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A WEAK LAW OF LARGE NUMBERS FOR EMPIRICAL
MEASURES VIA STEIN’S METHOD!

BY GESINE REINERT
University of Ziirich

Let E be a locally compact Hausdorff space with countable basis and
let (X;)ien be a family of random elements on E with (1/n) 0 ; Z(X;) =
m(n — oo) for a measure u with |u|| < 1. Conditions are derived un-
der which £ ((1/n) ¥}, 8x,) = 8,(n — 00), where 8, denotes the Dirac
measure at x. The proof being based on Stein’s method, there are gener-
alisations that allow for weak dependence between the X;’s. As examples,
a dissociated family and an immigration-death process are considered.
The latter illustrates the possible applications in proving convergence of
stochastic processes.

Introduction. Stein [17], [16] developed a very elegant method for prov-
ing convergence in distribution of random variables toward a standard normal
variable. This method was generalized by Chen [4] for the Poisson distribu-
tion, by Loh [8] for the multinomial distributions and by Barbour, Chen and
Loh [3] for the compound Poisson distribution. The general procedure could be
described as follows: Find a good characterization of the desired distribution
in terms of an equation, that is, of the type

Z(X)=p < E[Lf(X)]=0 for all smooth functions f,

where &7 is an operator associated with the distribution u. Assume X to have
distribution u and consider the Stein equation

1) g(x) - E[g(X)]=f(x), =xeR

For every smooth g, find a corresponding solution f of this equation. For any
random element W,

E[g(W)] - E[g(X)]=E[« f(W)].

Hence, to estimate the proximity of W and X, it is sufficient to estimate
E[&/ f(W)] for all possible solutions f of (1). The aim is hence to be able to
solve (1) for a class of functions g that is sufficiently large to obtain conver-
gence in a known topology and rates of convergence in a known metric.
Barbour [1] suggested employing as operator & in (1) the generator of a
Markov process, which then provides a way to look for solutions of (1). In
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the following, this will be called the generator method. Suppose we find a
Markov process (X (¢));>0 with generator & and unique stationary distribu-
tion u, such that .#(X(¢)) = u as t — oo. Then, if a random variable X has
distribution u,

E[o/f(X)]=0

for all f € 9(7). Thus, a method for solving the Stein equation (1) is provided
by Proposition 1.5 of Ethier and Kurtz ([6], page 9; for the argument, see [1]).
Let (T';)>0 be the transition semigroup of the Markov process (X (¢))s>o. Then,
formally,

g(x) ~E[g(X)) = -o( [ Tugdu).

Thus, f = — f;° Twg du would be a solution of (1) if this expression exists
and if f € 2(&7). This will in general be the case only for a certain class
of functions g. However, the latter conditions can usually be checked. This
generator method has proved to be very useful for convergence toward Wiener
measure [1] and for Poisson process approximations (see, e.g., [2]).

For a given distribution u, there may be various Markov processes with u
as stationary distribution, and it is still not completely clear which process to
take to obtain good results (though many people have a good intuition on it).
So, there is a need for further examples.

One basic example is a degenerate distribution §,. In this context, the ques-
tion naturally occurs as to whether laws of large numbers can be proven via
Stein’s method. This is the main topic of this paper. It will turn out that it is
indeed possible to show a weak law of large numbers for empirical measures
by much the same method one would apply for the weak law of large numbers
for random variables (for the latter, see [13]). Thus we simultaneously extend
the range of Stein’s method and provide a class of new results for empirical
measures.

For didactic reasons, we first show the theorem for independent random
elements, though, in this case, there are Glivenko—Cantelli type results, which
even give almost sure convergence. However, as is in general a great advantage
of Stein’s method, the proof is easily carried over to (arrays of) dependent
random elements, and in these cases the assertions seem to be essentially
new (Horowitz [7] gives examples of Glivenko—Cantelli type results). Another
advantage of Stein’s method is that we, quasiautomatically, also get rates of
convergence.

