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OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES
IN BANACH SPACES!

By Iosir PINELIS

Michigan Technological University

A general device is proposed, which provides for extension of exponential
inequalities for sums of independent real-valued random variables to those
for martingales in the 2-smooth Banach spaces. This is used to obtain opti-
mum bounds of the Rosenthal-Burkholder and Chung types on moments of
the martingales in 2-smooth Banach spaces. In turn, it leads to best-order
bounds on moments of sums of independent random vectors in any separable
Banach spaces. Although the emphasis is put on infinite-dimensional mar-
tingales, most of the results seem to be new even for one-dimensional mar-
tingales. Moreover, the bounds on moments of the Rosenthal-Burkholder
type seem to be to a certain extent new even for sums of independent
real-valued random variables. Analogous inequalities for (one-dimensional)
supermartingales are given.

1. Introduction. For a separable Banach space (X, || - []), let 8(X) denote
the class of all sequences f = (f;) = (fo,f1,...) of Bochner-integrable random
vectors in X, with f; = 0, defined on a probability space (2, F', P) and adapted to
a nondecreasing sequence (F;) = (Fy, Fy,...) of sub-o-fields of F. Here, (, F,P)
and (F}) are considered attributes of f and may be different for different f €
8(20).

For f € 8(X), put f* = sup{||fjl:j = 0,1,...}, do = do(f) = 0, d; = dj(f)
=f:]'—fj—l’j= 1a27"~aSp = p(f) (23.;1 “djllp)l/p,p > 0, S2 =32(f)=
(252, E;j_1/d;|»'2, where E;_; stands for the conditional expectation given

-1

Let M(X) denote the class of all sequences (f;) € 8(X) that are martingales

and let M;,4(X) denote the class of all sequences (f;) € S(X) having independent
increments d;.

For any two nonnegative expressions £; and &g, let us write £; < &3 (or,
equivalently, &, = €,)if €; <Ay, and &; < Eyif €1 <X €2 X €. Here, A denotes
a positive absolute constant.

We assume that inf @ = 00,sup@ =0, jcou; =0 and ITjcou; = 1.

In Section 2, some preliminary results on 2-smooth Banach spaces and on
martingales in such spaces are given.

In Section 3, a device is suggested, which provides for the extension of expo-
nential inequalities for sums of independent real-valued random variables to
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1680 I. PINELIS

those for martingales in 2-smooth Banach spaces. In particular, by that means
an exponential inequality for martingales in 2-smooth spaces, optimal in terms
of |d*||o and ||sz||, is obtained, which is a generalization of an inequality of
Bennett (1962) and Hoeffding (1963).

In Section 4, using methods of Burkholder (1973) and results of Section 3, we
obtain optimal (to the above-defined relation <) upper bounds of the Rosenthal
(1970) and Burkholder (1973) type on moments of martingales in 2-smooth
Banach spaces, that is, optimal in terms of ||d*||, and ||sz||p, for p > 2.

In Section 5, via the martingale decomposition method of Yurinskii (1974),
we apply the inequalities of Section 4 to obtain bounds of the Rosenthal-
Burkholder type on ||| /|| — E|| fz|/|lp» » = 2, for an arbitrary separable Banach
space X, but only for f € M;,q(X).

In Section 6, we show that the inequalities derived in Sections 4 and 5 are
optimal in the terms used.

In Section 7, we obtain bounds on |||| /3l ||p, 2 > 2,f € M(X), which are optimal
in terms of n and ||S,||,. We refer to them as bounds of the Chung type.

In Section 8, inequalities for supermartingales (of course, in X = R) similar
to those in Sections 3 and 4 and certain refinements for real-valued martingales
are presented.

A substantial part of the results was announced in Pinelis (1992).

2. Preliminaries: 2-smooth Banach spaces and a reduction of mar-
tingales. Let us call a Banach space (X, || - ||)(2,D)-smooth, where D > 0, if
forallx e Xandy € X,

2.1) lle + 311+ llx = yI* < 2|l + 2D?| y|1%,

and 2-smooth if it is (2, D)-smooth for some D > 0. For any 2-smooth space
Q|- D, let D(X) denote the smallest D > 0 such that (X, || - ||) is (2, D)-smooth.
Putting x = 0 in (2.1), one observes that actually D(X) > 1 as long as X # {0},
which will be assumed to be the case.

The importance of 2-smooth spaces was elucidated in the paper by Pisier
(1975): they play the same role with respect to vector martingales as spaces of
type 2 do with respect to the sums of independent random vectors.

The definition assumed in this paper is slightly different from that given by
Pisier [which required only that (2.1) hold for an equivalent norm], because,
in the subsequent account, we would like to follow the dependence of certain
constants on D, the constant of the 2-smoothness.

It is easily seen that the condition

(2.2) (Ix]%)"w,v) < 2D?|v]|2  VxeX VveX,
is sufficient for the (2, D)-smoothness, where (|| x/2)"(v, v) stands for the second

directional derivative of the function x — |x||? in the direction v.
By way of illustration, we give the following proposition.

ProprosiTION 2.1. For any p > 2 and any measure space (T,A,v), LP =
LP(T,A,v)is (2,4/p — 1)-smooth.
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Proor. For (x| := (fT |x|Pd1/)1/P, one has
3 (I%12) ' @,0) = (p — D]~ /T ¢l =202 dv

2
@38) —(p— D2~ ( [P du)
<(-D|v|?-

ifx € X\{0}, v € X (in view of Hélder’s inequality) and 1(||x[|>)"(v,v) = |v]||? if
x = 0. Thus, (2.2) is checked. O

In particular, it is obvious and well known that if X is a Hilbert space, then
it is (2, 1)-smooth.

REMARK. If L? = LP(T,A,v) is at least two-dimensional, that is, if there
exist Ty € Aand Ty € Asuchthat Ty NTy = @, 0 < v(T}) < 00, 0 < U(Ts) < oo,
then L? is not (2,D)-smooth if 0 < D < 4/p — 1, so that Proposition 2.1 gives
the best bound. Indeed, put x = v(Ty)'? on Ty, x = v(T)YP on Te,v = x on
Ti,v = —xon Ty and x = v = 0 on (T\T)\Ts. Then x#0 and (2.3) turns into
an equality.

Condition (2.2) is not only sufficient but also necessary for (2, D)-smoothness
if the derivatives are understood in a generalized sense. To state this remark
rigorously, let us give a definition somewhat extending the notion of 2-smooth-

ness.
For any Banach space (X, | - ||), we call a function ¥: X — [0,00) (2,D)-
smooth, D > 0, if it satisfies the conditions:

v(0) =
[(x+v) — U(x)| < v,
T2(x +v) — 20%(x) + V2(x — v) < 2D?||v||?

forallxe X,v e X.

Evidently, a Banach space (X, | - ||) is (2,D)-smooth if and only if its norm
function is (2, D)-smooth.

The results stated in the subsequent sections for norms of martingales in
2-smooth spaces can be extended to those for (2, D)-smooth functions of mar-
tingales in any Banach spaces.

For any (2,D)-smooth function ¥ on a finite- dzmenszonal Banach space
(X,|| - |Dand € > 0, define

\I'E(x):: \/ /x U2(x — ey)y(dy),

where 7 is, say, a zero-mean Gaussian measure on X with support(y) = X.



