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LIMIT DISTRIBUTION OF MAXIMAL NON-ALIGNED
TWO-SEQUENCE SEGMENTAL SCORE

By AMIR DEMBO,! SAMUEL KARLIN? AND OFER ZEITOUNI®

Stanford University, Stanford University and Technion-Israel Instztute
of Technology

Consider two independent sequences X3, ...,X, and Yy, ...,Y,. Suppose
that Xj,...,Xn are iid. pux and Yy,...,Y, are iid. uy, where ux and
py are distributions on finite alphabets Xx and Zy, respectively. A score
F: $xxXy — Ris assigned to each pair (X;, Y;) and the maximal nonaligned

segment score is M, = maXg<; j<n—-A,A>0 {EkA= 1F(Xivp, Yjep)}. The
limit distribution of M, is derived here when px and uy are not too far
apart and F is slightly constrained.

1. Introduction. Our motivation derives from DNA and protein score-
based multiple sequence comparisons. Consider two sequences of length n,
Xi,...,X, and Yy,...,Y,, where the letters X; take values in a finite alpha-
bet Tx and the letters Y; take values in a finite alphabet Xy. A real-valued
score F(-,-) is assigned to each pair of letters (X;,Y}). The maximal segment
score allowing shifts is

Mn = 0< {ZF()(&+/¢) j+k)}

JS
A>0

Suppose the two sequences are independent: Xj, ..., X, ii.d. following the dis-
tribution law ux and Y7,...,Y, ii.d. following the distribution law py, where
ux and py refer to probabilities on ¥x and Xy, respectively.

Of primary relevance is the case where the expected score per pair is negative
and there is positive probability of attaining some positive pair score. Thus,
we assume

(H) Eupx iy (F)<0,  px x py(F>0)>0,

in which case M,, — oo is the maximum of segmental scores of negative mean.
The hypothesis (H) is in force throughout this paper and it is also assumed that
ux and py are strictly positive on Ly and Xy, respectively.
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It was shown in [8], Theorem 1, that M, /logn converges a.s. to a positive
finite constant v* defined in terms of appropriate relative entropies. Here we
address the problem, mentioned in [8], of evaluating limit laws for M, or, equi-
valently, for the dual variables T, = inf{n: M,, > y}. These are closely related
to Poisson limit laws for the count

min{i, j}

Z Z Z l{Ek 1F Xk — s Yiep—a)>o)?

l<tyj<ty A=1

with the proviso that when (¢, j, A) is counted, then the triplets (i, j, A’) for A’ >
A and G+k, j+k,A’) for A’ > k > 1 are not counted (the value of , is specified
in Theorem 1). To state our main result we need some additional notation.
Let d(-, -) denote the variational norm between the indicated distributions and
let Po()\) denote the Poisson random variable of parameter \. Let 8* and o*
denote the conjugate exponent and conjugate measure, respectively, defined in
[8]. That is, determine 6* .as the positive constant [unique, by (H)] satisfying

Epx x uy (eo*F) =1

do*  _ 4F
d(ux x py)

and

Let ¥ = ¥y x Ty be the alphabet of letter pairs and let M;(Z) denote the set of
all probability measures on X. The relative entropy of v € M(X) with respect
to u € M1(%), denoted by H(v | p), is given for ¥ = {by,. .., by} by the formula

bi
H(v | p) Z (b)logyﬁb;

with 0log0 interpreted as 0. In addition to (H), we impose throughout the
assumption

(E) H(o™ | px x py) > 2max(H(og | ux), H(oF | py)),

where, for any v € M(X), vy and vy denote the marginals of v on x and Ty,
respectively. In particular we shall use 1 to denote the product measure ux x piy.
Note that condition (E’) requires strict inequality compared to (E’) of [8], which
permits equality. Although in general, v* < 2/6*, it is shown in [8], Theorem 4,
that under (E’), v* = 2/6* and that, for identical alphabets, (E’) holds whenever
px = py and F(x,y) = F(y,x) is not of the form F(x) + F(y). It is easy to check
that (E') entails o* # ax x ap. Let

(1-1) Rn = 0<l<n_ {ZF(XL+/¢) z+k)}

A>0 k=1
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be the maximal segment score between two aligned sequences. It is shown in
[11], Theorem A (following [10]) that when F(X,Y) is nonlattice, then

log < x) = exp(—K* exp(—6*x)),

1.2) nlingoP(Rn -

whereas if F(X,Y) is a lattice variable, then

lim exp(K* exp(—e*x,,))P(R,, _ logn _ x,,) -1
n— 0o g+

for any bounded sequence x, such that x, + logn/6* are lattice points. The
constant K* is determined from fluctuation sum series identities (see, e.g., [11],
(1.8) and (1.11)), and examples for which K* is explicitly computed are given in
[11], Section 3.

