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INFINITE LIMITS AND INFINITE LIMIT POINTS OF RANDOM
WALKS AND TRIMMED SUMS
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Cornell University and University of Western Australia

We consider infinite limit points (in probability) for sums and lightly
trimmed sums of i.i.d. random variables normalized by a nonstochastic se-
quence. More specifically, let X, Xy, ... be independent random variables
with common distribution F. Let M be the rth largest among X1, ..., X,;
also let X be the observation with the rth largest absolute value among
X1,.... Xy Set S, = 20X;, ©S, =S, ~MP — ... — M? and V8,
Sn XxP_...—x" (@8, =OF, = S,). We find sumple criteria in terms of
F for * )8, /B,, —p :|:oo (i.e., S, /B, tends to cc or to —oo in probability) or
®8,/B, —p toowhenr=0,1,.... Here B, 1 co may be given in advance,
or its existence may be 1nvest1gated In particular, we find a necessary and
sufficient condition for .S, /n —p cc. Some e?mvalences for the divergence
of |8,1/1X"|, or of @8, /X)), where (X~)& is the sth largest of the neg-
ative parts of the X;, and for the convergence P{S, >0} > 1,as n - oo,
are also proven. In some cases we treat divergence along a subsequence as
well, and one such result provides an equivalence for a generalized iterated
logarithm law due to Pruitt.

1. Introduction. Let the random walk
Sp=X1+Xo+-+ X,

denote our fortune after playing n games of chance. Under what conditions on
the distribution F of the increments X; will we win, with probability approach-
ing 1, as n — 0o? In other words, when does P{S,, > 0} converge to 1 asn — 00?
Somewhat surprisingly, necessary and sufficient conditions for this have not
previously been derived. We give such a condition in this paper, and observe
that it encapsulates a certain asymmetry aspect of F. We further show that
we will win with probability approaching 1 as n — oo if and only if, in fact,
S, —p 00; in other words, we win a large amount, eventually, in probability.

A natural extension of this result is to study divergences of the form S, /B,
—p oo with B, a nonstochastic sequence increasing to co. In particular, when
does the weak law of large numbers fail, in the sense that S, /n —p 0, S,/n —p
—o0 or |S,|/n —p 0o? It turns out that these kinds of behavior depend on the
dominance of the large over the small values of X, or on the dominance of those
values of X; large in modulus. Thus it will be natural also to study the rela-
tionships between S, and the large and small order statistics of X1, X5, ..., X,;
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in particular, we consider lightly trimmed sums, where we delete from S, a
bounded number of the large or small order statistics.

To further motivate and state our results, we require the following nota-
tion. We will assume that X; are independent and identically distributed ran-
dom variables with distribution F, and let MY > M® > ... > M®™ denote
X1,Xs, ..., X, arranged in decreasing order, with the indices of the M taken
in increasing order in case of ties. Similarly, let XV, ..., X denote the sample
arranged in decreasing order of absolute value, with a similar convention for
ordering of ties. We will also need a notation for the small values of the sample,
and for these it will be convenient to define X)Y > X))@ > ... > (X)™ as
the order statistics of X7, ..., X, when F(0—) > 0, where

X:-:max(*xho)’ ‘Xl_ =&+_X'

If F(0—) = 0 we take (X~ flj) =0forl<j<n.
We also need sums trimmed by removing large values:

08 =8, -MP —...-MP, n>r>1
(with @8, = 8,), and sums trimmed by removing values large in modulus:
08, =8, —X® —... - X"

(again with ©S, = S,,).

Many authors have studied the relationship between S, and the extreme
order statistics. We refer to Kesten and Maller (1992) for a discussion and ref-
erences to relevant literature. Kesten and Maller (1992) obtained necessary and
sufficient conditions for the divergences ©S,/M{) —p oo and @S, /|X{"| —p
oco,r=1,2,8,.... These, in fact, are equivalent to each other and to the posi-
tive relative stability of S,, that is, to the existence of a nonstochastic sequence
B, % oo for which S, /B, —p 1. This in turn is equivalent to "S,/B, —p 1 and
to VS,/B, —»pl,r=12,....

We begin by looking for necessary and sufficient conditions for the existence
of a nonstochastic sequence B, 1 oo for which S, /B,, —p oo or, equivalently,
asit turns out, for S, /B, —p co. In Theorem 2.1 we show that such a sequence
exists if and only if V.S, or *S, dominates (with probability approaching 1) the
extreme negative order statistics or, equivalently, if @S, —p oo or ™S, —p .
These in turn are equivalent to P{S, > 0} - 1 asn — co. An analytic condition
is also given for these. Theorem 2.2 finds analogous analytic conditions for
"S,/B, —p oo or MS, /B, —p oo when B, is a fixed sequence given in advance.
The special case B, = n (in Theorem 2.3) gives a necessary and sufficient
condition for S, /n —p oo, which solves a problem considered by Baum (1963)
and Révész (1968), pages 80 and 81. ‘



INFINITE LIMIT POINTS 1475

In these theorems it turns out that (X~){? is small in probability with respect
to B,. When we replace )gi by —X; in these theorems, we obtain conditions
for S, /B, —p —o0 or VS, /B, —p —oo, with MV small in probability with
respect to B,,. Next consider the situation when S, is in the domain of attraction
of the normal distribution with centering and norming sequence A, and B,,
which we write as :

Sp —

n
B, —p N(0, 1).

Criteria for convergence of triangular arrays [e.g., Gnedenko and Kolmogorov
(1968), Theorem 26.2] show that this implies nP{| X| > ¢B,} — 0 for each ¢ > 0
and thus | X{V|/B, —p 0. Hence | X{”| is small in probability by comparison
with B,,. When this occurs we might expect S, to become large in modulus by
comparison with the large values in the sample, so we are led to investigate
when |S,]/|X"] —p oo or |18,1/ IX0) —p oo. This is quite different from
the one-sided divergence of ™S, /| X{”| or "S 2/1 X to oo as studied in Kesten
and Maller (1992). It turns out to be related to a combination of asymptotic
normality and relative stability of S,, and in quantifying this we give a vari-
ant of a principle due to Lévy, that convergence to normality corresponds to
dominance of the centered sum of the sample over its large values. This “two-
sided” divergence is discussed in Section 3, both through the full sequence of
natural numbers and through a subsequence {ni}. It came as a surprise to us
that the existence of a sequence {n;} for which |(’)S l/1 X< )| —p 00 is equivalent
to a condition of Pruitt’s for a generalized law of the 1terated logarithm (see
Theorem 3.2).

Each of the theorems below gives equivalences for the probabilistic behavior
we are interested in, with one or more purely analytic criteria expressed in
terms of the tails or some integrals of the tails of F. In fact, our choice of
divergence phenomena discussed here has largely been determined by whether
we could find such an equivalent analytic condition.

There certainly are many other possible versions in which one may discuss in-
finite limit points. We merely mention that one may consider divergence to +oco
or to —oo of ratios such as ¢S, /B, 08, /Bn, |”8,|/Bn, S, /M08, /(XY
®S,/1X"| and |S,|/IX{". Most cases of divergence to +oo or to —oo are quite
different phenomena in that one cannot merely interchange X* and X~. One
may ask for the existence of B, with the required property, or one may give
B, in advance. One may also investigate subsequential versions. We further
limited ourselves here to divergence in probability. Almost each question can
also be asked for almost sure divergence. At the moment we know much less
about almost sure divergence, but we hope to return to this later. We believe
that this agenda of studying divergence of a variety of quantities related to S,
will lead to some surprising and deep properties of random walks. In Table 1
we summarize the cases of divergence in probability which we have treated in

Kesten and Maller (1992) and in this paper.
Various functionals of F will appear in our-analytical criteria and proofs. For
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TABLE 1

Sum dominates large values in probability (i.p.)

Lp. divergence Other i.p. Analytic
type equivalence equivalence Reference = Comments
ngs
1 (r'; — 400 3B, 1 cosuchthat A(x) >0forx>xy Kesten and Holds for
M, r-g and Maller (1992) r = 1iff
3 = > 41 Ax) Theorem 2.1  if holds
" xH (x) > forr>1
"8,
II 5 Not equivalent When E(X+)2 =o00: See Holds for
M, to negative A(x) < O0forx > xg Remark (v) allr>0
relative stability and following and s > 1if
in probability —A) > 00 Theorem 2.1 it holds for
x[1 — F(x)] below one pair (r, s)
(r)
III IS, 9
M
ng,
v = 3B, ? cosuchthat A(x) >0forx>xy; Kestenand Holds for
X - and Maller (1992) r = 1iff
B e | A(x) Theorem 2.1 it holds for
" xH(x) r>1
ng,
V —— > — Replace X; by —X; in IV
X(")
X
(GFS
vi | ;‘Sr';;l See xlA(xZ)I U@ | o See
X" Theorem 3.1 **H(x) Theorem 3.1
below below
(r)
VII S’('s) o  P{"S,>0}>1 WhenEX")?=00: See
X A(x)>O0forx >x9 Theorem 2.1
A(x) below
and — 00
xF(—x)
future reference we list these here:
H(x) =P{|X| > x} =1~ F(x) + F(—x—);
ww=[ ydFe).  vw=-[ ydF,
[0, x] [~x, 0]
v(x) = vipx) —v_(x) = E(XI(le < x)),
x 0
A= [ 1-Fo)dy.  Aw=[ Foa.
0 —-x
A) =A4@x) —A_(x);
Viw=[ SdFo). Ve = [ SPdFo),
[0, x] [—x, 0]

V@) = Vi@ + V) = E(X?I( X| < x));
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x 0
Us(x) = 2 [0 W1-Fldy, U.@=2[ WF»dy,

U) = Uy @) + U_(x) = 2 [0 yH(y)dy.