Let E throughout this paper be a locally compact Hausdorff space with
countable basis (l.c.c.b.) and let (X;);cn be a family of random elements with
values in E. Assume that there is a measure u with total mass ||| < 1 and

(1/n) Y7 £(X5) = u(n - o). Let &, = (1/n) X", 8x,. Then we derive
condltlons under which £ (&,) = 8,(n — oo) holds: this is a weak law of
large numbers (w.l.L.n.).
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Examples are then given to illustrate the range of applications for weakly
dependent random arrays, with special reference to stochastic processes. First,
we consider a “uniformly” weakly dependent array (X;,, ;,) of random ele-
ments on E, where £ € N and

Xil,...,ik = l/’il,...,ik(Yip ey Yik)’

with (Y;); being independent random elements on a space 2" and ¢i1,...,ik3
2’ — E measurable, that is, (X, i, )i,...i, is a dissociated family. The second

.....

example deals with an immigration—death process with population size n,

.....

veey

be i.i.d. and independent of the arrival times, whereas dependence between
the arrival times is allowed. With

X =(A}, A} + Zy),

under certain conditions, we obtain the convergence of (1/n)3 !, 8x,; this
describes the asymptotic path behavior of the process. Thus, the wl.l.n. is
a new tool to prove process convergence, and this tool does not employ any
Markov structure or martingales. A more powerful, but also much more com-
plex example, is the general stochastic epidemic in [12]. There the method
leads to a widening of the class of epidemic models for which a deterministic
approximation can be proven.

The outline of the paper is as follows. In Section 1, the topological structure
of the underlying spaces is described. Section 2 concerns several formulations
of the wl.ln. First we treat the independent case and we give a heuristic
argument for deriving the appropriate generator. Then we extend this result
for various kinds of dependences. Afterward we derive an estimate for the rate
of convergence in terms of a Zolotarev metric. Section 3 gives the two examples
to illustrate the power of the results. Finally, Section 4 contains most of the
detail of the proofs of the results of Section 1 and 2.

1. Topological structure. Let & = #(FE) be the Borel o-field of E and
let M?(E) be the space of all bounded Radon measures on E, equipped with the
vague topology. For u € M%(E), set |||l = supcs |(A)| and M1(E) = {pu €
MP®(E): u positive, |u|]| < 1}. Then M1(E) is vaguely compact. Furthermore,
M?®(E) is a topological linear space over R. Following Yamamuro [18], Gateaux
differentiability of a function f: M?(E) — R can be defined as follows.

DEFINITION 1.1. Let G be a topological linear space. Let A be open in
MY(E) and a@ € A. A function f: A — G is Gateaux differentiable in a, if
there exists a linear function u,: M®(E) — G such that

o1
11_1)1(1) ;[f(a + 3#) - f(a) - ua(‘?/")] = 0,
for every direction u € M®(E). If f is Gateaux differentiable in every point
a € A, then f is called Gateaux differentiable. We use the notation D4(A;G)
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for the set of all Gateaux-differentiable functions f: A — G, and
fl@)p]=uu(u)

denotes the derivative of f at the point a in direction wu.

Higher derivatives can be defined in the obvious way: we denote by
f®(a)[»®] the kth derivative of f in @, as a linear form, applied to the
vector v® = (v,...,v) € (M*(E))* and let D%(A;G) denote the set of all
k times Gateaux-differentiable functions f: A — G. For f: A — R, we have
Taylor’s Theorem. Géateaux differentiability for functions f: M®(E) — G can
be defined in the same way, where A in the definition is replaced by M%(E).
We need some more notations. Put

IF' ()1l = sup{If'(»)[n]l:n € M®(E), |In|l < 1},
1)1l = sup{|f"(v)[m, p]I:m, u € MP(E),Imll < 1, |ull < 1},
If = sup If (),

veMb(E)

IFI = Sur(> )IIf"(V)II-

veMY(E
Then we define the following sets of functions:

Cy(MY(E)) = {f: M*(E) — R continuous, sup |f(v)| < oo},
veMb(E)
CHMY(E)) ={f € Co(M*(E)):f € Dy(M’(E);R),
and ||f'|| < oo, | f"|| < oo},
Cr(MP(E)) = {F € Cy(M®(E)): F has the form F(u) =
(2) f((#‘,(ﬁl)’,(/"”(ﬁm)) for an m GN,fG
Cr(R™),¢1,...,¢m € Cc(E)},

C:(M%(E)) = {F € C;(M?(E)), where the function f has the

m . )2
3 form f(x) = /fo(z)exp{—zﬁ%%’)}dz
. i=1 i

foran m € N, fo € C.(R™),(01,...,0,) € R™}

(where (u, ¢) = [ ¢ du). Then functions in Cr(M?(E)) and C;(M?®(E)) are in-
finitely often Gateaux differentiable on every open subset of M?(E). As M1(E)
is compact, the restrictions of functions in the above classes to M1(E) are
again continuous and bounded. Furthermore, C;(M?(E)) is an algebra, and
for C¢(M1(E)) ={f |myuE), f € C:(M®(E))} we have the following theorem.

THEOREM 1.2. C;(M1(E)) is dense in C(M1(E)) with respect to the topol-
ogy of uniform convergence.