1682 I. PINELIS

LEMMA 2.2. IfV isa (2,D)-smooth function on a finite-dimensional Banach
space (X, || - ||), then for all ¢ > 0,%. has Fréchet derivatives V. (x), ¥/(x),...
of any order, and the directional derivatives in any direction v € X satisfy
the inequalities

(2.4) T < [oll,  (¥2)"(x)w,v) < 2D?|v]?

for all x € X. Moreover, for each x € X,V .(x) — ¥(x) as ¢ | 0. [In this gen-
eralized sense, sufficient condition (2.2) is also necessary for a Banach space
(X, || - |]) to be (2,D)-smooth. Note that (2.1) may be considered locally—for any
two-dimensional subspace containing x and y.]

PROOF. Among the statements of the lemma, only the first of the inequali-
ties (2.4) is comparatively nontrivial. Observe that

|(\IJ§)'(x)(v)| < lim sup % / |U(x +tv —ey) — U(x —ey)|
t—0 X
x (U(x +tv —ey) + U(x — e))y(dy)
< lo| /x 2U(x — eyn(dy).

One can assume that ¥.(x)#0 for all x € X. Now,

ooy = | () @)
|(‘I’s) (x)(v)l = W

< Il 290G — ey)v(dy)

2/ W2 — ey)v(dy)
< ol

by the Schwarz inequality. O

REMARK. Instead ofusingthe convolution approximation, one might as well
understand the directional derivatives as, say, the right-hand upper derivatives,
and then again, (2.2) would be necessary for (2.1).

We also need the following folklorish lemma.

LEMMA 2.3.  Let (f;)i2, € M(X) be @ martingale in a separable Banach space
(X, || - |D relative to a filtration (Fj)22o- Then for any € > 0, there exists a martin-
gale (f} )72 € M(X) relative to a filtration (Fj, )2 such thatVj=1,2,...:

(2.5) fj e is a random variable having only a finite number of values,

(2.6) fj,e = fj in probability as ¢ | 0,
@.7) Eg(f;,.) < Eg(f),
(2.8) [E(e(£5. 1 Fj-1.6) | < |EEUDIF-1)|0s

where g is any nonnegative convex real function on X.



INEQUALITIES FOR VECTOR MARTINGALES 1683

ProoF. Consider the approximation f; . := E(f;|Fj ), where F; . is the o-
field generated by all the events of the form {f; € By}, i = 0,1,...,j, k =
1,...,k(j,e), where ({Bp i k = 1,...,k(j, e)})?‘;o is an increasing sequence of
sets of balls in X of radius ¢ such that 2(0,¢) < k(1,e) < k(2,¢) < --- and
| (- ’,:(:’15){)‘} €B; .} >1-¢,j=1,2,... (the existence of such a sequence
of sets is guaranteed by the tightness of any probability measure on a separable
Banach space).

Then (2.5) and (2.6) are satisfied. The Jensen type inequality
&(fj,e) <E@(f)|Fje)
implies (2.7) and
I, ) | Fj - 1,00 < B Fj—1, o0 < IEE(H | Ej—1)co,
so that (2.8) is also true. O

REMARK 2.4. Taking into account Lemma 2.3, the standard construction
(fjan)2o with large n and Lemma 2.2, we may and shall, without loss of gen-
erality, restrict the proofs of all subsequent results for martingales in 2-smooth
spaces only to the stopped martingales (0, f1,. .., fa, fn, [n, - - -) with each of the
f7’s having only a finite number of values in a finite-dimensional Banach space
(X, || - ||) satisfying condition (2.2). For such martingales, we put f = fn.

PROPOSITION 2.5. If f € M(X) and X is a (2,D)-smooth separable Banach
space, then

[I£all2 < Dllszllz = DI|Szll2-

Proor. Forj=1,2,...,put
g® =E|f-1+td;|*
In view of Remark 2.4, it is possible to reverse the order of the integration and
differentiation to obtain g’(0) = 0 and g"(t) < 2D?||d ;||3. Hence,
1
E(fil® - Elfj-1l? = (1) - g(0) = / g’ —t)dt
0
<Didjl3, J=12....
It remains to sum these inequalities. O

The upper bounds provided by Theorems 15.1 and 21.1 of Burkholder (1973)
can be immediately extended to martingales in 2-smooth separable Banach
spaces. Let us state this: )
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THEOREM 2.6. If f € M(X), X is a 2-smooth separable Banach space, the
function g: [0, 00) — [0, 00) is nondecreasing, g(0) = 0, and g(2u) < cgg(u),u > 0,
for some cg, then

(2.9) Ezg(f*) < cz.9[Eg(Ds) + Eg(d")].
If, moreover, g is convex, then
(2.10) Eg(f*) < c2.10Eg(DS2).

Here cg 9 and cg 19 depend only on cg.

Proor. The proof repeats that in Burkholder (1973) with the following
exceptions: (a) use | - || instead of | - | and (b) use Proposition 2.5 instead of the
identities (in the notation therein): || ||z = ||S(h)||2 and ||&||2 = ||s(R)||z. O

It is well known [see (11.1) in Burkholder (1991)] that for g(¢) = [t|?, (Ap)?
is optimum for ¢4 19 at least if X is a Hilbert space. As to optimum bounds like
(2.10) for conditionally symmetric martingales in 2-smooth spaces, see Section
4 and, in particular, Remark 4.4 therein, concerning conditionally symmetric
martingales in Hilbert spaces.

3. Exponential bounds on tail probabilities for the martingales in
2-smooth spaces.

THEOREM 3.1. Suppose that f € M(X), X is a (2,D)-smooth separable Banach
space, and \ > 0 is such that EeM4ill < oo forj=1,2,.... Then for all r > 0,

(o o]

IT [1+ 0%, - (exp (1) — 1 - M1d1) |

Jj=1

P(f* >r) < 2exp(—Ar)

(oo}
00}

We shall obtain this theorem as a particular case of the following result for
(2, D)-smooth functions defined in Section 2.

(o o]

gzexp{—)\r+D S8, (o) - 11,1

THEOREM 3.2. Suppose that f € M(X), X is any separable Banach space,
A > 0 is such that EeMdil < oo forj = 1,2,..., and the function ¥ is (2, D)-
smooth. Then for all r > 0,

00
H l+ej)

(o e]

J

3.1 P(sqp U(fj) > r) < 2exp(—=Ar)
J .

(o]

D> e

(3.2) < 2exp{—>\r+
. =
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where

ej =D?E;_q(e*%ll —1-)|d;|), D.=1vD.

Proor. Put u(t) = u,, ,(t) = U(x + tv) for any x,v in X. By Lemma 2.2 and
Remark 2.4, we may assume that u is differentiable, [u'(¢)| < ||jv|| and (u2)"(¢) <
2D?||v||?. Hence, when u"u > 0, one has (coshu)” = u’?coshu + u” sinhu <
(u + u"u)coshu = (u?)" coshu < D?||v||? coshu and, otherwise, (coshu)’ <
u’? coshu < ||v||? coshu. In any case,

(3.3) (coshu)” < D?||v||? coshu.