Here X is any random variable having distribution F. We mention the following
relations which are obtained by integrating by parts:

(1.1) V@) =-x*Hx)+Ukx), A@ =x[1-F&) —-F(x-)]+v@).

Throughout this paper we assume P{|X| > x} > 0 for all x so that the X; have
unbounded support.

2. One-sided results. One way of motivating the results in this section is
to consider the weak law of large numbers in the form [see, e.g., Feller (1971),
page 235]:

xH(x) — 0 if and only if% —v(n) ->p0.

(Throughout, we will omit “c — 00,” “n — 00,” etc., when it is obvious.) Thus
when xH(x) — 0 and v(x) — oo we have S,/n —p co. However, xH(x) — 0,
equivalently, x[1 — F(x)] — 0 and xF(—x) — 0, bound both the positive and
negative tails of F. Surely, to get S,/n —p oo, we need only have the positive
tail dominate the negative tail in some way. Our first result is of this kind.

THEOREM 2.1. Letr = 0,1,2,...and s = 1,2,3,.... If U_(c0) = oo, the
following are equivalent:

(21) (r)Sn —>p OQO;
)
(2.2) there exists B, 1 oo such that  >poo;
(2.3) P{"S, >0} > 1;
ng,
(2.4) W —>p OO
(2.5a) Al

T %
If U_(00) < 00 = U,y(c0) and F(—x) > O forallx > 0, then (2.1) to (2.4) are
equivalent to

(2.5b) A(x) > 0 for x large enough. ‘

If U;L(oo) = oo and F(—x) = 0 for some x > 0, then each of (2.1) to (2.3) is
equivalent to (2.5b). If EX? < oo, then (2.1) to (2.3) hold if and only if EX > 0.
The theorem remains true if ™S, is replaced by S, throughout.
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REMARKS. (i) Conditions (2.1) and (2.2) (for r = 0)in Theorem 2.1 are clearly
equivalent to the existence of a nonstochastic B}, 1 co such that, for 0 <& < 1,

(2.6) P{Sn >1- E)B;l} — 1.

This is a kind of one-sided relative stability of S,. It is weaker than positive
relative stability of S,,, which is equivalent to

Ax)

@.n xP{|X| > x} =

see Kesten and Maller (1992) for a discussion of relative stability and its equiva-
lence with @S,,/M{’ —p oo and "8,/ IX(| —p 00.(2.7) obviously implies (2.5a)
or (2.5b). Positive relative stability also implies the following: A(x) is positive
for x large enough, is slowly varying as x — oo and satisfies A(x) ~ v(x), and
the sequence B,, for which S, /B, —p 1, equivalently,

S, —nv(By,)
B,

may be chosen to be the restriction to the integers of a function which is regu-
larly varying with index 1; see Bingham, Goldie and Teugels (1987) for defini-
tions and properties of slow and regular variation.

Some of the above properties have useful one-sided analogues. One can show
that if (2.2) holds, then B,, can be chosen to satisfy

Z?: 1Xi_ —nv_(By)

(2.8) —p0,

(2.9) B, —p 0,
while, under (2.5a), A(x) and v(x) always satisfy
. A(x))
(2.10) hjrtrisogp e >1
for each fixed A > 1, and
el
(2.11) lim <
TSP A

Inequality (2.10) is a one-sided version of slow variation while (2.9) is a one-

sided version of (2.8).
(ii) Although (2.11) holds, it is not in general true under (2.5a) that v(x) ~ A(x)
as x — oo. Take, for example,

1 1
1—F(x)=1—0g—x and F(—x)—m,
when x is large. Then

x v(x) R
(logx)2’ xF(—x)

x
Ax) ~ Togx’ v(x) ~
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Thus U_(c0) = oo and (2.5a) holds, but v(x)/A(x) — 0. Note, however, that if

v(x)

(2.12) F) -

’

then (2.5a) holds by (1.1). This shows that (2.12) is sufficient but not necessary
for (2.5a). '

(iii) Theorem 2.1 has an interesting connection with some work of Griffin
and McConnell (1994), which was developed quite independently. For x > 0 let
T, be the first time S,, exists the interval [—x, x], that is,

T, = inf{n: |S,| > x}.

Griffin and McConnell show that P{Sr, > 0} — 1, x — oo (thus S, exits with
high probability on the positive side of the interval), if and only if

Ux) +xvE)]

(2.13) 2P (—)

and

o xAx)

Somewhat surprisingly, these conditions together are equivalent to (2.5a) [pro-
vided U(c0) = o0]. In fact, by multiplying (2.13) and (2.14) one clearly obtains
(2.5a). Conversely, (2.5a) implies (2.13), since, by (1.1),

U(x) + x|v(x)|
(2.15) =V@) +x*[1-Fx)+ F(—x—)] + x|A(x) — x[1 — F(x) — F(—x—)]
> x| A(x)|.

Also (2.5a) implies by (2.11) that |v(x)| < (1 + o(1))A(x), and by (4.13) below
that

Thus U(x) + x|v(x)| < (2 + 0(1))xA(x) and certainly (2.14) holds. One may also
give a direct probabilistic proofthat (2.1) implies P{St, > 0} — 1,x — 00, based
on the Markovian property of the stopping time 7, (We remark that Griffin
and McConnell’s results go well beyond the above-mentioned equivalence, by
considering subsequential and higher-dimensional versions.)

(iv) The division of Theorem 2.1 into cases when U_(o0) is finite or not is
mainly for convenience in exposition. Lemma 4.3 below shows that (2.5a) is
equivalent to (2.1) to (2.4) regardless of whether U_(o0) is finite or not, provided
F(—x) > 0 forx > 0.

(v) Theorem 2.1 can also be used to obtain conditions for divergence to —oco
in probability. This is obvious for S, since modulus trimming is independent
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of the sign of X;. For #S,, —p —co we similarly interchange —X; and X; and
ask when

(2.16) P{S,+Y X)H¥>0{—>1  n—oo.
Jj=1

This is answered in the lines following (4.38); it occurs if and only if P{S, >
0} — 1, equivalently, if the conditions in Theorem 2.1 hold. Thus we obtain, for
r=0,12,...,

S, —-p —oco, equivalently, S, —p —oo,

if and only if

(2.17) 3% — —oo0 in case U (o0) = o0
or

(2.18) A(x) <0 incase U, (0) < oo =U_(0)
or

(2.19) EX <0 in case EX? < oo.

The arguments following (4.38) and Theorem 2.1 also show that (2.16) is equiv-
alent to

Sp+ Y1 &X)Y

o

[if F(0—) > 0]. Therefore, necessary and sufficient conditions for
r) S,
M(S) —>p —0

are given by (2.17) to (2.19).
The next theorem is analogous to the preceding, but now the sequence B,, is
given in advance.

THEOREM2.2. Letr=20,1,2,...and B, 1 cobeagiven sequence. If U_(oc0) =
00, then

(r)
(2.20) Sn —p 0O
if and only if
(2.21) Aw) — 00 and nAB;) - 00

xF(—x) " B,
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If U_(00) < 00 = U4(00), then (2.20) is equivalent to

nAB)
B,

(2.22) Ax) >0 for x large enough and

If EX? < oo, then (2.20) is equivalent to EX > 0 and n/B,, — oc. The theorem
remains true if VS, is replaced by ©8,,.

The next theorem allows S, /n or ®S, /n to tend in probability to any pos-
itive constant, possibly co.

THEOREM 2.3. Letr=20,1,2,...and a € (0, 0. If U_(c0) = o0, then

()]
(2.23) Sn —pa
if and only if
A(x)
(2.24) T —- o0 and A() —a

If U_(o0) < oo, then (2.23) holds if and only if A(x) — a. The theorem remains
true if O8S,, is replaced by VS,,. .

REMARKS. (i) For a = oo, Theorem 2.3 is immediate from Theorem 2.2. As
we shall see in Section 4.3, the only additional point in Theorem 2.3 is to observe
that, for ¢ < oo, (2.24) is equivalent to Feller’s conditions for the weak law of
large numbers [see Feller (1971), page 565].

(ii) If we replace X; by —X; in Theorem 2.3 and use Proposition 4.1 below,
then we also obtain a necessary and sufficient condition for @S, /n —p —oc.
For instance, if U, (c0) = o0, this is equivalent to

A(x)
x[l - F(x—)]

— —o0 and A(x) »> —oo.

(iii) In general, A(x) /xF(—x) — oo alone does not imply S, /n —p 0o. In fact,
there exists an F with U_(o0) = co and mean 0 for which S, is relatively stable,
thatis, S, /B, —p 1for some B,, 1 oo [see, e.g., Breiman (1968), Exercise 3.7.17].
By Theorem 2.1, A(x)/[xF(—x)] — oo in this example. Yet A(x) — 0 since F has
mean 0. [Note that S,/n — 0 a.s. here, so that necessarily B, = o(n).]

(iv) In general, A(x) — oo alone does not imply S,,/n —p co. For example,
take i.i.d. Y; > 0 with tail P{Y; >-x} ~ 1/[xlogx] and i.i.d. Z; symmetric with
tail P{|Z;| > x} ~ x"Y/2. Let X; = Y; + Z;. Then A(x) ~ loglogx since A(x) is
mainly determined by the tail of Y;, yet A(x)/[xF(—x)] ~ 2loglogx/x/?2 — 0.
[This example is due to Révész (1968), page 80.]
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It would be interesting to find a “subsequential” version of Theorem 2.1,
that is, a criterion for the existence of a sequence of integers n; through which
@8, —p co. At present we only have such a criterion when X > 0 a.s.