' (The proof is essentially based on the Stone—Weierstrass Theorem.) An im-
portant special case is E = R*, for a £ € N. Then we may replace C.(E) by
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CP(RF) in (2) and (3). Set
C(MY(R*)) = {F € Cy(MP(R*)): F has the form F(u) =
4) FUp, @1)y. ..y (1, Pm)) for an m € N, f €
CP(R™), ¢1,...,dm € CP(R*)}

and define C°(MP(R*)) analogously. Let C®(M:1(R*)) and C*(M1(R*)) be
the restrictions to M1(R*). We have the following corollary.

COROLLARY 1.3. C§°(M1(Rk)) is dense in C(M1(R*)) with respect to the
topology of uniform convergence.

Thus, C(M1(E)) and C°(M; (R*)) are convergence-determining classes for
M1(E) and M1(R?), respectively, for vague convergence.

2. The weak law of large numbers for empirical measures.

2.1. The main theorem. Throughout this section, let (X;);cn be a family of
random elements on E, u; = Z(X;),i €N, p, = (1/n) }}_; n; and assume:

there is a u € M(E) such that i, = p (n — o).

Let ¢, =(1/n) Y7, 6x, be the empirical measure of (X7y,...,X,).

THEOREM 2.1 (Weak law of large numbers). If the (X;)ien are indepen-
dent, we have

,/(fn)é&# (n - 00)

REMARK 2.2.

1. £(&) 2 8,(n — oo) méan that for every f € C.(M(E)),
| f0)Pleaedr]> [ f@)8.d)=F(w)  (n—> ).
My(E) Mi(E)

2. The name “weak law of large numbers” is based on the following fact (see
[5], page 305, Proposition 11.1.3.). If (., p) is a metric space, p € ./ and
(Y ,)nen is a family of E-valued random elements defined on the same prob-
ability space, with .Z(Y,) = 8p(n — 00), then Yng p. Let d denote the
metric of the Polish space M1(M;(E)). Then, the weak law of large num-
bers holds if and only if, for all £ > 0,

Pld(£(£r),6,) = €]—>0  (n— o0).
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As already mentioned, the proof of Theorem 2.1 is based on Stein’s method.
In this context, the method can briefly be sketched as follows (see [2],
pages 205-206). Let ®,: E® — E be a measurable mapping and let (W,,),cn
be a family of random elements on E” such that £ (®,(W,)) = Z(&,). Let
W be a Markov process on E with generator &/ and stationary distribution
d,. Suppose M is a class of functions such that for all g € M there is a
solution f of the “Stein equation”

5) g(x)—(6,,8) = (Hf)(x), xeE.
Then
Eg(£n) — (8, [) = E( )(Pn(Wy)).
So, if M is convergence-determining in M;(E) and if
E(Zf)(Pn(Wr)) >0  (n—> o0)
for all possible solutions f of (5), then it follows that
L) S8, (n—>o00)

and |E(f)(P,(W,))| gives the rate of convergence. To construct such W,
and an approximating W, we start with a heuristic argument.

Construction of a Markov process (W, )peny with £(®,(W,)) = .£(£,). Let
n € N be fixed and set

Z4=(2%,,...,2%,) = (X1,..., Xn).

Choose randomly, according to the uniform distribution and independently of
the X;’s, an index M € {1,...,n}, and replace X by Xy, where X is
defined on the same probability space as X, independently of the X,;’s and
with the same distribution as X . Set

Z =(Z 1, ., Z ) = (X1, o, X1, Xt X st -5 Xin).
Again, choose an index M3 € {1,...,n} as before and replace Z}, ,, by VA ! My
as above; set
Z:=(Z%1, 2y 102yt 2 gi1r - 2 )
Iteration of this procedure yields a family (Z*)nen of random elements on
E™. For all m € N, let
Uy =(8zn,...,8z7,);

then, (U"),, is a Markov chain on (M1(E))", with transition probabilities

1 Z .
Kn(V,F) = ; Z: I[ax; € Fi’l '_Ié M]]P[BXM € FM]’

' M=1
where [ = Ty x -+ x I, € B(M1(E))*,v € (M1(E))". [Because M1(E) is
Polish, Z((M1(E))") = (#(M1(E)))".]
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Furthermore, let (N (¢)):>0 be a Poisson process with parameter 1, indepen-
dent of all other random elements of the system, and set

Wo(t) = UNO.

Then (W,(¢)):>0 is a (pseudo-Poisson type) Markov process with generator

(A f) () =f( f(m)Kn(v,dn) - f(v),

My (E)
for all f for which the right side exists. Let
®,:(M.(E))" > M1(E); D, (vy X...xX V) =D.