The analysis of [8] shows that under condition (E’), the constant limits of
M, /logn and R,; /logn are the same (i.e., then v* = 2/6*). Our main result here
establishes that the limit distribution of M, is the same as that of R, ..

THEOREM 1. Assume (E') and (H). If F(X,Y) is nonlattice, then

(1.3) lim P<M,, _ 2logn _ x> = exp(—K* exp(—6*x)),

o+~
and if F(X,Y) is a lattice variable, then

(1.4) nlinéo exp(K*exp(—G*x,,))P(Mn - 21;gn Sx,,) =1

. for any bounded sequence x,, such that x,+2logn /6* are lattice points. Moreover,
fort, = \/te? /2,

(1.5) Jim d(W,,Po(tK*)) = 0,
implying that
(1.6) Jim P(Ty <) =1 - exp(—K"?),

where if F(X,Y) is a lattice variable, then y — oo in (1.5) and (1.6) via lat-
tice points.

REMARK 1. In deriving Theorem 1 we assume F(-,-) to be finite-valued,
although the possibility of F(x,y) = —oco for some values of (x,y) is easily accom-
modated (see also the discussion of [8], Theorem 3). Thus, in the special case
of F(x,x) = 1 and F(x,y) = —oo for all x#y (with £x = Xy), the limit (1.4) cor-
responds to the limit distribution of the longest segmental match between the
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two sequences. In this context, condition (H) holds as soon as |[Xx| > 1, whereas
condition (E’) reduces to

a.7) max{ Z ux @y (@) log uy (@), Z ux@uy @) log }tx(i)} < %)\* log \*,
i€y I€EXy

where \* =e~%" = ,ux(i)uy(@) (and in this case, K* = 1 — \*; see [11], Example
2). For this special case, Theorem 1 was proved earlier in [12], Theorem 2.2,
encompassing a wide class of proximal 1-mixing stationary sequences (see [12],
(2.11), for the technical definition of proximal sequences). It is easy to check
that for i.i.d. sequence letters, the proximality condition of [12], (2.11) implies
that (1.7) holds. For related results in the context of longest quality match, see

3], [4].

REMARK 2. Theorem 1 putatively extends to the maximal intersequence
segment score involving any subset of r out of s independent sequences, of
possibly different lengths n1,...,n, provided (H) applies for each r-subset and
there is a unique dominant subset (having the maximal value of 6*) for which
condition (E)) of [8], Section 5, holds with strict inequality.

REMARK 3. In [8], Theorem 4, it is shown that v* = 2/6* if and only if either
(E’) holds or

H(o* | ux x py) = 2maX(H(a}2 | ux), H(a5 | NY)),

in which case a* = aj x aj. For example, this situation occurs for identical
alphabets when puy = uy and F(x,y) = F(x) + F(y). In this context, M, < R¥ +
RY, where for each fixed n,

A A

= . Y _ :

B = o 8 s {ZF(XHk)}’ RY= max { > :F<Y,+k)}
AZ>0 k=1 A>0 k=1

are two i.i.d. random variables. Assuming for simplicity that F(X) is nonlattice,
it follows from (1.2) that

n — oo g* - n — oo o* o*

= h(K*exp(-6"2/2)),
where

h(u) = /c: exp(— (uz/k*)exp(e*z)) d [exp(_K*exp(_e*z))]

=u /O exp(—u(t + 1/t)) dt > 1.5u exp(—2.5u).
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Since K* > 0, considering x — —o0, it is clear that (1.3)—(1.6) do not hold in this
case.

