The Annals of Probability
1994, Vol. 22, No. 3, 1252-1272

EQUILIBRIUM FLUCTUATIONS OF A ONE-DIMENSIONAL
NONGRADIENT GINZBURG-LANDAU MODEL

By SHENGLIN Lu

University of Michigan

We study equilibrium fluctuations for hydrodynamic limits of a nongra-
dient Ginzburg-Landau model. We prove that the limit fluctuation process
is governed by a generalized stationary Ornstein-Uhlenbeck process.

1. Notation and summary. In this article we study the equilibrium
fluctuations of a one-dimensional nongradient Ginzburg-Landau model. The
dynamics in this model is governed by a conservation law together with random
noise which also conserves the total charge. The resulting process is nongra-
dient and reversible with respect to a family of time-independent Ginzburg—
Landau Gibbs measures.

Equilibrium fluctuations for the gradient Ginzburg—Landau model have been
studied by Chang [1] and Zhu [10] and, for the interacting Brownian motion
model, by Spohn [7]. The gradient condition on dynamics means the regular
summation by parts can be performed. With this property for the dynamics, the
original contributions from the oscillations of fluctuation fields can be largely
reduced. For the nongradient system, we also need to control these large os-
cillations. The usual idea to replace local microscopic quantities by averaging
with respect to the Gibbs state does not suffice. Varadhan [9] introduced a per-
turbation technique to estimate the contributions of large oscillations to lower-
order perturbation terms. The hydrodynamic scaling limits for the nongradient
Ginzburg-Landau model are then derived with the bulk diffusion coefficient as
a thermodynamic quantity. Quastel [6] extended this approach to the diffusion
of color in a symmetric exclusion process. In considering fluctuations, we will
also use this perturbation method. We identify the correct diffusion and drift
terms for the limit fluctuation process by using estimates on the central limit
theorem variances.

We now introduce the setup. Let S be the unit circle viewed as the interval
[0, 1] with O and 1 identified. For each integer N, let Sy denote the periodic
lattice {j/N} with j = 1,2, ..., N. Let x;(¢) represent the continuous charges at
the site j at time ¢. The dynamics of the charge configuration are governed by
the infinitesimal generator

N2 3 5 \2 N2 - 3 d
LN=—2—i=Z;a(xi,xi+1)(—_ ) _7;W(xi’xi+1)(5;_ 3xi+1),
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with
W(x,y) = —ai(x,y) +az(x,y) + a(x,y)(fﬁl(x) —-¢'(y),

where a(x,y) is a function of x,y with bounded continuous first derivatives
satisfying

(1) 0<Ci<a(x,y) <Cy < 0.

The functions a; and a; are the partial derivatives

and ¢ is a continuously differentiable function from R into R satisfying the
following properties:

(2) / e @ dx =1,
3) / M @D dxy =MO) <oo forall A eR,
4) f W @N-¢D gy « 5o forall o >0

and ¢'(x) = d¢(x)/dx.

If we let &n(x) = exp(—Ef’= 19 (%)) on RY, then this will be the density
relative to the Lebesgue measure of a probability measure on RV . The generator
Ly is formally symmetric with respect to the density ®y and defines a reversible
process with invariant density ®n(x)dx.

Equivalently, one can describe the dynamics by the stochastic differential
equations

N2
di(®) = 5 [W(i-10), 5:0) = W((0), 2 10) | de
+ N[0 (310, %®) dfi(®) - o (60 x421) dfisa®)]

where (81(®), ..., Bn(t)) are N-independent Brownian motions and o (x,y) =

Ja(x,y).
Assuming

o0
f xe @ dx = p,
—00

we define the empirical density fluctuation field by
1 X

é'tN(‘)=\/—N
i=1

(x:®) — p)disN,
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where ¢V is a measure valued process. We denote by ux, , the product measure
on RN with density ®x(x) and average p and denote by Py the distribution of
¢N with initial distribution py, ,. So Py lives on the space C([0, 1], M(S)), with
M(S) as the space of signed measures on S. We denote by H_,(S), « > 0, the
conjugate space of regular Sobolev space H, (S). Our main result is the following
theorem. '