Then Z(®,(W,(t))) = £ (&,) for all ¢t > 0.
Construction of an approximating process. Consider, for v =v; x--- X v, €
(M.(E))",

n(f o @) (v)

1 & _ . )
“n MZ=:1/<M1<E))n f()I[8y, € dm;,i # M]P[8x,, € dnyl—f(¥)
1 & 1
= n MglfMl(E) f(17 - ;(VM - 77M))]P’[8XM ednyl - f»)
12 1,
) Mngl(E)[;f )nm —vu]

+%f”<a+oM<nM—uM))[<nM—VM><2>]]P[6XM € dnyy]

(for some 0 < 0y < 1, by Taylor expansion)
1 & - L
o fwm @) PLOx € dmag) = 2z 3 f(3)[va] + R(6),
where
1
R(6) = — / ey B
=5 MZ=1 | Ot Ol —var))

x [(nu — vaur) P IP[8x,, € dny -

We now use a technical lemma which follows easily from Theorem 3.27 in
Rudin [15], pages 74-75.

LEMMA 2.3. Let A: M1(E) — R be continuous and linear, and let 1 be a
probability measure on M1(E). Then

A( fMl(E) va(dv)) = me A) 7(dv).



LLN FOR EMPIRICAL MEASURES 341

Hence we have
1., . _
An(f o ®p)(v) = R(0) + ;f’(V)[,u -]
Furthermore,

ROI= 5 sup 17 W

VGM](E
Therefore we choose
(L f)v) =) -], ve M(E),

as approximating generator. &7 is the generator of the deterministic Markov
process (Y (%)):>0 that is given by

PIY#)=(r—-pwe*+p|Y(0)=vl=1  ve Mi(E),

and has as stationary distribution §,. Now we can prove Theorem 2.1.

PROOF OF THEOREM 2.1. Consider the Stein equation
(6) g8(v)—(8u,8)=fWlu-v], veMi(E).
As sketched before, the proof of Theorem 2.1 consists of two steps:

1. To solve (6) for all g C%(M 1(E)) and to show that these solutions are in
CiMi(E)).
2. To prove that E(&Z f)(£,) = 0(n — o0), for all f € C%(Ml(E)).

Step 1. Solution of the Stein equation (6). Let g € Cg(M 1(E)) be fixed. We
may assume that g(u) =0, as the equation (6) remains the same, if g would
be replaced by g — g(u). As in [1], we use the fact that if (7';), is a semigroup
for the generator & and if fot Tsfds e 9(), then

t
Tf —f = x[ T, fds
0
(see [6], page 9). Therefore,
W(g)(v) = — [0 “T.g(w)ds, veMy(E),

is a solution of the Stein equation if it is an element of 2(.%7). To ensure the
existence of (g), observe that for all v € M1(E),

[ Togw)ds| =| | e =we+wasf
0 0
<[ 1€ (0u(v — wye~* + W)y — ullds
, < sup gl [ Y e ds
) veM1(E) 0
<00 asge C%(Ml(E)).
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Thus §(g) exists. The fact that ¢(g) is twice continuously Gateaux differenti-
able and bounded follows by straightforward calculation of the derivatives.
Thus ¥(g) € C3(M1(E)).

Step 2. Asymptotics (n — oo) of E( f)(&,). Let f e C%(Ml(E)) be fixed.
Then

Bl (&) =B 7/ ;1 ox, )1 ;ax]]
= % ;E[f'(l ZBX,)[M - 8x, ]] + Ry,

 j#
where Ry = (1/n) X E[(f'((1/n) X7y 8x,) — £/((1/n) ) 8x,)) [ m — 8x,]]-
Thus, by independence and Lemma 2.3,

B/ )& = Bt o 3| (1 20w, )l - ]

#
1 n , 1 n
= Rl + — Z]E[f (— ZBXJ>[M - ,u't]] +R2,
ni= n iz

where Ry = (1/n) S0 E[(f'(1/n) Xjzi 8x;) — f/((1/n) Thy 8x,)) [ — pill.
From i, = u(n — oo) and the boundedness of [’ follows (by dominated
convergence)

-0 (n - o).

(1 & _
] 75 30 )i ]
n i
Furthermore, |R;| and |R;3| can be dominated simultaneously by

1 174
|Ry|,|Re| < . sup )Ilf @I

V€M1(E
-0 (n — o0).

This completes the proof. O

Observe that in the above considerations we could have replaced 8x, by
g(X;), with any g: E - M;(E) being a bounded measurable function.