REMARK 4. Even when (E’) does not hold, M,, may still possess a limiting
extremal distribution of type I (with a different constant 1/6* < v* < 2/6*), and
this might happen even when the set M of optimal measures as characterized
in [8], Theorem 2, is infinite. For example, let Gy(y) = max,{F(x,y)} and

A
=Y
R, = o< BAX | {ZGY(in-k)}-

A>0 k=1

Suppose that E,,(Gy) < 0 and let 9" denote the unique positive solution of

E, %) =1.Then R, —logn/§" possesses a limit distribution of type I (cf. [11]
Theorem A). Let T = {(x,y): F(x,y) = Gy(y)} and define 3* € M1(Xy) such that
dp*/duy = exp(@ Gy). If

(Ey) 2H(8* | py) > min H(v|px X py),

v:v(E)=1,vy=6*

then v* = 1/6" (see [8], (1) and (13)). Clearly, R‘: > M,,. In Section 3 we provide
a specific example for which (Ey) holds and show that (Ey) results with

(1.8) lim P(M, =R,) =1

Consequently, M, possesses the same limit distribution of type I as does I_B: .

REMARK 5. In comparison with the recent works [1] and [13], we allow for
a general score F(-,-), but accomodate neither insertions nor deletions. Note
however that in [1] only the growth order of M, is found, whereas in [13] the
Poisson approximation is established under an additional assumption of a lim-
ited number of insertions/deletions.

2. Proof of Theorem 1. Because {W, # 0} = {T, < t,} = {M, > y} for
n = [¢)], (1.3) and (1.6) are direct consequences of (1.5), whereas (1.4) holds
provided (1.5) applies to any bounded ¢ = #(y). Hence, Theorem 1 amounts to
proving that (1.5) holds for any bounded ¢ = #(y). We start with an outline of
the main steps in proving this result.

The large deviations analysis of [8] allows us to concentrate on segments of
length not exceeding c;y, whose empirical measure is near o*. Hence, partition-
ing both sequences into disjoint blocks of size J, such that exp(8*y) > 1, >y,
the probability P(W, # W,) approaches 0 as y — oo, where W, = %; ; ¢I; j ¢, and
the indicator ; j ¢ = 1 if there exists a segmental score exceeding y involving
the ith block of the X sequence, the jth block of the Y sequence and a relative
shift (alignment) ¢ between the indices of the X letters and the corresponding
Y letters. Adapting the arguments of [11] and [10], we see in Lemma 1 that
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|E[W,] —tK*| — 0 as y — oo. Applying the Chen—Stein method, we show that
d(W,, Po(tK*)) — 0, from which (1.5) follows. The main task is in bounding the
correlation terms E(I; j ¢I; i ¢), where large deviations estimates are again de-
cisive, and where the condition (E’) and the restriction to an empirical measure
near o* are needed (see Lemma 2).

Turning now to the detailed proof, let || - || denote the variational norm be-
tween distributions on ¥ and let G, = {v € M1(2): ||v — a*|| < n} denote the cor-
responding open ball of radius n > 0, centered at o*. Let T"X = (X, 1,X;.2,...),
TY = (Y41,Yj+2,...) and define the empirical measure

A
(T'X ry) _ 1
Z Z (Xi ek Yjer)

For U € M1(%), let
A e
MY = max { S F(Xip,Yjun): 0<A<n, i, j<n—A LYY ¢ U},
k=1
that is, MV is the maximal score among segments with letter pairs having
empirical measure in the set U. It is shown in [8], Theorem 3, that if U is a
closed set such that o* ¢ U, then a.s.,
lim sup MY /logn < 2/6*.
n — oo

Let

<

A
,f, = max{ ZF(}{Hk»Yj+k)3 0< A< cologn,
2.1) ket .

.. i J
l,JSn—A,L(ATX’TY)eU}

be the maximal score among segments of length not exceeding c¢g logn and letter
pairs having empirical measure in the set U. It follows from [8], Lemma 1, that

for cg large enough,

S P, #MY) < .
n=1
Consequently, for all n > 0,

2.2) lim P(," #M,) =

n — oo
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In particular, for ¢; large enough and all > 0, it suffices to prove (1.5) with the
count Wy restricted to triplets (i, j, A) for which A < ¢yy and Lg"_ “x,7/-4D €
G,. Now let [, > 3c;y be a sequence of integers such that logl,/y — 0 and
¥%/l, — 0 asy — co. Set m, = ¢,/l,. Obviously, m, — co. Because d(Po()\), Po()\'))
< |A = X'|, we may assume without loss of generality that m, (and hence ¢,) are
integers. Partition the sequence (Xj, ..., X; ) into blocks of [, letters each, such
that the ith block is X* = (X}, X1, ... ,Xl‘y _1),whereX} =Xj, ... Similarly, par-
tition the sequence (Y7, ..., Y;,) into blocks of J, letters each. Forj = 0, ...,m, -1
and £ =0,1,...,0, — 1, let Y/¢ = (Y{;’E,Y{’ﬁ, ... ,Y{f_ 1) denote the ¢-cyclically-

shifted jth block, such that Yi’ ‘= Y, e 14 +k)mo L Let

my—1my—1L,—1
(2.3) Wy=Y" > > ILje
i=0 j=0 ¢=
where
r+A-1 ) .
1, ifmax{ Y F(Xi,Y%):l,-A>r>0,
k=r
Lije= .
c1y > A>0, L’A”g" €G>y,
0, otherwise,
and