Consider now ¢(t) := E;_1cosh(A\¥(f;_1 + td})), |t| < 1. In view of (3.3) and
Remark 2.4,

go”(t) < Dz)\2Ej_ 1||dj||200Sh()\\I’(fj_ 1+ tdj))
< D2\, _1||d; |24l cosh (AU(F; ), |f] < 1

However, ¢'(0) = 0 because (f;) is a martingale and, therefore,
1
E; _1 cosh(A¥(f))) = (1) = ©(0) + / (1 —8)"(t)dt < (1 +ej)cosh(AT(f;_1)).
0

Thus, putting G = 1 and G; = coshO\¥(f))/IT}_,(1+¢;), j= 1,2,...,onehasa
positive supermartingale. Hence, if 7 := inf{j: U(f;) > r}, then EG, <EGy =1

and so
P(sup\Il(fj) > r) < P(G, > cosh(,\r)/ [[a+ep )
J Jj=1 00

Now (3.1) follows from Chebyshev’s inequality and coshu > e*/2; (3.2) is
elementary. O

REMARK. Forf € Mj,qa(R), that is, for sums of independent zero-mean real-
valued random variables, the following is used as a starting point when proving
exponential inequalities:

P(f, 2 1) < exp(—2) [] [1 + E(exp00d)) - 1 - 2d) ]
Jj=1

< exp{—)\r+ > E(exp(Md;) —1- )\dj)}.

j=1

Thus, Theorem 3.1 provides a similar starting point for f € M(X), X being
2-smooth. [In this sense, it is analogous to the results of Pinelis and Sakha-
nenko (1985) for sums of independent random vectors.] A general method of
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obtaining exact exponential inequalities for sums of independent real-valued
random variables is proposed in Pinelis and Utev (1989). So, for martingales in
2-smooth spaces, these two devices taken together produce analogues of exact
“independent real-valued” exponential bounds. For instance, this remark eas-
ily leads to the following analogues of classical results of Bernstein [see, e.g.,
Bennett (1962)] and Bennet (1962) and Hoeffding (1963) [cf. Theorems 9 and 3,
respectively, in Pinelis and Utev (1989)].

THEOREM 3.3. Supposethatf € M(X), Xis a (2,D)-smooth separable Banach
space and

< m!T™~2B%/(2D?)

for some’ >0,B >0and m=2,3,....Then forallr >0,

S Ei_q|d|m

j=1

2
P(f*>r<2 - .
(f2n< exp( B2+B\/Bz+21‘r)

Proor. Under the conditions given,

o0
D?| Y Ej_q (Ml — 1 - \dy])
Jj=1 00
13 B2)? 1
< = mpm—-2p2 _ < =,
<52 A" "B - OSA<E

m=2

Now Theorem 3.1 yields
B2)2
*> )< — ————— 5,
P> ) < 2exp{ v+ ot 5}
It remains to minimize the rh.s. in . O

THEOREM 3.4. Supposethatf € M(X), Xis a(2,D)-smooth separable Banach
space, and ||d*||cc < a, ||s2|lc < b/D for some a > 0, b > 0. Then for all r > 0,

b2
(3.4) P(f* Zr)SZexp[g— (£+§)ln(1+2—‘;)J
o\ r/a
3.5) < 2(‘i> .
ra

PrOOF. Because the function g(u) := u=2(e* — 1 —u) for u # 0, g(0) := %

is increasing in z € R,

‘ eM—_1-)a
Ej 1 (M —1-ld)l) < =————E;_1]ld,|*
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Now Theorem 3.1 yields

P(f* >1) < 2exp{—Ar+ expia) ~ 1 - A‘]‘bz}

)
and the minimization in ) gives (3.4). Inequality (3.5) is trivial. O

In the special case X = L?, a bound similar to (3.4), but somewhat weaker, was
proved by Kallenberg and Sztencel (1991); their method seems to be confined
only to Hilbert spaces.

Theorem 3.4 was proved in Pinelis (1992) for X = L?, p > 2. A version
for general 2-smooth spaces was given therein too, but with another, greater
constant in place of D.

THEOREM 3.5. Supposethatf € M(X), Xisa(2,D)-smooth separable Banach
space, and ¥ ,||d;|%, < b2 for some b, > 0. Then for all r > 0,

P(f* > 1)< 2exp{—§-ﬁr;5§}.

ProOOF. The proofisthe same as that of Theorem 3 in Pinelis (1992a) except
that, in view of (3.3), one can use D? instead of B therein. O

Theorem 3.5 can be improved in the special case of conditionally symmetric
martingales.

THEOREM 3.6. Suppose that X is a (2,D)-smooth separable Banach space,
f € MX), IS2(lc < b for some b > 0, and the increments d; are Fj_1-
conditionally symmetrically distributed, j=1,2,.... Then forallr > 0,

2
P(f*>r < 29XP{—§5§—[)—2‘}-

Proor. Being conditionally symmetric, (f) is also a martingale relative to
the sequence (Gj), where G; is the o-field generated by F; and ||d;.||; see, for
example, Lemma 10.2 in Burkholder (1991). Now, the proof can be concluded
as that of Theorem 3 in Pinelis (1992): only the conditional expectations given
G/’s are taken instead of those given F’s, and D?, ||d ;| are used in place of B, b2
therein, respectively. O

In the case when X = R and d ;s are simple functions, Theorem 3.6 was given
in Hitczenko (1990b).

An analogous result for sums of independent random vectors in arbitrary
separable Banach spaces is given in Pinelis (1990).
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4. A spectrum of Rosenthal-Burkholder type bounds on moments of
martingales in 2-smooth spaces.

THEOREM 4.1. If f € M(X), X is a (2,D)-smooth separable Banach space,
p>2,1<c<p,then

(4.1 1F*llp < clld*[lp + vce*/*Dllss|l-

In particular,

4.2) I *ll> = plid*|lp + vPDlls2llp,

4.3) 1l % oy (1"l + Dllsz])

(4.4) Il < aldlp +¢”*Dlsalp,  1<as o,

We need the following lemma.

LEMMA 4.2. Suppose that f € M(X), the increments d; are F;_ ,-condition-
ally symmetrically distributed,j=1,2,...,A>0,6; > 0,6, >0,5—1—63 > 0.
Then

P(f* > A, w* < X)) <eP(f* > N),

w* = ii_i \V} ._1&
- b2 6 )’

(e \Y _f-1-6
8—2(Ng) s N = (52 .

where

(4.5)

ProoF. The proof is based on the method of Burkholder (1973). Put d ;
=d;I{||d;|| <&}, fj=3]_odi and b =f(;rrpv)vu —Fur Where p = inf{j: || f;]

> A}, v =inf{j: |7 > B3}, 7 = inf{j: §1 > A}, and 51 = /S 1E 1|12,

j = 0,1,... . Then Ej_ﬂj = 0, hj —hj_l = EjI{/l, < J < 7'/\1/}, J = 1,2,...,
and so, (k) is a martingale in X conditionally on F, (the o-field consisting of
all Qg € F such that Qo N {x =j} € F; for all j). In addition,

P(f* > B\ w* <)) = P(F > B\, w* <) <P(R* > (8- 1-8)))
= EP(h* > (8- 1—8)A|F,) I{u < o0}
< eP(u < 00) = eP(f* > \).
Here we have applied (3.5) with r= (B-1-6)\,a=68 and b=46 ). O

ProOOF OF THEOREM 4.1. The argument in Hitczenko (1990a) shows that
we need to consider only the following two cases: (1) the increments d; are
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F;_ 1-conditionally symmetrically distributed and (2) f € M;nq(X). However, via
the standard symmetrization formula X = X — X', where X, X’ are independent
copies, one can easily reduce case 2 to case 1. Thus, one can use Lemma 4.2.