THEOREM 2.4. Suppose F(0—) = 0and n; 1 00, By, 1+ 00 are given sequences.
Then S, /B,, —p 00(0) if and only if n;A(By,)/Bn, — o0(0) as n; — co.

REMARKS. (i) In each of Theorems 2.1 to 2.4, the analytic condition is inde-
pendent of r (and, in Theorem 2.1, s). Thus the other properties also hold or fail
for all r and s simultaneously. In fact, the same sequence B, can be used for all
r (see Proposition 4.1 below).

(ii) In general, nA(B,)/B, — 1 or nv(B,)/B, — 1 do not imply S,,/B, —p 1.
Take, for example, a nonnegative X; whose tail 1 — F(x) is slowly varying, say
1—-F(x) ~ L(x) | 0. Then A(x) ~ xL(x) and we can choose B, 1 oo such that
nA(B,)/B, =1.1If S, /B, —»p 1 we would have n[l — F(B,)] — 0 [cf. Gnedenko
and Kolmogorov (1986), page 124], yet n[1 - F(B,)] ~ nA(B,)/B, = 1. Likewise
if B, is chosen so that nv(B,)/B, — 1, then v(x)/x[1 — F(x)] — 0 [which follows
from (1.1)] implies n[1 — F(B,)] — oo.

3. Two-sided results. Our first result is a two-sided analogue of Theo-
rem 2.1, and is related to results of Lévy [(1937), pages 333—336], who shows
that the centered sum dominates the large values in modulus if the centered
sum is asymptotically normal. Theorem 3.1 also is, in part, a two-sided analogue
of Lemma 3.2 in Kesten and Maller (1992).

THEOREM 3.1. Forr=1,2,... the following are equivalent:

08,| ,
oy x0T
(3.2) for some T > 0, P[I(r)gnl < T|X,(Lf)|} - 0;

x| A@)| + Ux)

3.3 —_— 5 00;
@3) x2P{|X| > x}

there is a nonstochastic sequence D,, 1 oo such that every in-
3.4) finite sequence of integers contains a subsequence n' — oo for

which ®8S,, /D, converges in distribution to a normal random
variable, possibly degenerate, but not degenerate at 0.

THEOREM 3.2. Forr=1,2,... the following are equivalent:

there is an infinite sequénce of integers n; such that
(3.5) |8,,|
X0

—p 0O, n; — oo;
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there is an infinite sequence of integers n; such that, for some

(3.6) T >0, ~
T P78 <TIQI) 0, mi— o

. x| A@)| + U(x)
3. HA@)|+Uw) _
3. llill)s;;lp x2P{|X| > x}

3

at least one of the following holds:

. U(x)
(3.8a) 1 -
T x2P{| X| > x} + x| A®)| o
or
(3.8b) lim sup 1A _

x— 00 Ux) = oo

at least one of the following holds:

(3.92) meup U@ _
harcrlsogp x?P{|X| > x} o
or
(3.9b) lim sup _IA(x—)l = o0;

X — 00 xP{IXI >x}

there is an infinite sequence of integers n; and a nonstochas-
tic sequence Dy, such that S, /D,, converges in distribution
to a normal random variable, possibly degenerate, but not
degenerate at 0.

(3.10)

REMARKS. (i) Theorem 3.2 has a nice connection with a generalized law of
the iterated logarithm due to Pruitt [(1981), Theorem 5.2]. He showed that (3.7)
holds if and only if there is a nonstochastic sequence B,, 1 oo such that

S
O<limsupI nl <00 a.s.

n— oo n

The equivalence of (3.7) and (3.8) is due to Pruitt (1981), Lemma 2.6, and (3.9) is
due to Martikainen (1980). Equation (3.9a) is equivalent to Lévy’s [(1937), page
113] condition for S, to be in the domain of partial attraction of the normal.
See also Lemmas 4.5 and 4.6 below for other interesting sidelights on these
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conditions. Equation (3.8a) is equivalent to subsequential uncentered asymp-
totic normality [see (4.62)], while (3.8b) is equivalent to subsequential relative
stability [see (4.55)].

(ii) In the two-sided case the analogues of (2.1) and (2.2) always hold (except
when F is concentrated on the single point 0, but this case was excluded by the
requirement that ' have unbounded support). This means that we always have

S, | |8, |
—poo and ——— —poo for some B, 1 co.
B, B,
However, these do not imply (3.1) to (3.4). We demonstrate this following the

proof of Theorem 3.2.

Our next theorem is a convergence rather than a divergence result, giving
a criterion for the relative compactness of S, /n. The corollary following it then
gives a necessary and sufficient condition for the subsequential divergence of
|08, |/n.

THEOREM 3.3. Forr=0,1,..., the following are equivalent:
|08, |
(3.11) lim lim supP{ > x} <1
x>0 n-so0

)
(3.12) lim supP{% > x} < ;C for some ¢ = c(r) and all x large enough,

n— oo

(3.13) lim sﬁp AW+ U <00

n— oo X

The theorem remains true if ©S, is replaced by ©S, throughout.

COROLLARY TO THEOREM 3.3. There is an infinite sequence of integers n;
such that

r)
(3.14) 5l o
n;
if and only if
(3.15) lim sup HAWI+ U@ _ 00

n— oo X

The corollary remains true if S, is replaced by ©S,.

4. Proofs. We begin with a general proposition which essentially shows
that light trimming has no influence in the situations of this paper. The diver-
gence under consideration for S, or S, for any r is equivalent to divergence
for S, itself. For any subset C of [-oc0, 0] and & > 0, we use the notation

(4.1) C°={x+y:x€C, |yl <&}
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PROPOSITION 4.1. Let C, be any sequence of Borel sets of [—o0, o] and B,, 1

00 a sequence of constants. Let ny <ng < ---. Then, forall r,s > 0, and ¢ > 0,
s,
(4.2) lim P LeCp =1
i— 00 Bni
or
"s,
(4.3) lim P teCpp=1
i— 00 B,Li
implies
®S, OF
(4.4) lim P{ e th} = lim P{ 3 L€ sz,} =1.
i— o0 n, i— 00 n

REMARK. Of particular interest to us will be the special case when "8, /By,
—p oo or —oco or IS, /B, —p oo for some r > 0. For instance, in the first case
(4.2) holds for C, = [T, 00), for any fixed T'. Then (4.4) shows that also, for all
s> 0,

®©8S, ©®©3

L
—poo and
B, B,

ni

—>p OQ.

PROOF OF PROPOSITION 4.1. To simplify the notation, we only consider the
case where {n;} is the full sequence of natural numbers; the proof for a sub-
sequence is the same. Furthermore, we restrict ourselves to proving that (4.3)
implies (4.4)—again there is no essential difference for starting at (4.2).

It is convenient to break ties by introducing an i.i.d. sequence {U;};>1 of
random variables, such that each U; is uniformly distributed on [0, 1] and such
that {U;};>1 is independent of {X;};> 1. We then regard |X;| as strictly greater
than |X| if | X;| >~|Xj| or | X;| = |X;| and U; > U;. In this way the rth largest
|X;| = |X"| and @S, are uniquely determined. In fact, it is not hard to see that
w.p.1, |X;| > |X|| if and only if ¥ (|1 X;|, U;) < ¥ (X}, U;), where

(4.5) V(L u)=P{|X| >t} + 1 —-wP{IX| =t}
For ¢ > 0 and u € [0, 1] define the events
EG, ¢, u) = {|Xi| > ¢or |X;| = £ and U; > u},
and an i.i.d. sequence of random variables Z;(¢, u) Wit;h the conditional distri-

bution of X;, given that E(i, £, u) fails. Finally,

_ J
Si(e,u) =Y Zi(L,w).
i=1 ~
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Then for any fixed £ > 0,u € [0, 1],

"3
P{ B t ¢ C,,} > P{E(i, £, u) occurs for exactly r values of i < n}
n

Sn_r(t,w)
XP{ B,

¢ c,,}.
Let § > 0 and define

An={(t,w): 8 <ny(L,u) <1/8}.
Then if n is large enough, uniformly for (¢, u) € A,,

P{E(i, £, u) occurs for exactly r values of i < n}

n\ - ~ n— 1 _ - §re~V/8
=(r)[y<e,u)]’[1—y<e,u)] > e O] 2 =,

because
PlEG, t,w)} =¥ (¢,w)
and (¢,u) € A, if and only if

(4.6) s<nyl,u) <

S| =

It follows from (4.3) that

P{Sn—r(e, u)

B, eCn}—>1

asn — oo and n, £, u vary such that (¢, u) € A, or, equivalently, such that (4.6)
holds. Because S, _s(£,u) and S, _ (£, u) differ by |s — r| summands with the
distribution of Z;(¢£, u), and B, — oo, this implies further that for s > 0 and
e>0

4.7) P{S————”‘s“’ “)

B, eCfL}—>1 asn — oo,

again uniformly under (4.6).
Next, let j(s) < n be the unique index for which X®) = Xj). Then, for s > 1,
we have by (4.7) as n — oo,

®©F, . ) S stw) .
P{ Bn Gcn}=/P{|X£)|Gde,Uj(s)Gdu}P{—'Tﬂ——ECn}
(4.8) > / P[[X}f’[ e dt, Uy € du}(l +0(1))
A,

> (1+ o<1))P{a <n7(|1X2], Ui = 1/5}.
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Now P{y(1X;|,U;) < ¥} = ¥, by virtue of the definition (4.5); that is, the
y(1X;|, U;) arei.i.d. random variables with a uniform distribution on [0, 1]. Also
¥ (X, Ujs)) is the sth smallest value among 7(1X1|, U1), ..., 7(1X,], Uy,). It
follows easily that ny (| X, Uj,) is tight in (0, co) and the probability in the
right hand side of (4.8) tends to 1 when § | 0, uniformly in n. This gives the
second half of (4.4) when s > 1. _

When s = 0 take ¢ and u such that ny (£, u) = §. Then use (4.7) and let first
n — oo and then § | 0 to obtain

Sn(¢,u) cce

5. <)
=[1-7%(, u)]"P{S"(Be’ Y e C;} - L

P{%ﬁ € sz} > P{E(i, £, u) fails for all i < n}P{

(4.9

Now we can repeat the above argument with (4.9) taking the place of (4.3), and
with Y (£, u) replaced by y (£, u) = P{X > £} + (1 —u) P{X = ¢}. This means that
the X; are ranked according to increasing values of y (X;, U;). Moreover, | X|
is replaced by M. This yields

lim inf P

n— oo

{ ®s,

n

€ C,zf} =1,

thus completing the proof of (4.4). O

4.1. Proofof Theorem 2.1. The equivalence between (2.1) and (2.2) is trivial;
(2.2) obviously implies (2.1), while if (2.1) holds we can find a sequence C,, — oo
such that P{®)S, > C2} — 1. Then B,, :=inf{C;:k > n} 1 co and since, for any
T > 0, TB, < C?2 for large enough n,

Q)
P{ BS” > T} > P{"s, > C?} - 1.

n

Thus (2.2) holds.