Li,j,s,r__l_”ﬁ:_la o
A TA ;i (x4,v, 4
=r

For k < c1y, let £1(%) be the event of a score exceeding y in at least one of the
segments of length % that cross the block boundaries in either the X sequence
or the Y sequence. Similarly, let £5(k) be the event of a score exceeding y in
at least one of the segments of length % in which the ¢-shift in Y7:¢ causes a
gap in the Y letters. It is easy to check that at most 2z,m,(k — 1) segments are
contributing to &;(k), for i = 1,2, and therefore by the union of events bound,

i=1

k
P( U a® U ez(k)> s2tymy<c1y)2fggP(ZF(&,Yi>>y).

kE<ciy k<ciy ‘

Because E[e?"FX:Y)] = 1 and independence

k k
P(ZF(Xi,Yi) > y) < E(exp(ZB*F(Xi,Yi)))exp(—e*y) = exp(—6"y)

i=1 i=1
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and because by definition ¢, = v/#exp(6*y/2), we obtain that

2
P( U &a® U &(k))ggﬁ(‘;—”i—m asy — co.

k<ciy k<cyy Y
Let &3(, j, &) be the event that there are A < rand r + A’ <r' <1, such that

r

r
Y ORXLYO sy Y RV >y
k=r—A+1 k=r'—A"+1

Because R, is monotone in n [see (1.1)], it follows by conditioning on {X}, Yi’ £
k < r} that P(&5(, j,€)) < P(R;, > y)*. Consequently, by the union of events
bound,

.. exp(6*y)
P( U 83(’:, Js &)) S m‘%lyP(Rly >y)2 =t._ply_‘l)i..P(Rly >y)2.

i€

Hence, the next lemma implies that P(U; j €3, j,£)) — 0 asy — oo.
LEMMA 1.

y— o0

lim WP(& >y) =K*.
y

It is not hard to check that

W,#W,kc |J &® |J &® J &G, j,9.

kScly kgcly i)j7€

Consequently, in order to prove (1.5), it suffices to show that
2.4) d(Wy,Po(tK*)) =y~ 0.
We will return to the proof of (2.4) after completing the proof of Lemma 1.

ProoOF OF LEMMA 1. Following [11], divide the realization of S, = ¥7_,
F(X;,Y;) into successive nonnegative excursions:

K0=07
K,,:min{k:kZK,,_1+‘1,Sk—SKu_l<0}, v=12,...,

with excursion extremes
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Note that @, are i.i.d. random variables, with common distribution function
denoted G(y). Thus, P(Rg, > y) = 1 — [G(y)]™. Fix § > 0 arbitrarily small
and define next my = v4l,/E(K;) with E(K;) < oo due to E,(F) < 0, where
7+ > (1 +6) and v_ < (1 — §) are chosen as the minimal (maximal) values such
that m. (and m_, respectively) are integers [as y — oo, we have v, — 1+ 6 and
v- — (1 —8)]. Using

Jim (1 - G(y))exp(8*y) = E(K1)K*,

which is provided by [11], Lemma A, and the identification of K* in [11] (below
(1.12); see also [10]), one sees that

Jim wp (Rx,, >9)
2.5) " exn@y)
= lim ZEEL1 - Gy ] = (14 K"
— 00 y
and
(2.6) Jim WP(RK", >y) =(1-6K".
— 00 y -

Because R, is monotone in n,
@2.7) P(Rx, >y)—P(Knm_ >1L) <P(Ry >y) <P(Rx,, >¥)+P(En, <l).

Let g(8) = —0+((1 — 6)/E(K;)) log E(exp(6K1)). Note that for each m, K, is a sum
of i.i.d. positive random variables. Hence, using Chebycheff’s bound,

P&, > 1) < inf {exp(—aly)(Eexp(eKl))m—} < inf exp(g(6)L).