Applying now Lemma 7.1 in Burkholder (1973) with ®(\) = A?, v = 87 and
6 =n=1, one has

”d*”p D"32”p . 1
. *II, < 28| —2 4 =12 Pe < —
46) i1 <20 (15 le s Plonle) o < 1
where ¢ is given by (4.5). Choose now, for any ¢ € [1, p],
1 1 1
= _p/c —_ = — = —_—
B=1+e +c, 6 100’ b1 10+/cere"
Then 8 < 3,
N = ﬂ—";—_ﬁ =9 +10ce /¢ > 9,
2
BP = [1+(N+1)5,]° < e2PN%,
PN _ ol/9 2p6, € c 1
(BPe)/ < 2% 2_——100e‘1’/° e <3
so that (4.6) implies

1F*llp < 60(clld*[l, + v/ee"/*Dlls5l5)-

Thus, (4.1) is proved.

Let ¢, stand for the unique solution to the equation ,/c; = eP/%. Then, ¢, ~
2p/Inp as p — co. Hence, putting ¢ = p and then ¢ = ¢, in (4.1), one comes to
(4.2) and then to (4.3), respectively.

The function g(c) := v/ce?/° decreases on [1,p], g(1) = e? and gp)=ep <
ep. Hence, for each o € [1,p/In(ep)], there exists z, € [1,p], the unique so-
lution to the equation g(z,) = e?/*. In addition, g(20) = eP/*\/2ae~P/® <
eP/®/20,e7P/?%) < g(z,), where o, := p/In(ep). Thus, zo < 2a. Now we see
that (4.1) with ¢ = z,, yields (4.4). O

For X = R, inequalities (4.3) and (4.2) were proved in Hitczenko (1990a) and
(1991), respectively.

A spectrum of bounds on moments of martingales in Hilbert spaces with
bounded second conditional moments was found in Pinelis (1980). It is essen-
tially equivalent to (4.1) at least in the case of independent increments d; (see
Remark 6.8), but has a much more cumbersome expression.

The infimum in ¢ of the r.h.s. of (4.1), evaluated in Section 6, turns out to be
an upper bound on ||f*||, optimal in terms of ||d*||,, ||sz||p, the optimum choice
of ¢ depending, obviously, on ||d*||,/||sz||p. In addition, for each ¢ € [1, p], the
“individual” bound c||d* ||, + /ceP’¢||s||, is optimal for a certain corresponding
value of ||d*||»/||sz[|p. In particular, all the bounds in (4.2)—(4.4) are optimal. The
issue of optimality is treated rigorously in Section 6.
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THEOREM 4.3. If X is a (2,D)-smooth separable Banach space, f € M(X)
and the increments d; are F; _1-conditionally symmetrically distributed, then

IF*lle 2 vPDlISellp, P21

Proor. Consider f as a martingale relative to the sequence of o-fields (G;)
defined in the proof of Theorem 3.6. Then s, = Sy. Reasoning as in the proof of
Lemma 4.2 but using Theorem 3.6 instead of Theorem 3.4, we see that

4.7 P(f* > BX, DSy < 6)) < eP(f* > ),

A>0,6>0,and 3—1-6 > 0, where ¢ = exp[—6~2(8 — 1 - 6)?/2]. It remains to
choose, say, 8 = 2, 6§ = (0.1)p~/2 and apply Lemma 7.1 of Burkholder (1973). O

REMARK 4.4. For conditionally symmetric martingales in Hilbert spaces,
the exact constant A, in the inequality

(4.8) [ falle < AplIS2llp, p >3,

extending real-case results of Davis (1976), was found by Wang (1991). For
any real martingale with independent symmetrically distributed increments,
it follows from the results of Whittle (1960) and Haagerup (1982) that (4.8)
takes place with the exact, in this “independent increments” case, constant
Ap = ||¢]lp, where £ ~ N(0,1), p > 2. Because ||{||, < /P, the bound in Theorem
4.3 is optimal (to x).

REMARK. Bounds given in Theorem 3.1, 4.1 and 4.3 are only possible in
2-smooth Banach spaces, even if we need a bound like those in Theorem 4.1 for
just one particular p. Indeed, all the results mentioned here imply||f*|, <
CD||S;||p for at least one particular p > 2, some C > 0 and all Walsh—Paley
martingales in X because for those martingales, s, = Sg > d*. Thus, one has
(4.7) with € = (CD6/(8 — 1 — 6))?, and so, ||f*|l2 > C1D||Sz||2 for some C; > 0.
It remains now to recall the characterization of 2-smooth Banach spaces given
by Pisier (1975).

5. Applications: Bounds on central moments of the norm of the sum
of independent random vectors in arbitrary Banach spaces.

THEOREM 5.1. If f € Mina(X0), (X, || - ||) is any separable Banach space,p > 2,
1 <c < p, and x is any nonrandom vector in X, then foralln=1,2,...,

GRY £+l = Ell fo +2lllp < clld™[lp + e’ [|Sz]la-
In particular, ‘

(5.2) 17 + x|l — Ell fo +x[llp 2 plld"[lp + v/PlIS2ll2,
(5.3) i+~ Ell o + 2l < Ep-};(lld*llp +ISzll2),
(5.4) £ +2ll = Ellfu +2lllp < alld* [l +€”/%1Szll2,

where 1 < o < p/In(ep).
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Proor. Use Theorem 4.1 and a modification (needed here only for x #0) of
the method of Yurinskii (1974), as in Pinelis and Sakhanenko (1985). O

Hoffmann-Jgrgensen (1974) found the following extension of Rosenthal’s in-
equality for f € M;uq(X), p > 1:

(5.5) I £llllo < e@)(lla* Iy + 1 £2ll112)

with ¢(p) depending only on p [it can be seen that the best choice of parameters
in the method of Hoffmann-Jgrgensen gives (5.5) with ¢(p) =< pl.
For f € M;nq(X), Pinelis (1978) proved that

A lp = ex(@ Falllls + c2(PISplln + ca(PIISzll2;

which is also a generalization of the Rosenthal (1970) inequality; the method
can actually yield c1(p) = 1, ca(p) = p and c3(p) = /p.

An inequality, implying (5.1), was obtained in Pinelis (1980) (see Remark 6.8
below).

De Acosta (1981) proved a version of (5.3) with x = 0 and with an implicit
factor ¢(p) instead of p/Inp.

Using an isoperimetric technique, Talagrand (1989) proved the following
version of (5.5):

(5.6) 2 llll> = fn—(ezpf)(lld*llp + I £211l12)

for f € Ming(X), p > 1, which was also proved in Kwapieni and Szulga (1991)
by a different method. Inequality (5.6) may be compared with (5.1) and, in
particular, with (5.3). If ||Sz|l2 > ||d*||» + ||| /z]l|l1, then (5.3) may lose to (5.6)
in certain cases. If, however, X is, for example, of cotype 2, then (5.3) is often
no worse then (5.6). Moreover, say, in the typical case of increments with the
same or almost the same distribution, (5.2) is significantly better. On the other
hand, if there are heavy distribution tails, that is, if ||d*||, is much greater than
both ||Sg|l2 and ||||fx|ll1, then (5.4) with oo < 1 does better than (5.6). Other
advantages of bounds (5.1)-(5.4) are that they are applicable to the sums of
non-zero-mean random vectors (owing to the presence of x) and better reflect
the concentration phenomenon of the distribution of the sum of independent
random vectors.