The remaining equivalences are proved via a series of lemmas. The key in-
gredients in the proof are a Chebyshev-like upper bound for the probability
that S, remains small, and a corresponding lower bound derived from results
of Kesten and Lawler (1992) and Kesten and Maller (1992). Note that Theorem
2.1 is essentially trivial when P{X > 0} = 1 or P{X < 0} = 1. We therefore
restrict ourselves to distributions with P{X > 0} > 0 and P{X < 0} > 0.

LEMMA 4.2. FixT eR andr=0,1,2,..., and suppose that x, > 0,x_ > 0
are such that

(4.10) n[v+(x+) — V(o) + x4 1 —F(x+)]} >T +rx,.
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Then

P{‘”Sn <T, ZXiI(Xi <—x_)= o}
i=1
(4.11) n{ Vi) + Vo) +3[1 - Fy)))

=

5
{n[v+(x+) —v_(x2) + x4 [1 - F(x+)]] —(T+ rx+)}

and
P{"S, <T}

(4.12) - n[V+(x+) +V_(x)+22[1- F(x+)]}

7t nF(—x_).
{n[v+<x+) — o)+ a1 - F@)]] - @ +rxp)

Proor. Let

Tn. = Z[&I(_x_ <x; §x+)+x+I(Xl >x+)}
i=1

and let @ T, be the trimmed sum obtained by removing the r largest summands
from 7,. Then, for sample points for which ¥ X;I(X; < —x_) = 0, we have

"8, >0 T, > T, —rx,.
Next, we can easily calculate
E{XI(—x_ <X; < X))+ 2, X > 2)} = v (e4) — v-(x-) +x4[1 = F(xy)]
and
E{XiI(—x_ < X; <x) + 20X > x))” = Vi) + Vo@o) +65[1 - Fxp)).
So by Chebyshev’s inequality
P[(’)Sn <T, }EXJ(X,- <-—x_)= 0}

i=1
SP{Tn = T+rx+}

- P{Tn - n{v+(x+) — v (o) +x[1- F(x+)]}

<(T+rxy) — n[v+(x+) —v_(x-) -4;x+[1 —F(x+)]}}

n{ Vi) + V@) + 52 [1- )]

’

=

2
{n[v+<x+> — v g [L-FE)]| - T+ rx+)}
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provided (4.10) holds. This proves (4.11), and then (4.12) follows from the bound

P[ > XX < —x2) #o] <nF(-x_). o
i=1

LEMMA4.3. Theconditions U_(o0) = coand A(x) /xF (—x) — o0, or U_(o0) <
00 = U, (o0) and A(x) > 0, for x large enough, imply '

‘ . XA 1
(4.13) lirr_l)g}f Ut z 35
(4.14) xA(x) = 00
and
xA(x)
(4.15) ) —

Also U_(0) < 00 = Uy (00), Ax) > 0 for x large enough and F(—x) > 0 for all
x > 0 imply A(x)/[xF(—x)] — oo.

PRrROOF. Suppose first that U_(c0) = oo, so F(—x) > 0 for all x > 0, and

suppose also that A(x)/xF(—x) — oo. Then, for given ¢ > 0,xF(—x) < eA(x) if
x > x9 = x0(€). Thus A(x) > 0 for x > xy. Note that then

U =2 [ yFydy <25 [ A)dy+0W)
%o

=2 /:A(y)dy +0(1).

Also
U_(x) = Z/OxyF(—y) dy = 2/0xydA-(y)
=2xA_(x) — 2 /OxA_(y) dy

and similarly

Usw) =264 -2 [ A4 dy.
Thus, since U_(o0) = o0, we have, for large «x,

U_(x) < 2 fo [A+(5) ~A-(»]dy +O)

=¢e{2x A (x) — Up(x) — 2xA_(x) + U_(x)} + O(1)
< ef2xA@) + U-x)} + 01
< 2exA(x) + 2eU_(x).
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It follows that

xA(x) - 1-2¢
U_(x) = 2¢

and so xA(x)/U — (x) — oo, which is (4.15). In turn, this implies xA(x) — oo,
that is, (4.14), since U_(00) = oo. Also

Up@) - U_(x) = 2|24, @) - fo A, (n)dy —xA () + fo A-<y>dy}

w16 —2lxAm) - fo A(y)dy}

=2{xA(x) — xA(y)dy} +0()

< 2xA(x) + O(1).
Thus xA(x) - oo gives
Ux) < [2+0(1)]|xA®) + 2U_(x) = [2+ o(1) |x A=),

since x A(x)/U_(x) — oo. Thus (4.13) follows.
Next consider the case U_(c0) < 0o = U, (00) and A(x) > 0 for x > xo. We
still have (4.16), and, together with U_(c0) < 0o = U, (00), this gives

(4.17) Us(x) < 2xA(x) + O(1) = 2xA(x) + o(U(x))

S0

.. axAMX) 1
lirglolngJr(x) > 3

This means x A(x) — oo, which is (4.14), and then that U_(x)/[x A(x)] — 0, that
is, (4.15), since U_(0c0) < o0. Thus we again obtain (4.13).

Finally, if U_(c0) < 00 = U, (00), A(x) > 0 for x > xo and F(—x) > 0 forx > 0,
then, as we saw, x A(x) — 00, and, in addition, x2F(—x) — 0 as a consequence of
U_(00) < 0. Thus A(x)/[xF(—x)] = oo, completing the proof of the lemma. O

LEMMA 4.4. Let F be continuous and 0 < F(0—) <F(0) <1. For0 <¢ <1,
let L, and L_ satisfy

F(=L_(¢)) = ¢ =1 - F(L,(¢)).

[Thus —L_(¢) and L. (¢) are ¢- and (1—¢)-quantiles of F, respectively.] Then there
exists a constant K < coand, forl > 0,0 > 1, p > 0, constants C(l,0,p,F) > 0
and nyo(l, o, p, F) < o0, such that, for all » € [07, o],

A PA A PA
>C(,0,0,F)>0
forn >no(l, o, p, F).
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Proor. This is essentially a consequence of Lemma 3.1 in Kesten and
Maller (1992). See also Lemmas 1 and 2 in Kesten and Lawler (1992). Write

o =P{X; > 0}.
By assumption 0 < o < 1. Let N, n be such that
an—n"Y2 <N < an.

We shall use the above-mentioned lemma to show that there exists a con-
stant K > 0, and for each Ag > 0, p > 0, > 0, there exist constants C; =
Cil, 20, 0, F) > 0,i = 1,2, such that for 1/2 < A < 2A¢, we have

P iXi<]~Yv+ L+<£) +KL+( ){X >0forl<i<N
(4.19) T« n

ZC'1>O

{Z(“X)z - (L(%»

+lL_(£-):>~Xi<0for15i§n—N} >Cy >0
n

and

(4.20)

for all large n. The proof will then be completed by the same estimates as used
in (3.5) and (3.6) and following lines of Kesten and Maller (1992).
First we note that

4.21) P{Xi > L+(5>‘Xi > 0} - lP{Xi > L+(§>} _ A
n [07 n oan
and
-1
0<X < L+<ﬁ>l - (a _ ﬁ) ,,+(L+(&)).
n n n

From these relations and the central limit theorem, it is easy to obtain (4.19)
when

(4.22) E{)Q

E{X?\X; > 0} < oo.

We may therefore assume this second moment to be infinite, so that, for large
enough n,

(4.23) E{XfI(Xi <L, (;—2)) _

} > 16B2,.
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when Bs is fixed such that
(4.24) PIX 2 By 1% 2 0) = 7.

We now apply (3.4) of Kesten and Maller (1992) when Wi(N ) has the conditional
distribution of X;, given X; > 0, and with § = NXA/(an). As in the proof of
Theorem 2.1 of Kesten and Maller (1992), we have

P{W{N>2L+<%)] P{X >L+( )‘X >o] -

Thus the L(V, 8) of Kesten and Maller (1992) [which is just a (1 —§/N) quantile
of WiN) ] can be chosen as L (A/n), that is,

LV, 8) = L+<%).