2.2. The w.l.l.n. for dependent random elements. In the proof of Theo-
rem 2.1, the assumption of independence was only used to obtain E[ f/(&,)[ u—
£,]1]1 = 0(n — o00). This leads to the obvious next corollary.

COROLLARY 2.4. If, for all f € C3(M1(E)), we have

]E[f/(fn)[/*_fn]]_) 0 (n — 00),
" then
L(€) 28, (n— o).
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We can weaken the assumption of this corollary by observing that to prove
Theorem 2.1 it would have been sufficient to consider only f’s that are solu-
tions of the Stein equation for g € Cf(M1(E)) [or g € C?°(M1(Rk)), if E = R¥).
These solutions have a fairly simple form.

LEMMA 2.5. For every g € Cy(M1(E)) [or g € C¥(M1(R)), if E = RF), the
solution W(g) in the proof of Theorem 2.1 is of the form (2) [or (4), if E =R*].
Furthermore, ||Y/'(g)| < lg']l and |Iy" ()l < l1&"I.

This yields a much more easily applicable version of the w.l.L.n.
COROLLARY 2.6. Assume that for all functions F of the form (2) [or (4), if
E =R*) and for all ¢ € Co(E) [or ¢ € CF(R?), if E =R*] we have
E[F(én) (1~ £, $)] >0 (n— 00).
Then
L(€) 38,  (n—>00).
This corollary follows directly from calculating the derivative of functions F

of the form (2) [or (4), respectively]. To be more concrete, we can use this
corollary to prove the next corollary.

COROLLARY 2.7. Assume that for all i,n € N there is a T"(i) C {1,...,n}\
{i} such that, with T7 (i) ={1,...,n}\ [{{} UT?(i)], we have:

(@) (1/n?) X5, IT5(E)] = 0(n — 00).

(i) For all m € N, f € CP(R™) and ¢1,...,¢m, ¢ € C(E) [or CP(RF),
respectively] we have

1

Lur((2 % sxpoihon(t 3 ox,0m))

i=1 Jjely (@) Jjery (@)
X ($(X:) — (s, ¢>)] 50 (n— o).

Then
L&) B8,  (n— o).

Of course, the above results can be generalized to arrays of random ele-
ments. Let, from now on, (X;,)i=1,.rn)nen be an array of random elements
on E, where r(n) e N and r(n) — oo(n — o0). Put I~Lm =Z2(X,,), i,n eN,

fin = (1/r(n)) L1 pin and suppose
jin=>u (n—o0)foraueMi(E).

The corresponding generalizations then are, with &, = (1/r(n)) Zf(:”l) 80>
given in the next theorem.
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THEOREM 2.8. Suppose the (X;,)i=1,. r(n)nen are independent. Then,
L(£n) S8, (n—> o).

COR]:)LLARY 2.9. Suppose that for every function F of the form (2) [or (4), if
E =R"], .

E[F'(é)[n—£6211-0  (n— o0).
Then

ZL(&n) 28, (n - 00).

COROLLARY 2.10. Assume that for all functions F of the form (2) [or (4), if
E =R*] and for all ¢ € C.(E) [or CP(RF), if E = R*], we have

E[F(én){p— €ny )] >0 (n— 00).
Then

L(€n) B8,  (n— 00).

COROLLARY 2.11. Assume that, for all i,n € N, there is a subset I'?(i) of
{1,...,r(n)}\{i} such that, with T (i) = {1,...,r(n)}\[{i} UT?(i)], we have:

@ 1/(r(n)?) Lr02(0)] — 0(n — o).
(ii) For all m € N,f € CP(R™), 1. .., ¢m, ¢ € Cc(E) [or CP(R?), if E =
R*] we have

1 r(n) 1 1
m ; E[f(<;(;l—5 jGFZ',,',:(i) SXj,n’ ¢1>’ st <;(~’:)" jeé:w(,-) 8Xj,n’ ¢m)>

< <¢<Xi,n)—<u,¢>>]e 0

(n — o0).
Then

The assumptions of Corollary 2.8 are obviously satisfied for strong ¢-mixing
sequences of real random variables. For this case, under some additional as-
sumptions, Rama Krishnaiah [11] proved even a Glivenko—Cantelli theorem.
However, the usefulness of the w.lL.L.n. for other kinds of dependent random
elements will be illustrated in the next section.
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2.8. The rate of convergence. With help of Corollary 2.7, we can give an
estimate on the rate of convergence. Define, for € = C.(E) or € = C?(Rk), if

E = R*, the set of functions

F¢ ={F € C4(My(E)): F has the form F(u) = f({n, $1), .-, (1 Dm))
for an m € N,f € CP(R™) with [|f']| < L[If"ll < 1; and for
¢1,...,(f)m € € with lpill < l,i = 1,...,m}.