THEOREM 1. Suppose conditions (1) to (4) are satisfied. Then Py converges
weakly in C([0, 1], H_2(S)) to a generalized stationary Ornstein-Uhlenbeck pro-
cess characterized by the following SDE:

(5) d¢™(t) = 3a(p)R" (p) 93¢ @) dt + V/a(p) ddg 6, 1),

where 3 B(0,t) is the Gaussian random field with covariance
6) E[aeﬂ(e, £)(J1(0)) %8O, s)(Jz(O))] = min(, s) /S J(0)T}(0)d6

for any smooth functions Jy,Jy on S. Here the function h is the free energy
defined by

h(y) = sup[ry — p(AV)],
p(A) =log M(2)

and the function a(-) will be defined below.

For given y € R, if we let A = h/(y), then we have a product measure u, on
1 _R = Q with each coordinate having the distribution [1/M(1)]le*~¢® dx.
Let F(x_y, ..., x;) be a smooth function of (2/ + 1) variables. We will view this
as a function F(w) defined on Q. If we denote by T the unit shift operator
(Tw) (@) = x; 41 if w(@) = x;, we can form the formal infinite sum

U= i F(T*w).

=—00

Although ¥ does not really make sense, the partial derivatives 3% /dx; are all
well defined. Then we define

2

ovr  ov

~ =1 u (= _ ==
a(y) 11‘I}fE ya(xo,xl)(l (axo axl)) ,

where the infimum is taken over all functions F, varying [ as well as the function
of (21 + 1) variables. ]

_ To prove Theorem 1, we have to control local fluctuations and replace the
local average by proper macroscopic quantities at the fluctuation level. This
effect for fluctuations is usually called the Boltzmann—Gibbs principle which
will be given in the following form. )
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THEOREM 2. For any smooth function J on S,

—> o0

: 1 ¢ o ] / ! " ?
(7) lim EPN[-—ﬁ fo ;J(1%>{¢ (%)) —h'(p)—h (p)(xxs)—p)}ds] =0.

REMARK 1. It is not hard to get the asymptotic process for equilibrium
fluctuations in higher-dimensional space. In fact, a similar approach works for
all other nongradient dynamics.

REMARK 2. There is no efficient estimation to control the oscillations for
the fluctuations of nongradient systems in nonequilibrium. It does not suffice
to use just the estimates developed in [2].

This paper is organized as follows: Section 1 presents the notation and a
summary of the main results. In Section 2 we prove the tightness for the fluctu-
ation fields. In Section 3 estimations are derived for the central limit theorem
variances. Section 4 contains the proof of the Boltzmann—-Gibbs principle for
our dynamics. The proof of our main result is covered in Section 5 by using the
techniques developed in Sections 3 and 4.

2. Tightness. In this section we shall prove several estimates which will
lead to the tightness for Py. These estimates are essential to using Garsia’s

lemma. We get the tightness on the measure valued space C([0, 1], H_5(S)).
For any test function J(-) on S, we have

1 X 1
+ ﬁ ; VJ(%)G(:XZ,‘, %;+1) dBi(t)
= d(Vd, yn(t)) +d(VJ, vn(?)),

() -2 (5) ()

the derivative of J in a lattice sense, and

where

N N
©) () (dx) = g Y SN @)Wz, 0 d2,

i=1
1 N
(10) w(@)dx) = — D 8N ()0 (x, i, ) ABiCE).
i=1 i
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Let Qn denote the induced measure of (v, vy) on C([0, 1], (M(S))2).

THEOREM 2.1. Py is tight as a sequence of probability measures on C([0, 1]
H_»(S)).

PRrOOF.

From the relation given above, we only need to prove the tightness
for Q.

The following estimates will be used to prove the tightness. Methods are
standard; see [6], [9] and [8].

LeEmMMA 2.1. For yy, we have, for all a > 0,

E [exp(Noz|(J, w®) =, )’N(S))l)]

N .
< 2exp (C4|t — slNoz?‘ZJ2 (:7%))
i=1

for some uniform constant C4 > 0 depending only on the bound of a(x, y).