Still in the notation of Kesten and Maller (1992), we have G® for the distri-
bution of Wi(N) , and (in the case of a continuous F and G™)

Lavé 1 1 A
m(N, 8§) = f xdG™M (x) = Zv (LN, 8)) = =vy L+(—)
0 o o n

s2(N, 8) = 1V+ <L+ (i)>
o n

Therefore, by (3.4) of Kesten and Maller (1992) [but K(T") there should be
KT, rlwithT =0,

o N A
P ZXL‘S;V.;_ L+(;> +K(0 O)L+( ) X >0f0r1<l<N

{ lejwf (L+ (%)) +K(0,0)L, (%)}
X

(4.25)
{ WNIW® < LWV, 8)) < Nm(V, ) + K(0, 0)L(N, §) and

l

Wi(N) > L(N, 6) for no value of i 5N’
>C; > 0.

Hefe Ciisthe C(0, 1g, 0, Bg, 0) of Kesten and Maller (1992), with B; as in (4.24)
and (4.23), which is just (3.2) of that reference when B; = 0. Inequality (4.25)
proves (4.19) with K = K(0, 0).
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In the same way, we can apply (3.3) of Kesten and Maller (1992) with N
replaced by n — N and with each of the W(N ) having the conditional distribution
of —X; given X; < 0. This gives (4.20) Wlth Cy = C(l, Ao, 0, By, 0), where now B;
and n are such that

1
P{X, < -By| X < 0} <

and
(4.26) E[X2I<X > —L_ ('0)”0)>'X < o} > 16B2.

Again (4.26) will hold for large n if E{XizI X; < 0)} = oo, while (4.20) follows
directly from the central limit theorem if the second moment is finite. Thus

(4.20) is also proven.
Finally, we must prove (4.18) from (4.19) and (4.20). Write I for the event

s (1(2)) (1) |2 (2) - 1-(2).

and A for the random set of indices 1 <i <nwithX; > 0.ThenT > (I')NI';NI),

where
s | < G (7)) o (3)
[ e (2 o ()]

(JA| denotes the cardinality of A) and
T3={en—n"'2 <|A| < an}.
Therefore, if we condition on the set A, we have

P{T'} = P{T1 N2 NT3}
> > P{X;>0forie A X; <O0fori¢A)

an—n-1Y2 <|A|<an

xP{I'1|X; = 0fori e AJP{I'2|X; < Ofori ¢ A},

where the sum is over all subsets A of {1,...,n} with an —n"Y2 < |A| < an.
But since the X; are independent and identically distributed, (4.19) shows that

P{I'1 | X; = 0fori e A}

N ‘.
=P ZXL-SJXW L, L +KLJr Xi>0forl<i<N;>C;
o n

1

on {|A| = N} when an —n~12 < |A| < an.
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Similarly, (4.20) shows that
P{I'y|X; <Ofori g A} > C,.

Finally, we note that |A| has a binomial distribution with parameters n and
« so that P{I'3} > Cj for large n and some constant C3 = C3(«) > 0. Thus

P(I'} > P{l'1NT'2 N3} > C1CoP{T's} > C1C3C3 > 0

for large n. This proves (4.18) when A is restricted to an interval [1o/2, A,]. Since
the interval [0 1, o] can be covered by finitely many such intervals, (4.18) also
holds uniformly for A € [0~1, o]. This completes the proof of Lemma 4.4. O

We now return to the proof of Theorem 2.1. So far we have shown that (2.1)
and (2.2) are equivalent, and each of these trivially implies (2.3). We now pro-
ceed by proving, when U(co) = oo, that (2.3) implies (2.5) and (2.5) implies
(2.4). That (2.4) implies (2.1) is trivial. The finite variance case is then easily
dealt with.

We first show that (2.3) implies (2.5) when F(—x) > 0 for x > 0. We restrict
ourselves to continuous F. A short remark for general, not necessarily contin-
uous, F' will be given at the end of this part of the proof. Until further notice
we also assume 1 — F(x) > 0 for all x > 0. Note that then L, (¢) and L_(¢) as
defined in Lemma 4.4 are positive for ¢ small enough.

Assume (2.3) holds for some r = 0, 1, .. .. Then P{S, > 0} — 1. Our first step

is to prove that this implies

@]

(4.27) ;C(l——m

[Note that [v(x)]~ = max(0, —v(x)); this is not the same as v_(x).] To see this,
we apply Lemma 4.4 with [ = 1. This shows that, uniformly for A € [0 1, ¢] and
P> O,n > nO(l’ o, p’F);

ool () o ()] o) (2]

Since P{S, > 0} - 1 and L_(pA/n) > 0, this forces

(4.28) n[m. (L+ (%)) - (L_ (%))] +KL, (%) >0

for large n. Now note that

(4.29) v (L_ (%)) > <L+(%)) - %L+ (%)
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This is obvious if L_(pA/n) > L, (A/n) since v_(x) is increasing. If, on the other
hand, L_(pA/n) < Ly (A/n), then

V- (L+ (ﬁ)) = / || AF (x)
n =L+ (A/n). 0]
=V_ (L— (2&)) +/ |x| dF(x)
n (=L, (\/n). =L_(oA/n))
Sv_<L_<£&)>-kL+<&)P{XE<—L_<£&)}
n n n
V_ (L_ (p_)»)) +L+<§>p_)»,
n n n

using the definition of L_ in the last step. Thus (4.29) holds, and substitution
into (4.28) shows that

n[v+ (m(%)) " (m(%))] s+ Ly (2) 0

v (L+ (A/n)) K

z-p-—.

(A/n)L4(x/n) A

This quickly implies (4.27). We take o = (2K/p) + 2. Then for large x we can
choose A € [1Vv K/p, o] and n such that

A

or

(4.30)

1—F(x)=;};—.

With this choice we may take x for L, (A/n), and hence (4.30) gives

Ve >—p— K > —2p.

x(1-Fx) ~ A
Thus, for any p > 0,
I v(x)
1 f —2p,
Pt x(1-F(x)) ~ P

whence

Statement (4.27) follows.
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We turn now to the main step in the proof of (2.5). Assume that (2.5a) fails.
In this case there exists a sequence x;, 1 0o and a constant D < co such that

Axr) vl + xp(1—F(xp))
xpF(—xp) xpF(—xp)

—-1<D-1.

Consequently,
(4.31) v(xg) + x5 (1 — F(xz)) < DxpF(—x3).

We shall show by another application of Lemma 4.4 that this contradicts P{S, >
0} — 1 and thus (2.3). This time we choose

_ K
™= | 2DF () |
Now, since 1 — F(x) > 0 for all x, we have, for large k,

P{X > x3) =1~ F(xp)

1
< —{m@-Few) + bl
1 -
= — =1 - Few) +vew + [vew)] |
1 1
< x—k{kaF(——xk) + 51 —F(xk))]

by (4.31) and (4.27). Of course, this estimate is also valid if 1 — F((x) = 0 for
large x, so we can drop the assumption that 1 — F(x) > 0 at this stage. Thus, by
our choice of ng,

P{X > x3} < 2DF(—x3) < —Ii
ng
We may therefore take
(4.32) L+ (E) < Xk.
np

We now take A = K,0 =K VK1 and p = 1/(4D). Then
K 20X

F=ze) ~ 2Dn,, ng

and we may therefore take

(4.33) L. (@) > 1.
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Then

and hence

(4.34) v, (L+ (%)) i <L_ (%)) < v,

Finally, Lemma 4.4, together with (4.32) to (4.34), gives

(4.35) P{S,, <npv(xr) + K —Dxr} = Cl,0,p,F) >0

for large k. But for [ > 3K /2, we have
3K
npv(x) + (K — Dxp, < npDxpF(—xp) + (K — Dxp, < (7 - l)x;e <0

by (4.31) and the choice of n. Thus (4.35) contradicts (2.3) when [ > 3K /2. This
proves that (2.3) implies (2.5a) when F(—x) > O for all x and F is continuous.
Of course, (2.5a) implies A(x) > 0 for large x in this case, and thus (2.5b) also
holds.

We will show that (2.5) implies (2.4). Suppose that U_(c0) = oo and A(x)/
[xF(—x)] = oo, that is, (2.5a) holds, or that U_(c0) < 0o = U, (0c0) and A(x) > 0
for x large enough, and F(—x) > 0 for all x, which is (2.5b). Then, by Lemma 4.3,
A(x)/[xF(—x)] — o0, s0 xF(—x) = 0(A(x)) in both cases. Also, by Lemma 4.3,
xA(x) — 00, so, in fact, A(x) > 0 for x large enough, say x > x;. We will show
that P{"S,, < TX"){P} — 0 for fixed T' > 0; this will prove (2.4) for s = 1 and
thusfors = 2, 3, ... as well. Todo this, take Ty > T+r and define B,, = B,,(T";) by

B, =sup{xzx1: égfz > ﬁ}

n

Since A(x) > 0 for x > xi, this gives a sequence B, 1 oo satisfying, by the
continuity of A(x), nB;; 1A(B,) = T, for large n. Then xF(—x) = 0(A(x)) implies

[vB+B.[1-FBN])}  |A@®,) + B.F(-B,)
n =n

B, B,
N nA(B,)

n

= Tl >T+r,
so condition (4.10) of Lemma 4.2 is satisfied for n large enough whenx, =x_ =
B, and T is replaced by TB,,. We also have

)| {BnFiéBn) o
B, ||7A®Y

nF(-B,) = {
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and
, {vBw +B2[1-F@.)| nUB,)
lim supn 57 < lim sup =
— limsu { U(B.,) nA(B,)
<2T
by (4.13) of Lemma 4.3. Thus, by (4.12) of Lemma 4.2,
n{V(B,)+ B2%[1 - F(B,)]{/B2
P{(T)Sn =< TBn} =< { [ ]}/ P} +nF(-B,),

{n[vB) + BalL — FB)/B,] - (T + 7))
which gives

hmsupP{()S <TB,} < ——ZT—I—z
n— 0o {Tl (T+r)}

Note that, since nF(—B,) — 0,
P{X")Y <B,} =P"(X] <B,)=[1-F(-By)|" > 1

S0
(r) r) -y -\ (D)
{ Sn T}<P{ S"<T(X)",(X)” <1}
(X_)(l) - - Bn - Bn Bn
+P{X")Y > B}
P Sn T
< { B, < }+o(1).
Hence

r
limsupP{% T} < —-—2T-1—2-,
n—>00 0.@p%) {Ty — (T + 1)}

and letting 77 — oo completes the proof that (2.5) implies (2.4). This completes
the proof when F(—x) > 0 for x > 0 and F' is continuous.