Then we can define the following Zolotarev semimetric (see [10]) on

Mi(M.(E)):
fMl(E) fav- /Ml(E) fdn\'

Because % is convergence-determining for vague convergence in M{(M(E)),
we have that (g is a metric on Mi(M(E)) and for all (vi)nen, V€
M (M(E)),

{7 (v,m) =sup
fe%

(e (v, v) >0 (n—>00) = v,=>v (n = o0).

(The converse need not be true, though.) We get, without any independence
assumptions, the following proposition.

PROPOSITION 2.12. (i) For all m € N,f € C*(R™) and ¢1,...,¢m € €,
where € = C.(E) or € = Cg"(Rk), if E= R*, we have

J=1

<D NIk = Bns dj)
Jj=1

m 1 n
+ ||f(j,k)||{ max (4 — fin, 45)° +Var(— 3 ¢>,~<X,-)) }
Jk=1 lsjsm nia
(ii) We have
g.%(/(gn),au.) =< sup |</~"—/-—"na¢)|+ sup (#_ﬁn,¢)2
' Ped,ldll<1 deé,ldll<1
1 n
+ sup Var(-— d)(Xi)).
$et,lldl<1 n ;

Note that, in the i.i.d. case, we get that { g (.£(£,),6,) < 2/n. Thus, we
get the expected order of magnitude.

REMARK 2.13. The method we used can of course also be applied to re-
cover “classical” weak law of large numbers for random variables. Moreover,
the approach also provides a general result for convergence toward the Dirac
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measure; the special structure of the empirical measures is not required. This
(and a more detailed treatment of the above) can be found in Reinert [13].

3. Some examples.

3.1. A dissociated family. Let (Y;);en be a family of independent random
elements on a space 2, let & € N be fixed and set

r={(j1""’jk)€Nk:jr;éjs forr;és},
'™ = {(j1,...,jr) €T: j1,..., jr € {1,...,n}}.

.....

,,,,

1

n(n— 1)~--(n—k+1) Gigoerm

fora uw € M1(E). Let

1

§"=n(n—1)---(n—k+1)

(J15esda) L™

THEOREM 3.1. For the above dissociated family, we have

j(fn) ‘Lf} 8,1. (n e OO).

PROOF. The proof is based on Corollary 2.11. For n € N fixed, the set '™
has n(n —1)---(n — k + 1) elements. Fix a counting for I'™. If (j1,..., jz)
is the ith element, identify (ji,...,J ) with i and set X, ; = X;,. Let
r(n)=n(n-1)---(n—k+1). Then

1 r(n)

that is, £, has the required form for Corollary 2.11. For i = (j1,..., jz), define
@) ={(l,...,0k) e T™: (L, ..., 1Ix) #i;
{li, .. ey g, Jk £}
Then, for all i < r(n),
) IT5 (@) = k[k(n~1)(n-2)---(n—k+1)—1]
< 1(—’2}32

~ n
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and thus the first condition of Corollary 2.11 is satisfied. For the second con-
dition, let d € N be arbitrary, f € C?(Rd), d1y...,Pq, P € C.(E). Then, by the

independence of X; , and X, ;, for ({1,...,1;) € I'%(i), we have
r(n) 1
8x,. ., b1)...,(— 8xX,0»
o L (7 2, O bih 2, e b))

X ($(Xin) — (1, ¢>)]

r(n) 1 1
DL A (E I M B C) SIS |
X E[$(Xin) — (1, $)]

r(n)
= E[f((gn, ¢1),' ) (gn’ ¢d));(n_) Z[(j(Xi,n)’ ¢) - (p‘a ¢)]] + Rla
i=1
where
R1=—1—r(Zn)E[f(<—1— Y bx ¢1> (—1—- Y by m))
r(n) H r(n) &) "l e (n) mels (i) "

(b0, . fn,qsd))]Ew(Xm) )],

Due to the assumption, we only need to show that |Ri| — 0(n — oc). This
follows easily by Taylor’s expansion:

r(n)

Rl < 21911F) up 1611y (1))2 3 12|

-0 (n—>oo),

and by Corollary 2.11 the assertion follows. O

Note that in the exchangeably dissociated case, that is, (Y;); beingi.i.d. and
Yji,..i» =¥ forall (ji,..., jr) €T, the X,  ;’s are identically distributed and

.....

thus the assumption about vague convergence is trivially satisfied.