Note that for )y > 0 such that A()\g) = log E(exp(A\F(X;,Y7))) < 0 () exists
due to the boundedness of F and (H); see [8], proof of Lemma 1), we have

P(Ky>n) < P(ZF(X;, Y > 0) < exp(nA(Xo)).

i=1
Therefore, g(§) < oo for all # in a small enough neighborhood of 0. It follows
that g’(0) = —6 < 0, leading to

exp(0*y)

(2.8) ],

P(K,,_ > 1) < exp (—c(6)ly)exp(6*y) —y—c0 O
for some constant c¢(§) > 0. A similar computation yields

2.9) #—y—)P(K,m <L) Sy o0 0.
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Substituting (2.5), (2.6), (2.8) and (2.9) into (2.7) and taking § — 0 yields
the lemma. O

For the objective of proving (2.4), we employ a version of the Chen—Stein
method given in [2]. Let o = @, j,¢) and let B, = {(/, j,¢):i =i’ orj = j'}
denote the associated neighborhood of dependence. With this definition, note
that I, is independent of {I,;: v ¢ B,}. Thus, from [2] (see also [7], inequalities
(2.4) and (2.7)), one has

(1—e™)

d(Wy, PotK™)) < (b1 +b2)—
Y

+ |\ —tK*|,
where )\, = E(W,) and

bi=) > PU,=DPUs=1),

a BEBa

bp=) > Pla=1I5=1)
a BE€Ba
Bfa

(in the notations of [2], b3 = 0). Let
A i i
R" = max{ S F(Xip, Vi 0<i<l,—A0<A<cyy, LY®™Ve G,,}
k=1

and p, = P(R,‘j" > y). Note that for any a, PU, = 1) = p, and |B,| < 2m,l,.
Therefore,

(2.10) Ay = m2lyp, = t(il’l)exp(e*y).
y

and

222
b =p32, Z 1Bal < 2mylyp§ (mf,ly) = ’nTy'
« y

Because R;, > RIC:" , it follows that

P(R, >y)>p, > P(Rl‘j" =R, | R, > y)P(R;, >y).

The strong laws of [6], Theorems 1 and 2, imply that P(Rg’7 =R, |R,>y)—1
for.every n > 0 and, hence by (2.10) and Lemma 1,

=0

(2.11) Jim [y, — K| = lim t'(‘ll’l)exp(e*y) - K
— 00 — 00 v
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[recall that # = ¢(y) is bounded]. In particular, (2.11) implies that ; — 0, and
(2.4) thus follows from the next lemma, completing the proof of Theorem 1. O

LEMMA 2. For all n > 0 small enough, by — 0 asy — oo.

Proor oF LEMMA 2. Using I, to abbreviate I o,0), let Qo(y) = exp(6*y/2)
PUa,0,0 = 1| Ip = 1), @(y) = exp(6*y/2)P(L0,1,0 = 1 | Io = 1) and @s(y) =
zlg;lp(l(o,o, o = 1| I, = 1). By the symmetry of the problem,

by=).py D, Pls=1lL=1)

a. B € B, 0,0

B #(0,0,0)
(212) Spymglymyly [P(I(l, 0,0) = 1 |IO = 1) + P(I(O,I,O) =1 I IO = ]_)
L bl
+— ) Plo09=1[lo=1
myly ; ( 13 )

— 4y (@o(x) + @u(¥) + & Qa(y),

where a, = (py/l,)m3I3 exp(—6*y/2) is such that |a, — t32K*| - 0asy — oo
[see (2.11)] and @, = a, exp(6*y/2)/l,m, is such that |a, — tK*| — 0 asy — oo.
Proving Lemma 2 thus requires showing that Qi(y)—0,i=0,1,2,as y — oo.
Due to the symmetric roles played by ux and py, it is enough to consider only
i=landi=2.

It is now useful to decompose the events Iy, Lo, 1,0y and I(q, o, ¢). Thus, let

k-1
1
Jx,k,u = {w: E E 6(X,+j,Y,,.6,,j) =vE G'q; kE,,(F) >y},
Jj=0

withx=1,...,l, —k+1,k < c1y, and v ranges over all possible k-types [v € M;
() with kv(i) an integer for all i € ¥]. Thus, the range of the pair (,v) is of
cardinality at most (c;y + 1)!¥!. Similarly, define

B -1
1
JIII = . — 6 =/€G,kIE/F>
xyk ’V7§ {w k/ j=zo (Xxl4'j’Yx'+(E+j)modly) v K V( ) y}

withx' = 1,...,0, — k' + 1, k' < c1y, V' ranges over all possible &’-types and
£€=0,1,...,5, - 1.
Starting with @;(y), note that

P(I(o’1’0)=1 |I0=1) =P( U Jx’k’,, U Jx’,k’,v’,O)

x, k,v x' k!, V!