Now consider the case when F(—x) = 0 for some xy > 0 and U, (c0) =
We prove that (2.3) implies (2.5b). But now, by (1.1), even without assuming F
to be continuous,

v(x) =A®) —x(1 - Fx)) <Ax)
forx > xo. Thus, if A(x) < 0 for arbitrarily large x, then since X is bounded below

EX = lim v(x) <0.
X—> 00
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In this case we would have

liminfP{S, <0} >0
n— oo

by virtue of Lemma 1 in Kesten and Lawler (1992), giving a contradiction.
Conversely, let (2.5b) hold, so A(x;) > 0 for some x; > x¢. Then, for x > x;,

X

A@ =A(m)+ [ (1-FO)dy >0,
X1

since F(y) < 1 for all y (recall that we assumed the support of F unbounded,

while it is bounded below in the present case). Also

[o ]
EX; = lim A(x) > / (1-F(y))dy >0
X —> 00 x1
(EX; may be +00). Thus (2.1) to (2.3) hold by the strong law of large numbers.
This argument works for U, (c0) finite or infinite.

Finally, if EX? < oo, then EX < 0 is incompatible with (2.3) by the weak law
of large numbers, since S, /n —p EX. Also EX = 0 contradicts (2.3) by the
central limit theorem, since then S, /n1/2 is asymptotically normal.

This proves the full theorem for ™.S,, when F is continuous. Continuity of F
was assumed only for the implication from (2.3) to (2.5a) when EX? = oo. This
implication for general F can be proven by replacing X; by Y; = X; + U;, where
each U; has a uniform distributionon [—1, +1] and allthe X; and U;, i > 1, j > 1,
are independent. By means of Proposition 4.1 and by Theorem 3.1 of Esseen
(1968), one can then show that (2.3) implies

1 n
4.36 _— Y: .
( ) 7 21: —p 00

By what we have proved already, (4.36) implies the analogue of (2.5a) for the
distribution of the Y;. It is tedious and unilluminating to derive (2.5a) itself
from this, and we skip the details. - _

Finally, we must show that ®S, may be replaced by ©S,. We shall write (2.1)
for (2.i) when ™8, is replaced by S, 1 < i < 4. Since none of (2.1) to (2.4) or
(2.5) can occur when P{X > 0} = 0, we may, as before, assume for the remainder
of this proof that

PX=>0}>0

Now recall that @S, is obtained from S, by removing the j smallest and (r — j)
largest X;’s for some 0 <j < r, while S, is obtained by removing the r largest
observations. From this it is not hard to see that, forn > r,

(4.37) 08, <O 8y <Su+ > XY

j=1
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Now (4.37) shows immediately that (2.1) to (2.4) imply (ﬁ)ﬂl;p (2.4). For the
converse, note that again each of (2.1), (2.2) and (2.4) imply (2.3). By virtue of
(4.37) it therefore suffices to show that (2.1) with » = 0 follows from

r
(4.38) P[S,, +Y XD > 0] - 1L
Jj=1 .
However, it is easy to deduce (2.1) from (4.38) and Proposition 4.1. To see this,
note that (2.1) is trivial if F(0—) = 0, while for F(0—) > 0, (4.38) just says that
P[ Z(_Xi) — (r largest terms among —X;, ..., -X,) < O} — 1.
1

We then also have
P{n‘”“[Z(—Xﬁ — (r largest terms among —Xj, ..., —Xn):| < O} -1
1

and hence, by Proposition 4.1,

P{n_l/4 Z(—Xi) < 1} -1,
1

or, equivalently,
P{S, > -n4} > 1.
This implies (2.1) with » = 0, because by a general concentration function
inequality [Esseen (1968), Theorem 3.1],
P{-n'* <8, <n'*} >0

unless X is a constant a.s. However, in this last case (4.38) forces X > 0 a.s. and
then (2.1) is trivial. This completes the proof of Theorem 2.1. O

4.2. Proof of Theorem 2.2. Suppose U_(c0) = oo and A(x)/[xF(-x)] - oo
or U_(00) < 00 = U,(o0) and A(x) > 0 for x large enough. Suppose also that
F(—x) > 0forx > 0,s0A(x)/[xF(—x)] — oo also in the latter case by Lemma 4 3.
Then by Theorem 2.1, @S, /(X™)Y —p 00, so, for T > 0,

P{®S, < TB,} < P{?'8, < TBn, X)) < By} +P{"S, < TX")P)
< P{"S, < TB,, £X;I(X; < —B,) = 0} + o(1).

If, on the other hand, F(—x) = 0 for some x > 0, then (4.39) holds trivially since
S X, I(X; < —B,) = 0 a.s. for n large enough. Under the further assumption that
nA(B,,)/B,, — 00, we have, by (1.1),

(4.39)

n{v(Bn)+Bn[1-F(Bn>]] n{A(B,) +B.F(-B,-)} _ nA(B,)
B, = B, =B, %
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Thus we can apply the bound (4.11) with x, = x_ = B, and T replaced by TB,
to obtain

P{®S, < TB,, SXI(X; < —B,) = 0}
n|V(B.) + BY[1 - FBy))

<

2
[n[v(Ba) + Ba[1 — FBW)] - (T +1)B,)

(v, +B2[1-FBw)}
nA%(B,)

<[1+0)]

By Lemma 4.3 we also know that limsup, _, ., U(x)/[xA(x)] <2 so

V(B +Bi[1-FBy)] _ UBn) [U(Bn) }{ B, }_)0

nA%(B,) = nA%B,) | B.A®B, || nA®B,)

Thus, via (4.39), we have P{®S, < TB,} — 0 or ©S,, /B, —p co.

Conversely, suppose ™S,/B, —p oo. Then S, —p oo and we know from
Theorem 2.1 that A(x)/[xF(—x)] — 00, x — 00, when U_(0c0) = oo, or A(x) > 0,
for large x, when U_(00) < 00 = U, (00). It remains to show that nA(B,)/B, —
+00. Suppose this fails, so there is a sequence n; 1 oo such that

niA(B,,.)
(4.40) — " s a<o0.
B,,
If we now define
n
T, = (()(1 ABp) v (_Bn)),
j=1
then
A(B
E(ﬂz) _n B( ) =a+o(1),
n; n;
) U(B,,
Var Eﬁ.) < U (Br) <2a+o0(1) (by Lemma 4.3)
B, B,%i
and
U(B,,.
nH(By,) < -’%—n—l <2a+o(1).

n;
It follows that, for T > a,

P{Sni Z TBni} SP{TILL Z TBn,} +P{Tn, #Snl}
2a

< (T——a—)_2 +1—e2 +o(1).
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On the other hand, it follows from ®S,/B, —p oo that S,,/B,, —»p x (e.g.,
by Proposition 4.1). This contradiction shows that (4.40) is impossible and this
completes the proof of Theorem 2.2 when EX? = co.

When EX? < oo, the weak law of large numbers gives S, /n —p EX, so if
EX > 0 and n/B, — oo, then @8, /B, —p oo. Conversely, if @S, /B, —p o,
then EX > 0 by Theorem 2.1 and so n/B, —_ oo.

This completes the proof for *S,. For "8, we merely have to observe that
(2.20) for S, and for @S, are equivalent by Proposition 4.1. O

4.3. Proof of Theorem 2.3. When a = oo the result is immediate from The-
orem 2.2 when EX? = oo, while if EX? < oo, then neither ¥S,/n —p oo
nor S, /n —p oo can occur, by the weak law of large numbers. Moreover
lim, _, ., A(x) is finite in this case. So we need only consider the case 0 < a < o0o.

Now assume (2.23) holds with 0 < @ < oo and EX? = oo. (The result is
trivial if EX? < c0.) Then S, /n —p a [Kesten and Maller (1992), Theorem 2.1,
or Proposition 4.1 above], and, equivalently [Feller (1971), page 565], v(x) — a
and x[1 — F(x) + F(—x—)] — 0, so A(x) — a. Since a > 0 and xF'(—x) — 0, (2.24)
follows. Conversely, let A(x) — a € (0, 00). If U_(00) = o0, suppose also that
A(x)/IxF(—x)] = oo. Then xF(—x) — 0. If U_(c0) < oo, then x*F(—x) — 0, so
again xF(—x) — 0. But then

A@2x) ~A) = [ : [1-F(y) - F(-y)]dy
> ngl — F(2%)] — xF(—x) = x[1 — F(2x)] 4 o(1).
Since A(2x) — A(x) — 0, it also follows that x[1 — F(x)] — 0 and, by (1.1),
lim v(x) = lim A(x) = a.
x> 00 x> 00
By Feller (1971), page 565, this implies (2.23) for r = 0, and by Theorem 2.1 of

Kesten and Maller (1992) or Proposition 4.1, (2.23) for any r follows.
Again (2.23) for @S, and for S, are equivalent by Proposition 4.1. O

4.4. Proof of Theorem 2.4. We shall just prove this for the whole sequence
n since the general case is no different. We have S,,/B,, —p oo (or to 0) if and
only if E(e=*S»/Br) — 0 (or to 1) for all A > 0, equivalently, if

n/ (1 —e*/BrydF(x) - 0o (or to 0).
[0, 00)

Using
yel<l-e?<y for0O<y<l1
and l
l-el<l—-e?<1 fory>1
and (1. 1), it is easy to show that this is equivalent to nA(B,)/B, — oo (re-

spectively, 0). This proves the theorem for Sy, and for S, it then follows from
Proposition 4.1. We remark that "§, = ®S, since X; > 0 in this theorem. 0
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4.5. Proof of Theorem 3.1. Clearly (3.1) implies (3.2). Suppose then that
(3.2) holds for some T' > 0, and without loss of generality take 7' < 1. We shall
show that (3.3) holds. Choose § € (0, 72/6) and then choose n € (0, 1) so that
8 < (1 —n)T?/6. Define a sequence D, by

O;MZE}.