Modifications of the method of Yurinskii (1974) for f € M;,q(X), allowing
reduction of the problem of upper bounds on the L.h.s. of (5.1) for any separable
Banach space X to that of upper bounds on || ||, for f € Mi,a(R), were proposed
in Berger (1991) (for x = 0) and in Pinelis (1994) (with the best constant, for
any x € X). Actually, instead of the power moment function u — |u[?, one can
use.any convex function there.

A straightforward application of Theorem 4.1 yields the following bounds
in the case of sums of independent zero-mean random variables, stated here
mainly for further reference. ’
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THEOREM 5.2. Suppose that f € Ming(X), X is a Hilbert space,p > 2,1 < ¢
<p.Then

6.7) I Allllo = cllSpllp + vee?/|ISzl2-
In particular,
(5.8) Il £2llllp = PIIS llp + vPlIS2ll2,
(5.9) I £2llllp = np P (1S, I, + [1S2ll2),
a b
(5.10) I Alllle % @lSpllp +€”/*|IS2ll2, 1< a< Tn(ep)”

As was said in Section 4, the results of Pinelis (1980) imply (5.1) and (5.7). It
was also explained in that paper how to elicit bounds like (5.8) and (5.10) (for
a = 4). Nevertheless, it is not so obvious how to deduce a general inequality like
(5.7) from the spectrum of bounds in Pinelis (1980) (again, we refer to Remark
6.8). From this point of view, even in the classical case of sums of independent
real-valued zero-mean random variables, (5.7) is apparently new.

An inequality similar to, say, (5.9), but with 2” instead of p/ In p, was probably
first found by Rosenthal (1970) for f € M;,q(R). Rosenthal also obtained a lower
bound, which differs from the upper one by at most a factor depending only on p.

Rosén (1970) proved a result for f € Mq(R), which implies the upper
Rosenthal bound for p = 2,4, 6, ... [this implication was unnoticed; to demon-
strate it, one can put, in the notation of Rosén, \,(p) = (EXZ /EX2)1/@r—2),
pv(@) = EX2%2/(\,(p)®)]. Moreover, using some ideas of Dharmadhikari and
Jogdeo (1969), it is possible to deduce the upper bound by Rosenthal for all
real p > 2 from the Rosén’s result.

A method like that just described was used in the student diploma work of
Pinelis (1974) to prove an upper bound of the Rosenthal type for f € M;,q(R)
[via the Marcinkiewicz and Zygmund (1937) inequality, the lower Rosenthal
bound was also obtained therein]. Although the constants in Pinelis (1974)
were implicit, the method could yield (5.9). Regrettably, the results of Rosenthal
(1970) and Burkholder (1973) long remained unknown to the author, and so, to
him, the problem of the constants was not among those considered most urgent.

Inequality (5.9) for f € M;j,q(R) and for sums of exchangeable random vari-
ables, with the proof that p/Inp is optimal in (5.9), was first given by Johnson,
Schechtman and Zinn (1985).

A. 1. Sakhanenko, a referee of the above-mentioned diploma work, suggested
another approach, giving in effect (5.8), again for f € M;,q(R) [see Nagaev and
Pinelis (1977)].

An inequality, similar to (5.10) with a = 4, was found by Sazonov (1974).

All bounds in Theorems 4.1,-5.1 and 5.2 are optimum. We shall prove the
optimality in the next section, using ideas from Pinelis and Utev (1984), where,
in particular, for any p > 2,

sup {[|fallp: f € Mina@R), [IS2]l2 and ||Sp ||, fixed }
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was computed up to =, which, for instance, implies all inequalities (5.7)~(5.10)
for f € Mina(R). Also, it was noted in Pinelis and Utev (1984) that bounds like
(5.8) and (5.10) (for o < 1) represent in a certain sense the two extreme bounds
in the spectrum of all optimal bounds on moments, the optimum value of a
“spectrum parameter” depending on ||Sp|,/||S2]|z-

6. Optimality of the bounds on moments. Let us consider the following
upper bounds for any ag > 0,a, > 0,p > 2:

B, := By(ap,az)
:= sup{|| f*|lp: f € M(X), X is any 2-smooth space,
ld*llp = @p, DO|Iszllp = a2},
B ina = B ina(ap, az)
= sup {||[| fu + x|l — Ell fu +%[|[lp: f € Mina(X), x € X,
Id*llp = ap, S2llz =az, n=1,2,...},
By, ind,0 = Bp,ind,0(@p,a2)
= 5up {full: £ € MioaR), [d"lp = ap, [Sellz = a2, n=1,2,...},

and their analogues B,, s = B, s(ap,a2), B “ind, 8 = B ing, 5(@p, @2), and By, in 0,
= By, ind, 0,5(@p, a2) obtained by replacing the equahty ||d*||p =ap in the above
definitions by ||Sy||, = ap.

We shall show that all the introduced bounds are <-equivalent to each of the
following:

pPap
In (2 + (ap/asg)y/p)’
Ep = ﬁp(ap,az) := min {ca, + Vce?/°ay: 1< c <p},
B, := B,(ap,a5) := max {(pa + 1! ~*/%al " %ag: 0 < < 1}.

Bj := By(ap,as) == ap + \/pag +

Theorem 6.1 below principally means that for any pair (a,, ag) of the values of
the characteristics used in the bounds (4.1), (5.1) and (5.7), there exists a value
of the “spectrum parameter” ¢ providing an optimum bound. Roughly speaking,
it means that spectra (4.1), (5.1), and (5.7) are rich enough, so Theorem 6.1 may
be called the “spectrum completeness theorem.” It also means that it is not
essential in this context which of the two pairs of values are fixed: ||d*||, and
Is2]lp» or ||Spllp and ||s2||» [this is not as obvious as it might seem; although it is
true, at least for f € M;q(R), that ||Sy|l, < ||d*|, + [|s2]|p, this is not sufficient
for obtaining, say, (4.2) from ||f*||, < p||d* ||, + \/P||s2||» even for f € Mi,a(R)].

THEOREM 6.1. For allp > 2, ag > 0, ap > 0, and all separable Banach
spaces (X, || - |,

A

- ~ RX - <« B - -
By < B¥ ;14 < By ind,0 < Bp,s < BX 104 5 = Bp,ind,0,s < B, < B, < By,

p, in
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The proof is comparatively long and will be given later in this section.

The “spectrum” ca, + v/ce?/°as, 1 < ¢ < p, turns out to be not only “complete”
but also “minimal” in the sense that for each ¢ € [1,p], there exist a, > 0 and
ay > 0 such that the “individual” bound ca, + v/ce?/°a, is the best possible. Let
us give the rigorous statement.

THEOREM 6.2. Foranyc € (1, pl, p > 2,

B,(ap,az)
—_— = 0 = 1.
sup {cap + +/ceP/caqy ap >0, a2>0

Here any of the other five bounds B’f ind» Bp, ind, 0, Bp,s, BX ind, 5> O Bp,ind, 0,s may
be used in place of B,. In particular, all bounds (4.2)(4.4), (5.2)«5.4) and (5.8)-
(5.10) are optimal.

The proof will be given after that of Theorem 6.1.

The following proposition might seem analogous to Theorem 6.2, but it is
less important because for an “individual” value of o, (po + 1)! ~*/2g1 ~%ag
does not represent an upper bound on the moments. Actually, by Theorem 6.1,
By(ap,a2) = (pa+ 1) ~*/2gl = 2qag.