<Y Y PWeb | Tep0n0).

x, kv x' R,V

(2.13)
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There are two distinct classes of four-tuples e = (x,x’', k, k') to consider, e € &, if
[x,x+k—11N[x',x’+k — 1] =P and e € &, otherwise. Fore ¢ &,,

(214) P(Jx,k,u | Jx’,k’,u’,o) = P(nyk, ,,) S P(I(o’ 1,00 = 1) =py.

Because the only connection between the conditioning event and J, ;, , is
through the X-sequence, :

sup  P(Jy kv | ok, 0r,0)

e€ &,v, v
= sup P(Jx,k,u |J1,k’,u’,0)
kR v,V
1<x<Fk
< ( sup ) P(Jypy | Xe=a1,.... Xosp—1=az)
Q1yeeey Qg
(2.15) B kv, 1<x<k
k k
-supp (Y s, <o 43t )
kv j=1 j=1
_1—*k
P(k 1 . 6(X~ Y) =V
=Sup ( j—l Ny 4 )

kv P(kl_lz:?:lé&:I/X) '

Using simple combinatorial bounds (see, e.g., [8], (3) and (4)), one sees that

P(®") oy b3 =)
sup -
@16)  bv P(R-DHEI 65 =1x)

< suptery + DPlexp 4 [H(v | ) (x| )] )

By (E’) and the continuity in a of H(a | b), for > 0 small enough,
pn= ing {H( 1)~ 2max[Hlox | 1), Hloy | )]} > 0.

Thus, for v € G, such that kE,(F) > y,onehasthat H(v | 1) > 2H(vx | ux)+08(n),
whereas kH(v | u) > 6*y. Hence, using (2.14)—~(2.16) and (2.11),

Q1(y) = exp(6*y/2)P(Io,1,0 =1 |Io=1)
< exp(6*y/2) [132,(013' +1)*lexp(-6y/2 - Bn)y/2|F|)

+pylcry + 1)2|E|l§] —y o0 0.

It remains to deal with @2(y). As in the preceding computation, note that

py=P< U Jx,k,y,g) =P<‘ U Jx/,k/,w,o)

x,k, v x k! v
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and one has

-1

Q:(») =Y P(lo,0,9=1|Ir=1)

éE=1

L1
(217) ZP( U Jxk v, & U Jx',k’,u’,O)/py

x,k,v x' k' V!
< 2 Z P(Jkay”v&’Jxlvkl"’l’o).
&, x,k, v py
b <k,

For any five-tuple e = (¢,x,x',k, k'), let Ax (Ay) denote the set of X; (Y;) let-
ters occurring in the definition of J, 1 ,, ¢ that do not occur in the definition of
Ju,k,v,0. Three distinct cases are possible:

(a) |Ax|V |Ay| > (1 —n)k (denoted e € &,).

(b) (1 —n)k > |Ax|V |Ay| > &y (denoted e € &).

(c) |Ax|V |Ay| < 8y (denoted e € &,).

Here, 6 is a small fixed constant that depends on n and will be chosen below.

We analyze the three cases separately. The argument for |Ax| > |Ay| being the
same as for |Ax| < |Ay|, we may assume the latter in subsequent computations.

Case (a). To simplify the notations, we assume that nk is an integer (oth-
erwise replace nk by its integer part) and let L, 6y /nk and L,_, =
vk nk+10%/(1 = k. N ote that after relabeling the random variables involved,

because v € Gy, for n < }

P(Jx,k,u,é |Jx',k’ v' 0)

< sup ( Z5Y—VY|Y1—51,Y2—I72, . nk—bnk)
(bly b21'4‘1 bnk) i=1

= sup P((Q-nLy_,+nly=vy|Y1=b1,Yy=bs,..., Y, =by)
(bly b2r“)bnh)

< sup P(L;_, = ¢y).
¢EG47)

With o} # py, one may find an n small enough such that
= inf H 0.
p(n) ¢1€n(£n (¢v | py) >0
Choosing n at least that small, by the combinatorial upper bound of [9], Lemma
2.1.9,