3.2. An immigration—death process. We consider the following immigration—
death process with total population size n. Let A} be the (positive) arrival
time of the ith individual and Z; its life span, and assume the (Z;);.y are
positive, i.i.d. and independentxpf the (A;‘)i,n oy [but allow for dependence

“between the (A7), ] Suppose:
1. (1/n®) X}, E[I(AT - EA})(A?—EANI] >0  (n— oo).
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2. There is a measure u € M 1(R2) with

—Z./((A” AT+ Z)) S u (n - o0).
Start at time ¢ = 0 and let

X" = (A7, A" + Z;).

Then 6x» can be regarded as a measure on Ri, where the half-open interval
[a,b) C [0, 00) is represented by the point (a,b) € [0,00)% and

6x»([0,2] x [t,00)) = I[A} <t < AT + Z;].
Thus &x» describes the temporal evolution of the ith individual and

1 n
= 2. 8x;
nia
gives the “average” path behavior of the process.

THEOREM 3.2. In the above setting,
ZL(£) B8,  (n— o).
PrOOF. We employ Proposition 2.12. Due to the second assumption, we

only have to show that the variance term tends to 0 as n — oc. We have, for
all ¢ € CP(R?),

Var(l > H(Ar AT+ Zi))
nia

% 3 E{E[($(AL, A7 + Z;) — E(A, AT + Z,))
i,j=1

x (¢(A}, A} + Z)) —Ed(A}, A} + Z))) | Zi, Z;1}

=i2 Xn: { [f(¢(A VAP + Zi) — d(x,x+ Z;))PLA] e dx]

x [(G(A, A7+ 2)) ~ (3, + Z) PLAT e dy] | zi,zj]}.
Hence, using Taylor’s expansion, we get
Var( qu(A" ar+ zi)) < 191 IZIE[I(A” —EA7)(A? —EAM)]]
-0 (n —J;oo). O

As an example, in the following case it is easily checked that the conditions
are satisfied. Let (E7);-1, ., be ii.d. exp(n) random variables and put A} =

.....
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=1 E}. If G is the distribution function of Z1, then the limiting measure u
is such that, for real rectangles,

B2
([ B11, B12) x [Ba1, B22)) = /ﬂ 110,17(2)[G(B22 — x) — G(B21 — x) ] dx.

1

This covers the well-known results for this case; see, for example, Ross [14],
page 214.

4. Proofs.

PROOF OF THEOREM 1.2. Because Mi(E) is compact, by the Stone—
Weierstrass Theorem it is sufficient to show that:

(i) For all u € M1(E), thereis a F € C;(M1(E)) with F(u) # 0.
(ii) For all u,v € M1(E),pn # v, there is a F € C;(M,(E)) with F(u) #
F(v).

For item (i), let w € M1(E) be arbitrary, fixed. Let ¢ € C.(E) be arbitrary,
fixed and set ¢ = (u, @),

0, zg[c—2,c+2],
_Jz—c+2 zele—-2,¢c—1],
fol2) =11 zele—1,c+1],

c+2-—2, zel[e+1,c+2],

f(x)= f fo(2) exp[—(z —2x)2 } dz.
Then fo € C.(R), f € C¥(R) and a simple calculation gives f(c) > 0. Set

F(v)=f((v,¢)), veM(E).

Then F € C;,(M1(E)) and item (i) is satisfied.

For item (ii), let u # v € M (E) be arbitrary, fixed. Because C.(E) is
convergence-determining in M1(E), there is a ¢ € C.(E) with {(u, ¢) # (v, ¢).
Keep this ® and let b = (v,¢),¢c = (n,¢),d = ¢ — b and without loss of
generality assume d > 0. Define

0, z¢[c—d/4,c+d/4],
z—c+d/4, ze[ec—d/4,c—d/8],
’ ZE[C—d/8,0+d/8],
c+d/4-z, ze[c+d/8,c+d/4],

_ 2
f(x)=/f0(z)exp[—(z 2’“) ]dz.

Then fo € C.(R), f € C*(R) and f(c) — f(b) > 0. Set
Fv)=f(v,9)), veMi(E).
Then F € C;(M1(E)) and item (ii) is satisfied. O

fo(2) =

—
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PROOF OF COROLLARY 1.3. From the proof of Theorem 1.2, Corollary 1.3 is
immediate, if it is shown that Lemma 4.1 holds.

LEMMA 4.1. For each k € N, C3*(M 1(R?)) is convergence-determining for
the vague convergence in M1(R¥).