ProoOF. By stationarity, if¢ > s,

EQ [exp(Na((J, w) —{J, VN(S))))]
= B4 [exp(Na(, wy(t - 9))|
< exp[(t — $)AW)],
by the spectral theorem and the Feynman—Kac formula, where

A = sup[ Ns/zaE‘I’NZJ< )W(x,,xH_l)f(x)

feDN.»

2
N ECI)NZa(xt,xz+1)f<af o ) }

0x;  0%i41
=f:‘;£~{N“’“ZJ( ) (5 - o
(Y o

< 203a2N;~J2 (1%)

Here Cj; is the bound of a(x,y) and DV-#» = {f: f is smooth density wrt ux ,}.
Lemma 2.1 is then proved by using e <e* +e7*. O
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LEMMA 2.2. For vy, we have

E[(J, vy (t)] <05( ZJZ( )>3

where Cs is constant depending only on the bound of a(x,y).

This lemma is proved simply by applying It6’s formula.
We will use Garsia’s lemma in the following form.

LEMMA 2.3 (Garsia, Rodemich and Ramsey). For any continuous function
f e C(0,1]), if ¥(x) is a strictly increasing function with ¥(0) = 0 and
lim, _, o ¥(x) = o0 and

a B[ [ (0L g

then, for0 <s <t <1,

u?

-9 4B\ du
12 ) — 4 xp—l(—>——.
(12) &) —Fs)| < fo =

THEOREM 2.2. Qy is tight as a sequence of measures on C([0, 11, (H_1(8)?).

Proor. It suffices to prove

I: limsup QN( sup [lu@®) 2 > l) =

N—> o0 0<t<l1

and, for every ¢ > 0,

II: limsup QN( sup |m<t>—u<s>nH_l>e)=o

N-—> o O<s<t<l|t—s|<$é

for u = vn, yn.
Since the proofs of I and II are basically the same, we only prove II for

VN, yN. O

PROOF OF II FOR yy. We will use estimations from Lemmas 2.1 and 2.3.
In Lemma 2.3 we take ¥(x) = exp(Nax) — 1 and o > 0. It is not hard to show
that, for0 <t—s <1,

(t=9) 4B\ du -
_1 - hated
4/0 v (uZ)ﬁ

< 8———'1(\?;3){10g[43+(t—s)2]+10g4—2 log(t—s)}
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and, by Lemma 2.1,

N .
E¥B <2 exp (C4Na22J2<J%)) - 1.
i=1

Then, using Garsia’s inequality, we have, for 0 < § < 1,

N
Ew [exp—a— sup [T, yw@®) = (J, ya(s)) I]

8s1/4 O<s<t<1|t—s|<é
< 10E[4B + 6%

N .
< Cg exp (Na2 ZJ2<L>>,
o \N

with Cg¢ > 0. Integrating the inequality above over o > 0, we get

EO exp <__ sup |<J, yn (@) — {J, )’N(S))lz)
C18'2 g<s<t<1t-s1<s  (1/N) Z]iv=1J2(i/N)

and

EQN[ sup (I, yw@®) — (J, yN(S)>|2]

O<s<t<l,|t—s|<s
< Cost2 L iJ‘? L
with C7, Cg and Cy uniform positive constants. Then II follows for yy. O

PROOF OF II FOR vy. In Lemma 2.3 take ¥(x) = 8. Then
3
1 ¥ i
QN — 2(
ESYB < Clo[N;J (N):I

¢-=9) 4B\ du

-1 - \==

of e ()ﬁ
c. (t—s) 4:B 1/6du
<4 — —
<o (&) %

< C11BYS|t —s|Y/8.
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Then

EQ"[ sup |(J, vn (@) — (., VN(S))lzjl
O<s<t<l,|t—s|<s

< C12E®[BY/?]s1/3

N .
< C1331/3 l ZJz(—l-

with Cig, C11, C12 and C13 uniform positive constants. Then II follows for vy .
This completes the proof of Lemma 2.4. O

3. Estimation of central limit theorem variances. In this section we
shall estimate central limit theorem variances. Since we are in an equilibrium
environment, fluctuation fields can be estimated by the central limit theorem
for scaling limits. These ideas are from [4] and [9].