¢su£ P(Ly_, = ¢y) < exp(—(1 —np k) < exp(—(1 - npnly/|IF|lc)
€ Gy, .
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[recall that RE,(F) > y]. Because py, > P(J, 1, ,/,0), We are led to the conclusion
that, for alle € &,,

PJ V. ,J ! ! ’/,
( x,k, ,Er ¥ SR, ,O) S P(Jx’k’y’g ,Jx"k",,/,o)
(2.18) Py

< exp(—=(1 = mp(ny/||F|loo)-

Note that in both cases (b) and (c), because the overlap between the sequences
involved in the definition of J, j ,,¢ and J 4/ ./ o is at least of one symbol,
whereas I, > 3c;y > 3k, one may relabel the sequences such that x’ = 1, x
may assume both positive and negative values and the modulus operation is
omitted from the definition of J,  , .. We will henceforth work with this re-
labeling without mentioning it further.

Case (b). Let here

1x+k—1
Like=7 0%, ¢
l=x
and 1
A
Lx,k,ﬁ = 7 _ IA I Z 6X1,Yz+e'
Y l+E€x+¢,
x+&+k—1)\Ay

Note that now

Py kv, 6,J1,0,00,0) = P(Ly b e = v, Ly pr o =0")
SP(Like = v, Ly, ¢ ¢ Gay)

+ sup P(Lx:k,E =¢, L1,p,0= v, LxA,k,g € Gz,,)
$€Gy

=A; +A,.
Turning our attention to A, note that by combining [9], (2.1.32) and (2.1.34),
P(L{yc = | Lae =v) < (k+ DX+ Vexp(—~(k — |Av)H(v | v)).
Hence, for v € Gy, such that kE,(F) > y,
A1/py <P(LLy ¢ Goy | Lepe=v)
(2.19) < (k+1)30% +1>exp(—nk¢;¢%f2nﬂ(¢ )
, < (ery + D3+ Dexp(—yn® /2]|F|oo),
where we have used in the last inequality the relation (see [9], Exercise 6.2.17)

(2.20) H(p | ¢) > llv = ¢l2/2.
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To evaluate Ay, let L2Y denote the empirical measure of the Y; letters in the set
Ay and note that, denoting va = |Ay|/k,

P(Lye =0, L2y ¢ € Goy | L0 =)
<(ry+ D sup P(uaL®Y +(1—va)y = ¢y)
vean
< (c1y + DEIP(|LAY — o} || < 3e1n/6).

Therefore, using again (2.20) and the combinatorial upper bound from [9],
Lemma 2.1.9, and choosing é = 6(n) not too small such that 3¢17/6 < ||aj —py||/2
(this is always possible for small n because a3 # py), one obtains

(2.21) As/py < (c1y + 1*Flexp(-byllay — pyl?/8).

Note that one may have both  small and § = §(r) small [for example, by choosing
6 = 6(n) = /m and taking n small enough]. Combining (2.19) and (2.21), one
obtains that for any e € &, and every n > 0 small enough,

P(Jx,k, V,{)Jx',k’,u’,O)
Dy

(2.22) <gi(y)exp (—x(nly),

where g( y) is independent of e and of 5,y ~!loggi(y) — 0 with y and «(n) > 0.

Case(c). Notethatbecause% > k' and |Ax| < |Ay| < 8y, necessarily 2—k’ <
Sy and ¢ < 28y. Let now Z; = ((Z;)x,(Z;)y) denote the following (relabeled)
random variables: :

Z)x = Xi—1+ie» @Zy =Y _1+G+1e i=0,1,---,([k/§] —1),

Zx =Xori—wmienes @iy =Yera—m/e+ 06 i=[k/E],..., (2 [k/€] - 1),

and so forth, up to i = [k/¢]¢ — 1. Complete this construction up to i = £ in
such a way that the empirical measure of (Z4,...,Z;) is L, 3, ¢. Define next the
empirical measure
=
Lk = E Z 5ZiZ,~+1 € M1(22)
i=0
For any 6 € M1(Xx x Ly X Lx x Zy), let

@)1= ) 6, %,y2) € My(),

x3 € Tx
y2 €%y

@)= > Ox1,y1,%) € My(E)

x1 € Xy -
Y1€Zy
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and

(0)12 = Z e(xh *y '7y2) € Ml(z)

x1 € Xy
y2 €Xy

Note that (Lg)s = Ly k,¢, (L)1 — Ly,p,¢ll < 2/k and ||(Lphrs — Ly o0l < (4€ +
46y)/k < 126y/k < 126||F||o. Hence, with € = 1 + 126||F||o, for all large y,

Py k0,651, 00,07,0)
(2.23)
< (ery + D?®lsupy, o, c . P(Lp)1r = 61, Uiz = b3, (Lp)z = v).