ProprosiTION 6.3. Forany a €[0,1], p > 2,

By(ap,as)
nf { i L ta, >0, a >O}x1.
{(pa+1)1—0‘/2a},“°‘ag‘ P 2

Here, any of the other five bounds B;f ind» Bp, ind, 0, Bp, s, B;f ind, § O Bp,ind, 0,5 may
be used in place of By,

The proof will be given after that of Theorem 6.2.

REMARK. It is easy to see that Doob’s inequality

17l < g supllifallly, P> 1, f € M)

[see also (1.4) in Burkholder (1973)], remains true for all separable Banach
spaces X. Therefore, one could replace |f*|, in the definition of B, by
sup, ||| /z]lll»,» and statements 6.1-6.3 would hold. This remark can be also de-
duced from the proof of these statements.

Assume in what follows up to the end of this section, without loss of gener-
ality, that a, = 1 and set a = ay, for brevity.

The proof of Theorem 6.1 is based on the following series of lemmas.

The next lemma was prompted by a remark from the referee. Using it has
made the proof of Theorem 6.1 more direct and transparent.
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LEMMA 6.4. Let Y be a random variable, having the Poisson distribution
with a parameter \. Then, for sufficiently large p,

Y = Xllp = o ———I{eP/2 < X< e 3p}

( In (p/X)
+VPN{A > 1) +/\1/PI{O <A< %}

PROOF. Consider first the case ) € [e™?/2,e~3p]. Thenp > [1V(eN)]In(p/\).
Put n = A+ 6p/In(p/A). We may choose 6 € [1,2] so that n is integer. Then, in
addition, p/In(p/X) < n < 3p/In(p/)) and, hence, \/n < 1/e < 1. Using now
n! <n"and p/\ > e, one obtains

In||Y - Allp > %m(W *)
p 3 In(p/2)\ 1
2o T i) ( 3(p/N) ) %)
p
etln(p/A)’

Next, consider the case A > 1. Using induction on n, one can see that the
Poisson distribution with the parameter A > 1 majorizes the normal distribu-
tion in the sense that

>1In

A" 1 (n — N2
—_ —A) - — —_— > )\
-] exp(—2A) = \/Xexp< \ ), nz=A
To complete the consideration of this case, it remains to recall that if ¢ is N(0, 62),

then |E]l, < 5o

Finally, in the case 0 < )\ < 1

< 3,onehas |[Y — A, > |1 = A[AYPe=2P = AP, O

LEMMA 6.5. Forallp > 2and a > 0, one has By, inq,0(1,a) = B;(1,a).

PRroOOF. Let us say that a real-valued random variable ¢ is T(u,q) if P(¢ =
u)=P¢ = —u) =qg/2and P(§ = 0) = 1-q, u > 0. Results in Pinelis and
Utev (1984) and Utev (1985) suggest that sums of independent T'(«, q) copies
constitute the extremal case with respect to the upper Rosenthal bound. Here,
we exploit this idea. The summands in the expression

* _ p
B;(1,a) _‘—1 +v/pa + —ln(z + vb/a)

corfespond respectively, to (i) the “quasidegenerate” case, when ¢ is small, (ii)
the “quasinormal” case, when ¢ is large (1 e., comparable to 1), and (iii) the
intermediate “quasi-Poisson” case.
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The next construction is used in order to satisfy the conditions ||d*|, = 1 and
IS2ll2 = a. Put g,(¢) = tP/2[1 — (1 — t/n)*], goo(®) = t=P/2(1 —e~%), ¢t > 0, n > O.
Then g, (¢) decreases in n to goo(¢), g,(¢) decreases in ¢ € (0, 7] from g,(0+) = co
to g,(n) = n™P/2, and g, (t) decreases in ¢ € (0, 00) from 8(0+) = oo to g(oo) = 0.
Hence, for any n € (a2, 00], there exists a unique solution ¢, € (0,n) to the
equation g,,(t,) =aP,and ¢, | tc asn T co. Put :

a

1 A =to, = —,
6.1) t K 7

Consider the martingale f = (f;) € Mipq(R) whose first n increments are
T(un,qn), where g, :=t,/n, u, := a/\/t,, and the other increments are 0. Then,
for the so constructed £, one has ||d*|, = 1 and ||Sz||2 = a. In addition, Eei/»
= [1 + gn(costu, — 1I* — Ee*2,t ¢ R, n — oo, where Z is a (symmetrized
Poisson) random variable with the characteristic function Ee?Z = expl(cos xt —
1)A]. Hence, by the analogue of the Fatou lemma for convergence in distribution
[see, e.g., Theorem 5.3 in Billingsley (1968)],

(6.2) liminf| £, > 2],

In what follows up to the end of the proof of the lemma, we assume that p is
large enough (otherwise, the lemma follows from the lower Rosenthal bound).
By (6.1), A = (1 — e~*)*/Pa2, This and the inequalities 1 — e~ > X/2 for
A€e(0,1],(1—e 2P >1forA>1,1—-e* <1forA>0and 1—e~* < X imply

(6.3) %[az /\azp/(P‘Z)] <A<a?Aa¥/(P-2)

To prove the lemma, it suffices to show that for some n,

— p
(6.4) [ fullp = Fla,p) :=1V (\/pa) v Th@+ s/

There may be three cases.

Case 1. F(a, p) = 1. Then a < 1. In this case, (6.4) (as well as the condition
n > a?, needed for the construction of f) is satisfied if n = 1. (Another way to
treat this case is using Lemma 6.4, as we do in the two other cases.)

Case 2. F(a, p) = \/pa. Then a > ,/p, and (6.3) yields A > 1. Using now
Lemma 6.4 and (6.1), one has ||Z||, > &||Y — ||, = /pa. In this case, it remains
to use (6.2).

Case 3. F(a, p) = p/[7In(2 + ,/p/a)]. Then e P/% < a < \/p/e3 and, in view
of (6.3), e™P/2 < X\ < p/e®. Because in this case al/? < 1, (6.3) implies ) < a2 <
a%/(p =2 In addition, (6.1) and (6.3) yield x > 1. Using now Lemma 6.4, one has

: ’ P _ D - p
1Zlp = &[IY = Allp 2 1Y = Allp = m(p/) " (yp/a) @+ Jp/a)’

Thus, in any case, (6.4) is true. O
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LEMMA 6.5S. Forallp > 2 and a > 0, one has B, in4,0,5(1,a) = B;(1,a).
Proor. The proof is quite similar to that of Lemma 6.5, and even slightly
easier, because the conditions ||S, |, = 1 and ||Sg||s = a are easier to satisfy,
as compared to ||d*|, = 1 and ||Sz||2 = a. In addition, here (6.3) is replaced by
A = a®/? =2 Finally, in the case F(a,p) = p/[7 In(2 + ,/p/a)], one should use
k=a"2/?P-2 =1 inplaceof xk > 1. O

LEMMA 6.6. Forallp > 2and a > 0, one has ﬁp(l,a) =< Bp(l,a).

Proor. Consider the functions

(6.5) g(@) = (pa+1)1~*/%*  0<a<]l,
lpa—2p
. = = <a<l.
(6.6) qp(a) \/pa+1exp{2 pat 1 }, 0<ax<l1

Then, by the definition of B,,
(6.7 B,(1,a) = max {g,(a): 0 < a < 1}.