(4.41) D, = sup{x > e -

Then D, < oo, since U(x)/x> — 0 and A(x)/x — Oasx — oo. Also D, + o
because U(x) > 0 for all x > 0. Introduce the following notation:

h(y) =1-H(y—) = P{|X| <y},
Sn(¥) =) Zi(y),
i=1

where the Z;(y),i > 1, are i.i.d., each with the conditional distribution of X,
given | X| < y. Then we can write

P{|”8.] < T1x?|} = P780] = Tix0, X0+ < X0
(4.42) > (”) / P{ min | X;| edy}
r) JiD,. ) 1<j=r ),
< [P{IX1 <3)] P{iSa-r()l < T},

Note that the last integral is restricted toy > D,. For such y, we have, by (1.1),
nV(y) _nU(y) _

(4.43) 2 ST )
and
n|v(y-)| < n|A(y)| +nH(y—)§8+nU§y) <9s.

y Y

Assume that n is large enough for A(D,) > 1 — 5. Then
v(y-)l 25
T—-n-r >T———>0.
( )yh(y) - 1-n

Note now that EZ;(y) = v(y—)/h(y) and Var(Z;(y)) < V(y)/h(y). Therefore, by
Chebyshev’s inequality,

v(y—) [v(y-)l
roy | TP T Gy T

(n —=nV(/h(y)
. 2
P[T - @ =nvy-)1/(vh)]

SA-m  _
T [r-2a-m]

P{ISn—r(y)l > T.!y} SP{ Sn—r(y)—(m—r)

=
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It is easily checked that ¢ < 1 because of the choice of § and 7. From (4.42) we
now deduce that

PlI"S <l = a-o(7) [, Pl min, %< )

1<

X [P{|X| <y}]n_r
(4.44) > Clnr[P{|X| - Dn}]n—rP{ lréljuslrl)(ﬂ . Dn}
= cln’[P{|X| < Dn}]n_r[P{pq zpn}]r
> cl[nP{|X| > Dn}]re—nP(lean]/P(le <Dy)

for some ¢; > 0. Since, by (4.43),
nU(D,) + nV(D,) <

nP{IXIzD,,}=nP{IX|>D,,}+nP{|X|=Dn}§ D2 D < 28,
(4.44) and (3.2) imply that
(4.45) nH(D,) = nP{|X| > D,} — 0, n— oo.

Now, by continuity of U(x) and A(x), we have
D2 = n(Du| A(Dp)| + U(Dy)).
Thus (4.45) gives

Dn|ADp)| + U(Dn)

(4.46) D2HD,) — 00,

n — oo.

This proves (3.3) along the sequence D,,. To show that this implies the full
(3.3), consider the left continuous function

_ x| A@)|+ Ux)
g() = 22H(x—)
If (3.3) fails, then in view of (4.46) there must exist sequences n; < ng < --- and
% € (Dp, -1, Dy,) and constant T' > 5 such that
(4.47) gx)>T>5 forx e (xp,Dn,]and g(xz) <T.

Thus it suffices to show that (4.45) and (4.47) are incdmpatible. However, it is
not hard to deduce from |A(x + dx)| — |A(x)| < H(x)dx and a similar relation
for U and the first relation in (4.47) that
x|A@x)| + Ulx)
x2
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is decreasing on [x;, D,,]. But then
son > L DulAD)| + UDn)
H (xr—) Dz,

1 )
> ma — oo [by (4.45)].

This contradicts the second relation in (4.47), so that we have proven (3.3).
We now prove that (3.3) implies (3.4). Suppose (3.3) holds, and define D,, by
(4.41) with § = 1, so that

n[Dn| A(Dy)| + U(Dn)]

=1
D;

(4.48)

If 0 < x < 1 we have by (3.3) that, for 0 < ¢ < x% and large n,
n|AD,)| nU(an)]

X

D, D2
_ £ [nADY| | nUDY [P fp, <y <p, 1 - F@) — Fp)]dy|
=27 D, D? D,
& +enH(xD,)
<—
<

This shows that nH (xD,,) < ¢/(x?—¢) and sonH(xD,) — 0,n — cofor0 <x <1
and hence for x > 0. Given any sequence n’ 1 oo of integers, take a further
subsequence if necessary so that, as n’ — oo,

nVDw) | o oang 2P
D,zl/ Dn’

By (4.48),(1.1) and nH(D,,) — 0, we havea’+|b'| = 1. Again, since n’H (xD,/) —
0 for x > 0, we see that, as n’ - oo,

n'V(xDy) _ n'V(Dy) n ofn’ fmin(x‘ 1D, <ly| < max(x, Dy Y 2dF(y)}
D?, D?, D2,
=a+o0)+ O[max(l, x%)n’H(min(1, x)Dy) }

b'.

—a.
Similarly,
n'v(xD,) N
D,

for x > 0. By the criteria for convergence to the normal or degenerate distri-
bution [Gnedenko and Kolmogorov (1968), Theorems 25.1, 26.2 and 27.2], we
thus have

b/

S, —n'v(Dy)

D, —p N(@,a’)
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and, in fact, that

(4.49) S—" —-p N@', a).
D,

Here N (b, @) stands for a normal random variable with mean &’ and variance
a';ifa’ = 0 we interpret (4.49) as S, /D,, —p b'. Note thatifa’ = 0, then || = 1.
Also, since n’H(xD,;) — 0 for x > 0, we have X,(ll) /D, —p 0 and hence also

g,

Dn —)DN(b/ Cl)

(4.50)

Thus we have proved (3.4).

Finally, if (3.4) holds, then any sequence of integers has a subsequence n’ for
which (4.50) holds with a’ + |5’| > 0. By Mori [(1984), Proof of Theorem 3], one
then also has (4.49) and, as above, X,(l,l) /Dy —p 0.Ifa’ >0and T > 0,6 > 0,
then

li P |">§n,| <T! <l P |">§n| < Ts, X7 <$
O oD ST ST D D, =

n'

(4.51) Ix (r)l
+11msupP D, )

—PWWHaN<R]+O 50,

and so l(’)gn/I/IX,ﬁf)l —p 0. If, on the other hand, a’ = 0, then |5'| > 0 and

I(r)gn’l _ |(r)‘§n’| Dn’ Dn’
(4.52) X0 = Dy XV |bIIX"’ P 0,

so again | S, |/ X9 —p 00. Since this convergence holds for all subsequences,
we do indeed have |™S,|/|X{| —p oco. This proves (3.1). O

4.6. Proofof Theorem 3.2. Clearly,(3.5)implies (3.6), so let (3.6) hold. Then,
for some T' > 0 and some n; <ng < -- -,

P{|"5,,| < Tjx2|} - 0.
Then we obtain exactly as in the preceding proof of (3.3) from (3.2) that
n;H(Dy) — 0
and

Dnz |A(Dﬁt)l + U(Dut)

Dr%iH(Dnt) -

This implies (3.7).
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The proof that (3.7) implies (3.8) is virtually identical to that of Lemma 2.6
of Pruitt (1981), so we do not produce it here.

Now it is obvious that (3.8) implies (3.9), if we take into account that U(x) >
x2H (x). Clearly, either of (3.9a) or (3.9b) implies (3.7). Thus we see that (3.7) to
(3.9) are equivalent.

For the remainder of the proof, the following two lemmas are useful. They are
also of interest in themselves since they give necessary and sufficient conditions
for uncentered subsequential convergence to normality or for subsequential
relative stability.

LEMMA 4.5. Ifr=0,1,2,... the following are equivalent:
there are sequences n; 1 0o and B, 1 oo such that

(4.53) |(r)§nz | |(r)Sni I
B—ni —>p 1 or B—n‘ —>p 1,
V2 (x)
(4.54 limsup ———— = o;
) P HOV®
(4.55) lim sup A

Proor. First, we show that (4.53) is equivalent to the following property:
each subsequence of n; has a further subsequence {m;} such that

S S,
(4.56) - 5p1 or — —p—1.
mj ij

If (4.56) holds, then by the degenerate convergence criterion [Gnedenko and
Kolmogorov (1968), Theorem 27.2]

|x®
j P 0
m;
and hence also, for each r,
g, "S
(4.57) L »>p+l and " —p+l.
ij m,

This easily implies (4.53).
Conversely, if (4.53) holds for some r, then by Proposition 4.1 also

Bl

(4.58) B,

Therefore any subsequence of the n; contains a further subsequence {m;} such
that S, /By, converges in distribution to some random variable Z, which must
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be infinitely divisible with P{|Z| < 1} = 1. From Feller (1971), page 177, we
know that then P{Z = ¢} = 1 for some constant ¢. Of course, we must have
¢ = %1, by virtue of (4.58). Thus (4.56) holds.