Let us suppose that L is the infinitesimal generator of a Markov process
which is reversible and ergodic with respect to an invariant probability measure
u on some state space X. We denote by P, the stationary Markov process with
marginal distribution u. If V(x) is square integrable with respect to 1 and has
mean 0, by the ergodic theorem,

2

t
lim EP[% f V(x(s)) ds] = 0.
0

t— o0

We are interested in calculating

t 2
(13) lim EP{% /0 V(x(s)) ds} — AV, V)

t— oo

if it exists. There is a symmetric bilinear form

t t
lim EP”{:}_Z/O V(x(s)) ds%/o U(x(s)) ds} =AW, U).

t— 00

It is known that the limit (13) always exists. It is finite if and only if V is in the
range of (—L)'/? and in that case

AV, V) =2((-L)"?V, (=L)"?V).
By standard arguments, if U and V are in the range of (—L)/2, then
AV, U) = 2((-L)™V2V, (-L)"V2V).

Here (,) is the standard inner ‘product in Lo(p). By duality A(V,V) = 2¢2,
where c is the smallest constant such that

(U, V) <c[DO)]"* forall U e DL).
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Here D(U) is the Dirichlet form
DU) = (-LU, U).
If U = Lf for some f in D(L) and A(V, U) < oo, then
AWV, U) = -2(f,v).
In particular, A(U, U) < co and
AU, U) = =2(f,Lf) = 2D(f).

We want to explore these ideas in a specific context. We fix N and consider
RN — N copies of R. On R" we have the product measure exp[—Zf’: 16 ()] dx
and the conditioned measures 1y, ,(dx) on the hyperplane (1/N) Zf’= 1Xi =y. We
look at the Dirichlet form

9 2
DN‘y(f) f Za(xhxz-i-l)( o A ) d,U«N.y(dx)’

0x; axi +1

and the corresponding operator is Ly as given in Section 1 but without scaling,
that is,

s Yatne (= ) =3 2 W (-
, - = Xi, Xi —_— = .
2 At it 1 Bx 3xi+1 2i=l bl 3xi 8xi+1

We will be looking at three classes of functions,

=3 ZVJ( )W(x,,x,+1)
= ZVJ(]%)((P/(xi) —¢'(xi+1)),
i=1

N .
cv=>" VJ(Z%)LNFi(x),
i=1

where Fi(x) = F(%i41, ..., %i+r) With F(x1, ..., x;) a smooth function of & vari-
ables for some fixed k, and

wa(x) = (o (52) (%))

An elementary calculation yields
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On the other hand, By is also in the range of (—Ly)'/?, because for any smooth
test function u,

2 2
[t [ ors(3) - o
< C«/— N(Dy., @)

It is clear then that Ay, By and Hy are all in the range of (—Ly)'/2. So central
limit theorem variances and covariances exist. We will estimate these variances
and covariances in the following several lemmas.

For a given F'(x1,...,x;) on R*, we formally define

Uy = i F(T*w)

=—00

and

3xo 0x 1

2
ar =E”<’a(xo,x1)<1 - (a—\Ij—F - B—\Iii)) ,

where p, is the product measure defined in Section 1, and 7', which is defined in
Section 1, is the unit shift operator. It is not hard to see that @ is meaningful,
although \pr is just formally defined.

LEMMA 3.1.

.1 )
Nh_l)nooNAN.y(ANyAN) = ' [1}2 s, E* a(x0, 21).

PrOOF. Since

2
) ¥ i
An.y(An, An) = EuNyZa(xj’le)l:(ax 8x+1)<Z ( ) )]
j -1

Lemma 3.1 follows from the translation invariance of ,ui,v . O

LEMMA 3.2.