In addition, g, is continuous and increasing and maps [0, 1] onto the segment

(6.8) I = {e‘p,\/p+1exp{—li}].

2p+1
An essential relation between g, and g, is

’ _ a
(6.9) £,(c) = gp(a)In et

If we have a € I, take o, = ¢, '(@). Then o, € [0,1], a = g,(a,) and, in view
of (6.5) and (6.6),

-2
pop+1 =gp(ap)exp{—932u} = gplayp),

(6.10) 2 pop+1
amexp{ﬁ} = gp(ap)exp{%% } = gp(ap).

This implies, with ¢, := pa, + 1, that

(6.11) cp + /GpeP%a < gy(ap)

(ifa € I). Obviously, ¢, € [1,p + 1]. Hence, in view of (6.7), if @ € I, and ¢p <p,
the lemma is true. If, however, ¢, € (p,p + 1], then

P+ /pePPa < cp + \/cpe" %ea < gplay)
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by (6.11). Thus, the lemma is true whenever a € I,,.
Consider now the two cases when a ¢ I,.
First, suppose that

(6.12) a<min I, =e7P.

Then a < gp(a) for all o € [0,1], and (6.9) implies g, < 0 on [0, 1]. Hence,

B,(1,a) = g,(0) = 1. On the other hand, B,(1,a) < 1 +ePa < 2 by (6.12). Thus,
the lemma is true in the case (6.12), too.
Finally, let

(6.13) a>max I,(>\p/e).

Then a > gp(a) for all a € [0,1], and (6.6) implies Bp(l,a) = gp(1) > /pa,

whereas B,(1,a) < p +/pa = (p/a + \/pela < 2e,/pa, in view of (6.13). O
LEMMA 6.7. Forall p > 2 and a > 0, one has Bp(l,a) = B;(l,a).

Proor. Consider first the case a € I,, where a and I, are defined in (6.5)
and (6.8), respectively. Then (6.10) implies

(6.14) By(1,0) = gplap) < cp,
where g, is given by (6.5), &, = g, X(a), and ¢, = pa,, + 1. Putting z = (p + 3)/cp,

one hasz > % We can rewrite the equation oy, = g, Ya) as \/ze?* = \/e(p + %)/a.
Because ¢%/2 < \/ze® < e whenz > %, we deduce z < In(2 + ,/p/a),

- b
(6.15) cp < ln—————(z wvB/a)

Now (6.14) and (6.15) imply B, < B} ifa € I,,.
In the cases (6.12) and (6.13), Bp(l,a) is equal to g,(0) = 1 and g,(1) < /pa,
respectively. We see that in any case, ﬁp <B;. O

PROOF OF THEOREM 6.1. Observe that
(6.16) B! <B, a0 <B, <B, < B, < B;.

Indeed, the first relation in this chain is Lemma 6.5, the second is trivial, the
third follows from (4.1), the fourth is Lemma 6.6 and the last is Lemma 6.7.
Note that for any separable Banach space X,

(6.17) By ind,0 2 BY g
be;:ause R may be isometrically embedded into X and, for f € M;,q(R),

Ifn+x| —E|fa+x|llp = falp asx— oo.
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It follows from Theorem 5.1 that
(6.18) BY .4 <B,.
Now (6.16)—(6.18) yield
B, < By, ind,0 <X Bp < ﬁp =B, =< Bgfmd.
Analogously, using Lemma 6.5S in place of Lemma 6.5, one obtains
By =< By ind,0,s < By,s xﬁpxéprgfind,s. O

PROOF OF THEOREM 6.2. For any given ¢ € [1,p], set a = /ce ?/¢. Then
¢ =/ce?/?a. Put a = (c — 1)/p, so thatc = pa+1, 0 < o < 1. Then
B,(1,0) > gyla) = ce™P*/¢ > e ¢
= (2¢)"1(c + ce?/ a),
where g, is defined by (6.5). It remains to apply Theorem 6.1 and also to re-

call that inequalities (4.2)—(4.4), (5.2)-(5.4) and (5.8)—(5.10) were obtained by
choosing particular values of c. O

PROOF OF PROPOSITION 6.3. For any given a € [0, 1], set
(6.19) a =gp(a),

where g,(a) is defined by (6.6). Then, puttingc = pa+ 1, wesee that 1 <c < p+1
and, in view of (6.5) and (6.19),

pa a—2

&p(@) =cexp{7pa+ 1

} =<c¢xc++/cexp(p/cla

because a consequence of (6.19) and (6.6) is

Veexp (p/c)a = cexp{ﬁ} =c.
Thus, if the above-defined ¢ < p, we see that
(6.20) B, <g,(a).
If, however, ¢ € (p,p + 1], then
gp(a) X ¢ ++/ceP/’a > p + /pe?/ P* Vg - B,
so that (6.20) holds. Now it remains to apply Theorem 6.1. O

REMARK 6.8. In Pinelis (1980), a bound on moments of martingales in
Hilbert spaces with bounded conditional second moments was obtained. [In fact,
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as was stated in Pinelis (1980), the bound given there holds for Banach spaces
of the class D(A;,Ay) introduced by Zolotarev (1977); because it is possible to
reduce (2.1) to (2.2) via Lemma 2.2, the class D(A1,A,) is in effect the same
as the class of 2-smooth spaces.] In particular, the corollary in Pinelis (1980)
implies B md s(la) =% B (1,a). To verify this implication (which requires some

effort), choose in that corollary a; = a7/ =2 for all j,

3,,8
ps) = Z s q(s) =10°y$~2 for s > 2, where y, := By(1,a).
sa'y

s—27
s—2

7. Chung type bounds on moments. Consider (for a fixed natural
number n)

BSap,n) i=5up {|| 1 full |5 (0.Fas - s s s ) € MCX),

X is any 2-smooth space ,D(X)||S, ||, = a, }

THEOREM 7.1. Forallp >2,a,>0,n=1,2,..., one has

th(ap, n) < VpAnnP-?%q,

PRrROOF. Let (0,f1,....fn:sfnsfns-..) € M(X). Using Hélder’s inequality two
times, we see that ||sz|l, < n®=2/@)||S,|,. If p < 3n?~2/P then p|d*|,
<p|ISpllp 2 pY?nP=2/2||S, ||, and hence, (4.2) and p < 3n yield

(7.1) BS™ap,n) X Vp Ann?- D/%q,.

If now p > 3n»=2/P then p > 3, n < p?/?=? < p. The inequalities of
Minkowski and Holder give [[| ., < 53 [lId;ll» < n® = Y/7|S,,. This and
p = n show that (7.1) holds. It remains to prove that

(7.2) th(ap,n) =P An nP- 2)/zf’ap..

Let d; be independent, P(d; = +u) = 1/2,u > 0,j = 1,...,n. Then the
multinomial formula yields

mAn n 1/2m mAn n 1/2m
i (S0 ()
j=1 j=1

Here, we put

£y = 35 [T~

o1 ke1del( (2mk)'
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the inner summation being over all positive integersm; > --- > m,and ji,...,j,
such that myj; +--- + myj, = m, j1 +--- +jr = j, and use the estimate FJ.I,/,flzm)
= j1=J/@m) [cf. (9) in Pinelis and Utev (1984)].