For any v, it follows from the Markov structure of the chain {(Z;Z;,)}; that

(2.24) P(Ly = v) < exp(—kH(v | )1 % px X ™)

(see [5], Lemma 3 or [9], Exercise 3.1.21). Using (2.23) and (2.24), one
obtains that

P(Jx,k,u,ﬁij’,k’,u’,O)
Py

< ea(yexp(~h ing (B0 @) x o) — H(@ | e » ),

where ©, = {§ € M1(E2): ()1,(8)2,(0)12 € Ge} and y~lloggs(y) — O with y,
independently of e € &, and of 5.
It is easy to check that for all § € M,(32),

(2.25) H(8|(6)1 x px x py) — H(O)s | pux x py) = H(8 | (O) x (8)g) > 0

with equality iff § = (9); x (6),. Equality cannot be achieved in (2.25) when
(61 = (8) = (0)12 = o* because by (E'), (a* x a*)g = % x o} # o*. In view of
the continuity of 6 — H(6 | (6); x (6);) and the compactness of M1(X2), it follows
that for all € = n + 126||F||o small enough,

B'e) = inf {H (8160 x px x py) — H(®z | ux x ur)} > 0.

This in turn implies, for 7, § small enough (again, the choice § = /M with n small
enough will do) and 8 = §'(¢)/||F || > O, that for each e € &,

P(Jx,k,u,ngx’,k',u’,O)
by

Combining now (2.18), (2.22) and (2.26), one sees that lim, _, o, @2(y) = 0 [see
(2.17)], completing the proof of the lemma. O ’

(2.26)

< g2(y)exp(—pBy).
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3. Proof of (1.8) and an example satisfying (Ey).
ProOF OF (1.8). By (Ey) and the continuity of H( - |ux x uy) there exists a

relatively open subset U of {v: /(T) = 1} such that Uy = {vy: v € U} is an open
neighborhood of g* and

1-6,,, .. .
flelll)]{H(Vlﬂx X vy) —H(VYIHY)} < 1+6H(ﬂ |py),
for some 6 > 0. Let I, = {A: |H(8* | py)A/logn—1| < 6} and set A, jn Sn—A,
to be such that 1_?.,1: = ZkA;’le(Y}“k). Note tl_lat M, = EZ if for some i =
0,...,[n/A,]—1the empirical measure LgA" XY
is supported on Y. By [8], Theorem 2,

ofthe pairings (X; A, +#, Y}, +%)

an =P(A,, €L, LYY e Uy) oo L.
For n large enough, every A, € I, and all i,
P(LL "X e U| A LAY € Uy)
> (A + D™V exp(~An(L — OH (8" | uy) /1 +8) =p(An)

(see [8], (3) and (5)). For some ¢ > 0 and all n large enough, infa ¢ 1, [n/Alp(A) >
cn%/2, Hence, by the independence of X;a, +1,-- -, Xia, +A,),

5/2

P(M,=F,) >qn Jinf {1 — (1-p(a) rn/m} > (=) S 1. g

The following example satisfies (Ey) for ¥x = Yy = {0,1,2}. Let pux(@) =
1/3,i=0,1,2, uy(0) = uy(1) = 1/6 and consider the symmetric score F(x,y) = 1
for x + y < 2 while F(x,y) = —oo otherwise [so F(x,y)#F(x) + F(y)l. Here,
E, (Gy) = — and ¥ = {(0,0),(0,1),(1,0)}, with 9" = H(B* | py) = log 3, 6*(0) =
B*(1) = 1/2 and E,(F) = 1 as soon as ¥(X) = 1. Thus, (Ey) holds since H(v | ux X
py) < 2log3 for v((0,1)) = 1/2,1((0,0)) = v((1,0)) = 1/4. In this particu-
lar example, §* = log6, hence 1/6* < v* < 2/6*, while M = {v: v((0,1)) =
1/2,v((0,0))+v((1,0)) = 1/2} is the set of limit points of the empirical measures
of pairings (X;¢,Y j+¢) over the segment where M, is achieved (cf. [8], Theo-
rem 2). In particular, [M| = co, a* ¢ M and (E’) fails while M, possesses a limit
distribution of type I [up to lattice effetcs as in (1.4)]. O
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