.1 ,
]\}gnooNANy(AN’BN) = ”J ”%2(3)‘

PRrOOF. Since

Aw y(AN,BN)—E“”y|:<§VJ<;’) )(lNlVJ(L)cp(xl )]
=E"N-y[<i§VJ;/.(x, )( Y v (2 ¢<xl>)]
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and
]}glle“”-y[(xi - (x)] =1,
Lemma 3.2 is then proved. O
LEMMA 3.3.

ovr 0Up

. 1 -
Jim A (Ax, Cn) = 17 ||L2(S)Euya<xo,xl>(a_m _ W)

PRrOOF.

3 N '
AN y(AN, CN) = EHN.y Za(xjyxj-i-l)(ax ax‘+1)<ZVJ(]%)xi)
J i=1

69 3 va(L)p
(o ma) ™))

Since F depends only on finitely many variables and by the translation invari-
ance of the measure, we have Lemma 3.3. O

LEMMA 3.4.

, 1
hm NAN y(BNyBN) = ”J ”Lz(S)A( )

Proor. For a given integer /, we define

By = ZVJ( )[ ¢’ (xa+n1) — ¢'(xiz)]-

By the smoothness of J and finite action for different bonds, we have

.1
Jim Ay y(By,By) < lim lim NA(Bf\,,BfV)

< [l)1? ll_lj'IgO TEW (A, (Ei=1x,—)/l(Dl’ Dy)],
where

= (¢'(x) — ¢ (x0)).
By the theorem in [8], we know

i A (Dy, D =
Nl_l)nwysgr;l 1.yDnLDp) < ==

( )
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By the law of large numbers, we then have

1 1
hm NAN yBn,BN) < —(—-)—

Lemma 3.4 then follows. O

LEMMA 3.5.
.1
ngnoo NAN, yBn,Cn) =
Proor.
¥ N N
A, y(By,Cy) = E* (Zv ( )¢(x,+1) ¢'(xl>><zv ( )Fl(x))
i=1 i=1

=Eﬂ§’<ileJ<]%)(aij ax,+1)(ZVJ< )F‘(x))

Since [ J'(x)dx = 0 and F only depends on finite variables, Lemma 3.5 follows
by the translation invariance of p,ﬁ’ . O

LEMMA 3.6.
im 2 3p  3Tp\>
Jlim Ay, (Cy, Cy) = ||J/uLz(S)Euya(xo,xl>(m _ a_xl) ,
PRrOOF.
P 2
A ] C El‘l‘ N V 1
N.y(Cn, Cn) = y;a(xj xj+1)[(8xj axj+1)(2 J( )F (x))]

Since F depends only on finite variables and ¢ is smooth, we have Lemma 8.6. O

These lemmas can help us to estimate macroscopic limits for the microscopic
quantities. We will use these estimations to compute the contributions from the
fluctuations in Section 5.

4. Boltzmann-Gibbs principle. In this section we shall establish the
Boltzmann—Gibbs principle for our dynamics. The Boltzmann—Gibbs principle
was discussed by Chang [1], Spohn [7] and Zhu [10] for equilibrium fluctuations
for different gradient dynamics, and by Chang and Yau [2] for nonequilibrium
gradient model. Our method is similar to Chang [1] but different from Spohn
[7] and Zhu [10].
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First, we want to truncate the unbounded function ¢'. For / > 0, the trunca-
tion y; of ¢’ is defined by

¢, for|¢| <1,
Y= [, for¢’' >1I,
=1, for¢ <—

Let
Ti(x) = M) / PPy (y) dy,

with A = h’(x). From Lemma 6.4 in [3], we know for each x, V’l( x) = h'(x) and
1//l(x) — h"(x) asl — oo.

LEMMA 4.1.

hm limsup E?N|[F(N, 1,8)|? = 0,

—-)Oo N—')OO

with

F(N.1,t) = / fZJ( )[ (x(0) - h’(p)—(x/fz(xi(s>)—~'/71<p>)}ds

Proor. By the Schwarz inequality and stationarity,

~ 2
lim sup B[PV, 1, O < PIILE[#'(2) = H'(0) = (yu(2) = (o)) |

N - o0

where E is the expectation with respect to the probability measure e**—¢(* gy
and A = A/(p).
Since

[Yi(x)| < |¢'(x)] forVx

and
o)l < [ 19/ ole ¥ ax
using Lebesgue’s dominated convergence theorem, we get Lemma 4.1. O

From Lemma 4.1, we can analyze local microscopic quantities by considering
only the truncated function. The next step is to localize our dynamics.