Let m be the integer part of p/2. If m < n, then (7.3) shows that

1/2 1/2 '
n n _
1l = Il fallzm = (m) mu > (z) it = TP~/ |5, |

which implies (7.2) in the case m < n. If, finally, m > n, then it follows from
(7.3) that

n 1/2m
Il > ok = (1) ==Y,

so that (7.2) holds. O

Chung [(1951), pages 348-349] showed that in the case f € M;,q(R), the
inequality of Marcinkiewicz and Zygmund [(1937), page 87] implies an estimate
like (7.1) but with some Cy(p) depending only on p, instead of \/p A 1. As was
pointed out in Dharmadhikari, Fabian and Jogdeo (1968), an analogous result
for f € M(R) is implied by the generalization of the Marcinkiewicz—Zygmund
inequality obtained by Burkholder [(1966), Theorem 9; see also Burkholder
(1973), Theorems 3.2 and 15.1]. One can see that Theorem 15.1 in Burkholder
(1973) in fact gives Cy( p) = p; a constant of the same order p is given in Theorem
3.2 of Burkholder (1973).

The direct proof due to Dharmadhikari, Fabian and Jogdeo (1968) yields
Co(p) = p2?. For f € Mjq(R), Dharmadhikari and Jogdeo (1969) obtained
Co(p)=p/Inp.

For f € Mjyq(R), the result of Whittle (1960) implies the Marcinkiewicz—
Zygmund inequality with the best constant and, along with the above-mention-
ed remark of Chung [see also Rosén (1970)], leads to (7.1) but with ,/p instead
of \/p A'm; so, for n > p, it gives the optimum.

What has been said is a reason for the referring to (7.1) as an optimum
bound on moments of the Chung type.

REMARK. Bounds of the Chung type on central moments of the norm of
the sum of independent random vectors in any separable Banach space can be
easily derived from Theorem 7.1 (cf. Theorem 5.1).

8 One-sided bounds for the distributions of real-valued (super)
martingales. Let M_ stand for the set of all real-valued supermartingales
f € S(R). For f € M_, put f = sup;f; and d} = sup; d;.
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THEOREM 8.1. Iff € M_and X > 0 are such that Ee’% < co for each j, then
forallr >0,

10—0[ 1+ej)

P(f; >r) <exp(-Ar)

Jj=1 oo
oo
Sexp{—)\r+ Zej },
Jj=1 lloo

where e; := Ej_1(e* — 1 — \d;).

PrOOF. The proof follows from the trivial remark that the sequence Gy := 1,
G =eMIE_,(1+e)71,j=1,2,..., is a positive supermartingale (cf. the end of
the proof of Theorem 3.2). O

THEOREM 8.2. Suppose that f € M_, ||d}[l < a and ||sz[lcc < b for some
a>0,b>0.Then forallr >0,

. r r b2 ra b2\

Proor. The proofis quite similar to that of Theorem 3.4, but uses Theorem
8.1 in place of Theorem 3.1. O

THEOREM 83. IffeM_,p>2,1<c<p,then
13 1e = clidills + vee s llp.

We use the following lemma.

LEMMA 8.4 (cf. Lemma 4.2). If) > 0,6, >0,8, >0,8—1—6; > 0,and
f eM_, then

P(f > ), wi < \) <eP(f; > ),

where

PROOF Put E dJI{dJ < (52)\}, fj = C_lo + - +E£, §2,j+1 = (Ei:}E,__ 1(71-2)1/2,
f(J,\T,\,,)VM f ,J =0,1,..., where p = inf{j:f; > A}, v = inf{j:f; > BA},
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and 7 = inf{j:5; j,1 > 6;A}. Then (Ej) is a supermartingale conditionally on F,,
and

P(f, > B\ wi <))

<P(h, > -1-6))

=EP(h; > (B —1—6)\ | F,)I{p < oo}
= eP(f, > \) <eP(f; > ).

P(fI>pBr wi <))

Here, we put 7, = sup; f, R, = sup; h; and took into account Theorem 8.2. O

Proor oF THEOREM 8.3. The proof is similar to that of Theorem 4.1, but
simpler. Here, we do not need to symmetrize. Instead, we can apply Lemma 7.1
of Burkholder (1973) directly to f. O

The following is a refinement of Theorem 8.1.

THEOREM 8.5. Let f € M(R), dj = uj — E;_1uj, A\ > 0, and Ee < o,
Jj=1,2,.... Then forallr > 0,
5o }
j=1 Moo

where e; = E;_1(e* — 1 — \w)). If in addition, E;_1u; > O forallj = 1,2,...,
then, moreover,

P(fr>r) < exp{—)\r+

P(fr>r) < eV

[Ia+ep
j=1

(o]

ProoF. The proof is analogous to that in Pinelis and Sakhanenko (1985)
but simpler. The elementary inequalities

(l+a+ble? <e?, aeR,beR,
(l+a+bleb<1+a, a>00b>0,

imply, respectively, that
Ej— 1e)\dj S eej
and, ifEJ_ 1U;j > 0,
Ej_ 1e’\df <1l+ej,
j= ;,2, ..., if one chooses a =ej, b = A\E; _ 1u;. Hence,

J
exp{)\f} -~ Zej}, i=0,1,2,...,

i=1
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is a supermartingale and, if E; _ 1u; > 0V j, so is

J
eMi H(l +e)” Y, j=0,1,2,....
i=1

It remains to use reasoning like that at the end of the proof of Theorem 3.2. O

REMARK. Martingales like those in Theorem 8.5 may arise, for example,
as a result of truncating and subsequent centering of the increments of other
martingales or any other adapted sequences. The aim of Theorem 8.5 is to
provide for the best constants in exponential inequalities for martingales, which
cannot be reached, for example, via the straightforward estimate |d;| < |u;| +
[E; _ 1yl

JAs aél illustration, let us give the following corollaries to Theorem 8.5, which
are refinements of Theorems 3.3 and 3.4, respectively, for the particular case
X =R.

THEOREM 8.6. Suppose that f € M(R),d; =u; —E;_1u;,j=1,2,...,and
D B afum
Jj=1

for someT > 0,B > 0,and m =2,3,.... Then forall r > 0,

) r2
P(frzr) < exp(_m +BVB%+ 2I‘r)'

<m!T™~2B%/2

'00

PRrROOF. The proof is almost literally the same as that of Theorem 3.3, but
rests upon Theorem 8.5 instead of Theorem 3.1. O

THEOREM 8.7. Suppose that f € M(R), d; = u; — E;_1u;,j = 1,2,..., and
le*lloo < @, 15521 Ej - 14?]| oo < b? for some a > 0,b > 0. Then for all r > 0,

y r r b2 ra
P(f+ 2 7') < exp l; - (E + ;ﬁ)h‘l(1+ §>:l
2 r/a
< (e_b_) _
ra

Proor. The proof differs from that of Theorem 3.4 only in that we use

Theorem 8.5 in place of Theorem 3.1. O
' If, instead of Theorem 8.5, we had used the “naive” estimate |d;| < |u;| +

|E; _ 11| and, say, Theorem 3.1, we would have hardly been able to obtain in-
equalities better than ones like those in Theorems 8.6 and 8.7, but with 2T", 2B,
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2a, and 2b in place of T', B, a and b, respectively. The gain provided, for example,
by Theorem 8.6 is quite significant. If, say,

( )
exp| — =10"",
(2B)2 + 2B+/(2B)2 + 2(2T)r

then the bound given in Theorem 8.6 varies from 10~2V2 < (1.5) x 10~2 (when
I'r is much greater than B?) to 10~% (when B? is much greater than I'r).
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