Now assume first that EX? = co. If (4.53) holds, then (4.56) holds along some
subsequence {m;}. By the degenerate convergence criterion again [Gnedenko
and Kolmogorov (1968), Theorem 27.2], we then also have :

mjv(Bmi) 41 m;V (Bm,) N

0.
B, B2,

(4.59) mjH(Bm,) — 0,
Conditions (4.59) easily imply (4.54) and (4.55) [use (1.1) again to obtain (4.55)].

Conversely, let (4.54) hold and take x; 4+ oo so that [H(x;)V(x;)]/v3(x;) — O.
Define n; as the integer part of

{ Vix;) 172
H (x;)v2(x;) } '

A standard proof using the Cauchy—Schwarz inequality shows that v2(x) =
o(V(x)), x — oo, when EX? = oo. Thus n; = 0o. Now

n2H?(x;) ~ w -0
v4(x;)
and Ve
Xi

—_nivz(xi) n;H(x;) — 0.

Thus
< V(x;)
P{ ;}(jI(l)(jl < %) —nv()| > eniv(xi)} < oy - 0,

while

Jj=1 Jj=1

P[ Y XI(1X) <)+ ZX,] < mP(IXi| > 1} = niH () > 0.

These give S,,/[n;v(x;)] —p 1, which, by the first part of the proof, implies (4.53)
if we take B,, = [V(x;)/H(x:)]*% ~ n;|v(x;)|. Note that B,, indeed increases to
o0, since x; increases to oo.

Next let (4.55) hold and choose x; 1 0o so that

Al L wlA))
x;H(x;) Vix;)

The first relation here together with (1.1) shows that v(x;) ~ A(x;). Therefore

- o0

- [v ()| N ' d LA ED]

o0 and ———=—
x;H (%) V(xi)
Multiplying these gives (4.54).



INFINITE LIMIT POINTS 1509

Now let EX? < co. IfEX 0, then (4.53) to (4.55) are trivial since v(x) > EX,

asx — oo and we may take n; = n and B,, = n|EX| in (4.53). So suppose EX = 0.
Then

(4.60) xvx)| ==x

/ wdF(w) 5/ 2dFw) — 0,  x— oo,
lul>x lu|>x

Since E(X?) < o0, x2H(x) — 0, so by (1.1), x| A(x)| — 0. It follows that

V(x)
x| Ax)|

— o0

and (4.55) cannot hold. Also, by Schwarz’s inequality

2
2 2
( )=[ dF( )] s[ dF( >]H< )
V(X [u’>xu u [u'>xu U X
= o[H(@)],

50 H(x)/v%(x) — oo and (4.54) cannot hold. Also (4.53) cannot hold since then,
by Rogozin (1976), (4.56) would imply

sznj ~ m;j|v(By,)|Bm, = o(m;),

because xv(x) — 0. But Smj/mjl/2 —p N(0, 1), so

1/2
[Sm,| _ (1Smi]\ (™
ij B r)’l,jl/2 ij e
Thus none of (4.53), (4.54) or (4.55) holds when EX? < 0o, EX = 0. This com-
pletes the proof. O

LEMMA 4.6. Forr = 0,1,2,... there are sequences n; 1 oo,C,, 1 00, such
that

"S, S,
(4.61) t >pN(@,1) or - —>p N(,1)
Cni Cni
if and only if
(4.62) ~ lim sup U@

PrOOF. Assume that (4.61) holds for some r > 1. It then follows from the
proof of Theorem 3 in Mori (1984) that also

(4.63) % —p N(0; 1).



1510 H. KESTEN AND R. A. MALLER

[Strictly speaking, Mori only proves this from ©8,, /C,. —p N(0, 1), but a sim-
ilar proof works when S, /C,, —p N(0, 1); see also Kesten (1993).] For the
time being assume also that EX? = oo, so that |v(x)|> = o(V(x)) as x — oo.
(4.63) is equivalent, by Gnedenko and Kolmogorov (1968), Theorem 25.1, to
niv(Cp,) o n;V(xCy,) 1

(4.64) nH(xCy,,) — 0, o , cz

for all x > 0. Thus, using (1.1), the necessity of (4.62) is obvious.
Conversely, let (4.62) hold and take x; 1 oo so that

x2H (x;) x; |A(xi)|
U(x;) —0 and U(x;)

Define n; as the integer part of

) x2 %
m { He) U\ TAG) U }

Since H(x) — 0, U(x)/x?> — 0 and |A(x)|/x — 0 as x — oo, we have n; - oo.
Also

— 0.

2
appa,.  _ X H®)
n;H(x;) < _U(xi) -0
and
nfA() _ xil Al
2 T U

i

— 0,

while, by (1.1),
n V)  nU)
i

2
+o(1)~; — oo{ifni2~ #—}

x? ? n;H (x;) Hx))U(x;)
or .
n Vi)  niU(x) i P X }
= N —— f P : .
2 e v T °°{1 " AEI U
Now let

0,21‘ = niV(xi).
Then C,, /x; - oo and so n;H(xC,) = O(n;H(x;)) — 0 for x > 0. Also

nV(xCn) _ niV(x) + ni [, <lul <xCy, u? dF (u)

) c -
while, by (1.1), n;v(x;)/x; = 0 since niA(x;)/x; = 0. Thus
n,-v(Cnl.) _ n;v(x;) + n; %, < |ul <xCp; udF(u) 0.

an C"t Cnt
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By (4.64) these imply S,,/C,, —p N(0, 1) and X{P/C,,, —p 0. Hence

"s, s,
C L —>D N(O, 1) and C : —D N(O, 1).

n; n;

Finally, if EX? < oo and EX = 0, both conditions (4.61) and (4.62) hold, since
x|v(x)| — 0 as we showed in (4.60). If EX? < co and EX =0, it is easy to see
that neither condition can hold. O

We now complete the proof of Theorem 3.2. Suppose (3.8) holds. If (3.8a), that
is, (4.62), holds, by Lemma 4.6, we can choose integers n; and a sequence D,,
such that S, /D,, —p N(0, 1). If (3.8b), that is, (4.55), holds, by Lemma 4.5
and its proof, we can choose n; and D,, so that S, /D, —p +1 [see (4.57)].
Thus (3.10) holds, since we interpret degenerate convergence as convergence
to a degenerate normal random variable.

If (3.10) holds, then the proof from (3.4) to (3.1) [see (4.51) and (4.52)] can
again be used to deduce (3.5). This completes the proof of Theorem 3.2. O

4.7. Proof of Remark (ii) to Theorem 3.2. A general concentration function
inequality [see Esseen (1968), Theorem 3.1] shows that |S,| —»p co when F
is not concentrated on one point. If F' is concentrated on one point, which is
different from 0, then |S,| —p oo is even more obvious. We can therefore find
some B, 1 oo such that |S,|/B, —p oo in the same way as in the proof of (2.2)
from (2.1). Moreover, |S,|/B, —p o0, |"S,|/B, —p oo and |8S,|/B, —p 00
are all equivalent by Proposition 4.1. Hence all these relations hold if F is not
concentrated on {0}. On the other hand, it is clear that (3.3) or (8.4) does fail for
some distributions not concentrated on {0}. O

4.8. Proof of Theorem 3.3. Suppose (3.11) holds for some r. By Proposition
4.1, (3.11) then also holds for r = 0. Assume that (3.13) fails so that there is a
sequence x; — oo such that |A(x;)| 4+ U(x;) /x; — oo. Iflim sup; _, , U(x;)/x; = o0
we can take a subsequence so that U(x;) /x; — oo asi — co. By the argument of
Lemma 1 of Erickson and Kesten (1974), we then have P{|S,,|/x; < T} — 0 for
T > 1,o0r|S,,|/x;i —p 00,1 — 0o, which contradicts (3.11) for r = 0. Alternatively,
U (x;)/x; is bounded, so we can assume |A(x;)| — oo. Then V(x;)/x; and x;H (x;)
are bounded, so |v(x;)| = oo and v2(x;)/H(x;)V(x;) — oo. Defining n; as the
integer part of

V(%) }”2
{H(xi)v2(xi) '

we obtain, as in the proof of (4.53) from (4.54), that S, /n;v(x;) —p 1. This
means

[Sn]

i

~p |v(x;)| > o0
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as i — 0o, and contradicts (3.11). Thus (3.13) holds.

Next suppose (3.13) holds, so |A(x)| + U(x)/x < c for x large enough, and
thus, since U(x) > xH (x), xH(x) < c for such x. Hence by (1.1), |v(x)| < 2¢c. By
truncation at nA and Chebyshev’s inequality,

ni 4nV(ni 4c 5
P{lSn—nv(n)t)|>—2—}s——g+ nH(nh) < — §=T°
Furthermore,
) 3nr] ~ .ol 8nA
{] S, —nv(nd)| > 1 } —P[ S, —nv(ni) —Zl:Mn’ >

n ; ni
SP{IS,, —nv(nd)| > 5)»} +P{|X,(z‘)| > E}

5 A 4
< —c+nH<£—) < 5_; rc.

So if we choose x > 2(5 + 4r)c > (5 + 4r)|v(nx)|, then we obtain

r)
p”__’?’. > x} =P[|(’)Sn — nv(nx) +nv(nx)| > nx}

< P[|"’Sn —nv(nx)| > nfx - Iv(nx)l]]

3 5+4
<P{|<’>S —nv(nx)|>?}s ter

c<l1,
x

which proves (3.12). Clearly, (3.12) implies (3.11). This proves Theorem 3.3 for
"8, and the proof for ™S, is the same. O
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