Let K be a positive integer and let N = mK +r,0 < r < K. Let B, be the
block containing sites at (g — 1)K +1/N,...,qK/N,q=1,...,m, and let B
contain the remaining sites at mK + 1/N, ..., N/N.
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Define

0, if i = 0 mod &),

Liit1= 9 a \" ] 9
' —— , —_— , otherwise,
(3xi 8xi+1) (% xH_l)(ax, 8xi+1) erwise

where * means the adjoint with respect to ®y dx,

Iy

i€By

and

0, ifg=m+1,
f(xB,(s)) = { ra=m

f(xq-1E+1(5), ..., %K (s)), otherwise,

where f is any function depending on K variables.

LEMMA 4.2. For any nice f, we have

t 1 m+1
fo JN; 5,f (%, (5)) ds

lim Efv

N—> o0

PrOOF. By the ergodic theorem on each hyperplane, we have

m+1 2
EPNl: J_ Z LBq XB (S)) ]
=<

(V L~v)

%I“ZI

2
sup |, V)|
ueH!, Dy(u)=1

< 1% Z%”il Z [(a% B axil)J(Z%)f(qu)]z@Ndx

g=1i,i+1€B,

— 0,

where

2
DN(U) /Z (336, 3x,+1) dn dx.

Based on the observations in Lemmas 4.1 and 4.2, we can reduce the proof
of Theorem 2 to showing the following relation:

tm+1 2
(14) hm lIflf lim EPN|: / Z ZJ( )F(z K, f)ds:‘ =0,

g=1i€eB,
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where
FG, K, f) = yu(x:(5)) — ¥u(p) — ¥/(p)(%:(s) — p) — Ly i-41f (%8, (5)).

Since our measure is translation invariant, by the smoothness of J and the
lack of interactions between blocks,

2
R I L= Sy W
Jim E N[_ﬁ /0 ;J(N)F(L,K, £ ds
K

> (W) — ¥alp) — ¥i (o) (% — p) — Lrf xa, - .., xK)

i=1

2
-
< ||Ju§t2I—{EK

’

where Lx = L1 2 + - -- + Lg _1 x and EX-? is the expectation wrt ux. p ON RK.
Let us denote by vf the conditional probability and also conditional expec-

tation of x1, ..., xx on the hyperplane ElK: 1%i = sg = Ky. Since, when restricted

on the hyperplane, Ly is elliptic and ergodic,

2

K
ix;fEK"’ > (W) — Yulp) — ¥y (p)(x; — p) — Lif (%1, ..., %)
i=1
~ ~ 2
= KBS e (y(xn) — Tto) = T10) (3 — o)

where the inf is taken over all functions f depending only on K variables.
ProOF OF THEOREM 2. We shall prove Theorem 2 by the following lemmas.

LEMMA 4.3.

lim KEK,PI:vgf/K(v/l(xl)) - 1//1(%)] =0.

K— oo

Proor. We will use Cramér’s trick. Assume p = 0. Let us define

1
fey = S7IES

wherey € R,A = h'(y) and y = p'(L). Let fx(z,y) be the probability density
of Zy + -+ Zg//p"(MK, where Z,, ..., Zg are independent, identically dis-
tributed random variables with a common density f(z,y). Note that EZ;, =
0,VarZ; = p”(»). We denote

rEt N -ty

y—x

(0) = 2%
Y= & -1

. K
D (dxy...dxg) = exp |:-— ¢(xi)]dx1 ...dxg,
=1

1=

I
vE (yu(x0)) = I—;



EQUILIBRIUM FLUCTUATIONS OF A NONGRADIENT 1267
where

I, = / 1//l(-’CI)I{(‘»'_d’(IQV_Jcl_"'_gc'('l)(:[)}{_1(dxl ...dsg_1)
B M()\)K—le}»(x—Ky)
e fi-1(3(2), y)dx,
Vo'W K - 1)
I, = /Ke—¢(Ky—x1 - _xK'l)@K_l(dxl Loodxg_1)

_ KM(A)Ke—“‘y

—— 1% (0, ).