PROOF. The proof follows the lines of Pollard [9], pages 48—49, where it is
shown for probability measures. As [9], the following is easily seen to be true:

Let (¢)nen, v, u € M1(R*) with w(R*) = 1, define for all o > 0, A € B(R*),
the measure u,(A) = u(cA), and assume

Vn*ﬂu'—_igv*,u'a' (n - o0)
for all o > 0. Then

v, = v (n — o0).

Take u = #(0,1). Then for all fo € C.(R) and o > 0, we have for all
n € M1(R¥),

(% po)(fo) = / fo(x)n(dx),

where

fo(x) = 2mo?) 2 [ fo(z)eXpI—(z ‘2’“)2 } d.

Thus, if we have v,(f,) — v(fs)(n — oo) for all f, as above, then, for all
fo € Cc(R),

vn* wo(fo) = v* us(fo)  (n— 00)
and hence

Vp = v (n — 00). O
PROOF OF LEMMA 2.6. Recall from the proof of Theorem 2.1 that
o0
W) =~ [ Tule) - g(w) du

exists. If G € Cy(M1(E)) is of the form G(v) = f((v, b1),..., (v, dm)) for an
meN, f € CP(R™), ¢1,...,¢n € €, we furthermore have

HE) = [TTF( = we™ 4 il (= I+ s )
- f((/“"r ¢1>1‘ cey (/'L’ ¢m))]du
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Put
hA(x1,...,%m)
= /Ooo[f(e"‘m +(1—e ) u,d1),..., e %m + (1 — 7)1, $m))
= fUp, d1),. ., (1, dm)) 1 du.
Then
P(G)(v) = h((v, d1),..., (v, dm)).

It remains to show that A € C°(R™), but this is easily done via Taylor’s
expansion and the theorem of dominated convergence. O

PROOF OF COROLLARY 2.7. In view of Corollary 2.6, it suffices to prove
E(#f)(én) >0  (n—> o0)
for all f of the form (4), ¢ € C.(E). For such f and ¢, we have
12 1
BLF (6= 6 )] =5 SB[ F(5 T 0, )u x|+ Ra,
i=1 Jery @)
where R1 = E[(f(£,) — F((1/n) Xjerni) 0x,;)) {1 — €ns #)], and from the as-

sumption it follows that

e (7 X ox)w-sxaa]| >0 (o o0

i=1 jeln (i)

Finally, by Taylor’s expansion and the form of f,

1 n
Ril = 230001 3 38| 2o, du)is - 03,0
izl jelr (i) I=1
< 2mID/) sup 14115 2 ITHG)

+ 1<l<m
-0 (n - o)

due to the assumption. O

PROOF OF THEOREM 2.8. We can do exactly the same heuristic considera-
tions as for Theorem 2.1; so, we obtain the same generator &/. Because the
Stein equation has already been solved in the proof of Theorem 2.1, it is suffi-
cient to show that for all f € CIZ,(MI(E)), we have E(&7 f)(&,) — 0(n — o00).
Similarly to the proof of Theorem 2.1, we have

B = s B[ (s T o )= ox |+ R

J#L
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where
r(n)
! n) — ! o —6x; ’ 5
Ri= oy 2 (160 1 (g Do) o = 03,01
thus, due to the independence and Lemma 2.3,

E(o/ f)(£n) = Rl+—r‘(f [ ( = x,n)m um,¢>]'

J#i
=R+ ]E[f/(gn)(ﬂ — Mn, ¢)]+ Ro,

where

Ra= o (i L 0x) = FEn) )t i )|

As ji, = u(n — 00), we have E[f/(£&,) (s — fin, )] — O(n — o0) by the same
argument as before, and, again with Taylor’s expansion,

|R1|,|R2| < -—K— for a constant K > 0
r(n)

-0 (n — o0)

by assumption. O

Corollaries 2.9 and 2.11 can be proven in exactly the same way as Corol-
laries 2.6 and 2.7, respectively, so we skip the proofs.

PROOF OF PROPOSITION 2.12. For the first part, observe that

j=i ,

m
j=1
where, by Taylor’s expansion,

Jyk=1

X (= &n, D) — &n, dr)l]
Z "f(]k)” max ]E[ (1= &n, $5)%].

jkl
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Furthermore, forall1 < j < m,

EL(i — £ny 6121 = (1 — fin, )2 +Var<% id’j(Xi))
i=1

With Lemma 2.3, we hence get

m

J=1

< Y NFGH Ik = fn, &)1
j=1

1 n
+ 32 1l max s = o 2 + Var(3 305020 ) |
=J=m i=1

m
Jk=1

This proves item (i). Item (ii) follows immediately, employing the Stein equa-
tion and Lemma 2.6. O
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