Dai has shown that
stability of fluid limits associated with a queuing network implies positive re-
currence for a Markov process which describes the dynamics of the network.
His approach is different from ours in the sense that he does not construct a
Lyapunov function. Dai and other authors have been using his result to de-
termine sufficient conditions for stability of multiclass networks with feedback
(see the Proceedings of the 1994 IMA Workshop on Stochastic Networks for

more details).
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