Then we obtain

K " _ K fK—1(y(x),y) e —d(x)
)~ i) = [ Wx){ [y et _1} O

Now we use a proposition which can be found in Petrov [5].

= /1/fz(x1)Ke

PROPOSITION 4.4. For any yo in R, there exists a § > 0 such that

mn 1
.y) = 27)" 2@ {H__'O(_)‘)_H }_|_ (_)
fx(z,y) = 2n) (2) W TIOE 32)t+o0 =

uniformly in z and y € [yo — 8,y0 + 8], where

2

GZ) =e™12,
H3(z) =23 — 3z, the Chebyshev-Hermite polynomial of degree 3.

Take yo = 0. By Proposition 4.4, there exists a § > 0 such that for y € [-$§, §],
we have

K _ 1
7k} = ”"(TK)’

fro1(y(2,9) = 1+ QK — 1,y(x)) +(\/if)

uniformly in x € R, where

- p" (1)

QK -1,y(x) =G(y(x) -1+
K =1 y(0) = Gly) - 1+ =S

By the continuity of p”, p”” in y and positivity of p”(0) = o2, we may choose a

(GH3)(y(x)).
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80,0 < 8o < 4, such that p”(A)"! > ¢ > 0 for y € [—8o, §]. Then
C

IQ(K— Ly(x))l = lG(y(x)) - 1] + mly(x)g —y(x)l

C’ 3 )
sK_l{iﬂIy—xI }

Let D = {(x1, ..., xk)||sk| < 80K}. Then we can see from above that

N 2
vE k(Wi(x1) - Wl(%)‘ 1D|
~ 1
1#1(3’)O(ﬁ>
1 —d(® |2
+ [ ()| QK ~ 1, y(x)) 1+°(7‘E) T

2 - ) i el —o(x)
< o(1) + 2KI°E p{/Q(K—l,y(x)) (1+o< K>>__M(A) dx -

=o(1)I®> asK — oo.

KEK/’[

5KEK"’{

Here we use the facts that

3c? [ ;
QKK -1, y(x) 2s—{ Iy—xlz‘}
& I < | 2

and
Ax —@(x)

3
2i€ : :

E — formly bounded f .

/i=l|y x| YIS dx is uniformly bounded for |y| < &,

On the other hand, we also have
~ (SK 2
v:,{(/K(wl(xl)) - Wl(f)' 1Dc }
2 ~ /S 2 s 4
"i/}{(%(xl))’ + 2'%(-}%)' (50 1_%) }

EX-?isk|t = 0.

lim KEK"’{

K— o0

< lim KEK"’[2

K— o0

2

< lim
K- oo 33[{3

This completes the proof of Lemma 4.3. O

LEMMA 4.5.

K— o0

im KE%+(71(55) - 5o - Tt (- 0)| =0
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PrOOF. LetD = {(xl, xR Isk] < K} Outside of this set, we have

. K, ol |7 S—K _ ~ _ ~ fﬁ 2
Jim KE Dwz( %)~ 1) — )| 1Dc]
(15) < lim KEX *[61°K~*|sk|* + 30 212K ~*|sg|*]
—> o0

= Klim 312K=3(2 4 0 2)EX *|sg|* = 0.

On the other hand, since
where C is a finite constant,

Y1(%) — Yi(p) — ¥} () (x — p)| < C(x — p)? for x| < 1,

(16) Kli_znooKEK"’[ Jz(%) — Yilp) — JI(P)(% - ,0)’2117]

< C? lim K3EX ?|sg|* = 0.
K— o

Combining (15) and (16), we prove Lemma 4.5. O
5. Proof of Theorem 1. In this section we shall prove Theorem 1 by using

the estimations given in Sections 3 and 4.
For any test function J(-) on S, we have

N X A L+ 1
den®, d) = Y- ZN<J(§,) —J(l; ))W(xi,xiﬂ)dt
i=1

1 i i+1
a7 +—ﬁi;N<J<N) —J(—]—V—-)>U(xhxi+1)dﬂi(t)
= 1(J) + I1(J) + LI + IV + V().

Here
I6) = gv éw(fr) (W) —80) (¢ () = ¢/ (xi40)) — LF(0) ),
) = 'JI—NéVJQ%)U(%xiH)(l ~ (82}V:alxzii'j(x) ~ 82%;ﬁ(x))) a5,
1) = g é VJ(Z%)a‘(m(qs’(xi) —¢/(xi10) d,
IV(J) = g é VJ(]%)LFi(x) dt,
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where F' = F(x1,...,x) is a smooth function depending only on finitely many
variables, F*(x) = F(x; 11, ...,%;+1) is the ith translation of F and

wo(5) = (5) -(x))

Choose a sequence {F}}2°_; such that @p, () goes to@(y) for [y — p| < M for some
constant M. This is because of the uniform continuity of @(y) on a bounded set.

Proor orF THEOREM 1. We shall estimate the terms in (17). We prove
Theorem 1 by establishing the following lemmas.

LEMMA 5.1.
T 2
lim lim EPN[ / (IV+V)(J)] —o.
0

— 00N — o0

ProoF. For a smooth function F, we know by Ité’s formula that

N3/2ZJ< )[Fl (=) ~ F(x(0)

/«/— N <N> (x(s))
aFt  3F!

i\ &
J r r - d r
ffz ( )rzl”(s)x“(s))(ax, 8xr+1> Br(s)

- / AV + V).
0

Since ¢/ is smooth and F' is a function of finite variables, V; can be substituted

by V since
t 2 1
EP[/ (Vl—V)] =o<—> as N — oo.
0 N

Because the left-hand side goes to 0 as IV goes to co, we are done. O

LEMMA 5.2.

T 2
lim lim EPN[ / I(J)] =0.
0.

k— ocoN— o0
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ProoF. Using the strong law of large numbers, we have

N 2
lim lim EPN[ / 1]
k—>o00 N— o0 0

Li A B .
<51_I’% k—)liomb’su,}?)l<e 12n°°4°NANy( N a(y) N CN)

By the calculations given in Section 3, we then have

lim limsup lim ANy(AN a(y)By — CN)

e—=>0 k—>oo,ly—p|<s Nooo N
<lim limsup 2(ax(y)—a(y))
€20 K00, ly—pl<e
=0,
by our choice of sequence {Fx}. O

LEMMA 5.3.

Jim T = / J"©)a(0)h" () (0) O dt.

Proor. By the tightness, we know
IN(@E) — 20,8 do
and, by Theorem 2, we have

t

lim III = hm \/_ Z AJ( )a(p) (¢’(xi(s)))ds

N—> oo

N-—> oo

: L\~ ” L
- lim [0 m;AJ(ﬁ)a@)h (0) @ — p)ds

1 ! - " [ee)
= 5/ /a(p)h”(p)J (0):™(9,s)do ds,
0 Js

(i) = () +2(F) - (7))

is the second derivative of J in the lattice sense. O

where

LEMMA 5.4.

lim lim II(J)=/J’(9)U(p)dﬁ(0,t)d9.
k— 00 N— o0 S -
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Proor. Since II gives a Gaussian field, we only need to show, for /1, J3,

t t
lim lim EPN[ / I1(J1) / II(Jg)]
0 0

k—>o0oN— o0

(18) t
_ / / (o), (0)T,(6) do ds.
0 JS

This is because

EPN[ / tII(Jl) / tII(Jz)]
(19) =—/ ZVJl( )VJ2<N)

XEE”N‘SN/Na(xi,xi+1)|:1 - (

oxN , Fi(x) 32§V=1Fj(x)>:|2d
_ s,

dx; 0x; +1

where SN = Zf’zlxi.

By our choice of {Fg}, the translation invariance of the measure uy , and the
strong law of large numbers, (18) is just a standard transition of (19) from the
canonical state to the grand canonical state. O
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