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IMPROVED UPPER BOUNDS FOR THE CONTACT
PROCESS CRITICAL VALUE!

By TrOMAS M. LIGGETT
University of California, Los Angeles

The best known upper bound for the critical value A, of the basic one
dimensional contact process is 2. Most techniques for finding bounds on
critical values have the property that they can be modified in order to
obtain improved bounds. This seemed not to be the case for the approach
which yielded A, < 2 for the basic contact process. In this paper, we
propose a technique for generating better bounds in this context. To
illustrate its use, we carry out the full program in one case, with the
conclusion that A, < 1.942.

1. Introduction. The basic one dimensional contact process is the
Markov process on {0, 1}? in which a one flips to zero at rate 1 and a zero flips
to one at rate

A(# neighbors with value one).

As is well known, there is a critical value A, with the property that the
process dies out for A < A, and survives for A > A,. The best known bounds
for the critical value are 1.539 < A, < 2. For these and other facts, see
Chapter 6 of Liggett (1985) and Bezuidenhout and Grimmett (1990).

We have nothing to say about the lower bound, except to mention that it is
the fourteenth member of a sequence of lower bounds which is known to
converge to A,. [See Grillenberger and Ziezold (1988).] The technique used in
Holley and Liggett (1978) to obtain the upper bound, on the other hand, has
not previously led to a similar sequence of upper bounds. The purpose of this
paper is to propose a technique to generate improved bounds.

One might reasonably ask why it is important to obtain improved upper
bounds, particularly since the bound 2 seems to be quite good, and the
arguments needed to obtain the improvements are not simple. There are two
answers one can give. The first is that it is intellectually unsatisfying to have
a technique which produces an upper bound, however good, but does not yield
to improvement. The second is perhaps more convincing: There are applica-
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698 T. LIGGETT

tions in which a certain degree of precision in the bound is essential. We
quote three examples:

1. In a recent paper, Liggett (1994) proved a complete result (in the sense of
covering all cases) concerning the coexistence of threshold voter models.
The proof is based on the fact that a nonnearest neighbor variant of the
basic contact process survives for A = 1. That fact is proved by the
Holley-Liggett technique, which in that context, appears to work down to
about A = 0.985. It is simply a matter of luck that 0.985 < 1. If that had
not been the case, it would have been necessary to extend this technique
along the lines of the present paper to obtain better upper bounds for the
critical value.

2. Pemantle (1992) proved that there are three different types of limiting
behavior for the contact process on large enough trees. Two of these are
the familiar ones (extinction and survival in a strong sense) for the contact
process on Z%. The third, which is absent on Z4, is that in which the finite
process survives globally with positive probability, but dies out locally. His
proof that this behavior actually occurs for some range of parameter
values is based on finding upper and lower bounds on two natural critical
values. These bounds must be good enough to separate the critical values.
For the homogeneous tree in which each vertex has n + 1 neighbors, his
first bounds are good enough to separate if n > 5. He then improved the

" bounds in such a way as to cover the cases n = 3, 4. The case n = 2 is still
open.

3. A third example in which precise bounds are essential appeared recently
in a somewhat different context. Hara and Slade (1992) proved that the
self-avoiding walk has mean field behavior in five or more dimensions.
Their proof requires good bounds on the connective constant for the
self-avoiding walk. The previously known bounds sufficed for their applica-
tion in high enough dimensions. For lower dimensions, however, they
needed improved bounds. The best form of these appears in Hara, Slade
and Sokal (1993).

We begin by giving a short summary of the Holley-Liggett technique. Let
v, be the distribution of the one dimensional contact process at time ¢ when
the initial distribution is v. The idea is to choose a nontrivial v in such a way
that v, increases in ¢. If this is possible, then the process survives. It turns
out that the word “increases” in the next to last sentence should not be taken
in the sense of stochastic monotonicity, but rather in the sense that

v{n:m(k) =0forall k € A} lin ¢
for all finite subsets A of Z. This is a weaker concept of monotonicity, and

therefore one that is, in principle, easier to prove. Duality implies that in
order to have this monotonicity for all ¢, it is enough to have

t=0
for all finite A. The problem is reduced to making a good choice of » and
verifying (1.1). Holley and Liggett took v to be the renewal measure which

o d
(1.1) -‘Evt{n: n(k) =0forallk € A} <0
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satisfies (1.1) with equality for all intervals A. It turns out that such a
renewal measure exists if and only if A > 2. For the details of the proof, see
Section 1 of Chapter 6, Liggett (1985). This approach has been used in
various other contexts; see the paper by Katori and Kono (1993) and those by
Liggett [(1991a, b), (1992), (1994)], for example. In each case, the initial
measure v was a (possibly inhomogeneous) renewal measure. :

The first difficulty one encounters in trying to extend this technique to
obtain better upper bounds is to find an appropriate generalization of a
renewal measure. There are many one might try, but it is important to find
the right one, so that all the necessary computations can be performed, and
the correct inequalities hold. The choice we will make is obtained by using a
variant of the Gibbs formalism to describe probability measures on {0, 1}%.
Write v formally as

(1.2) v{n} = constant X exp( Y JA),

n=00n A

where the constant is chosen to make this a probability measure and {/,} is a
reasonable collection of constants indexed by the finite subsets A of Z and
satisfies J, , = J, for all A and k. This is only formal because the sum

_which appears in (1.2) is, in general, infinite. To see the connection with the
usual definition of Gibbs states in statistical mechanics, one should compare
(1.2) with (1.4) of Chapter 4 of Liggett (1985) and note that the main
difference is that we are replacing the basis elements y, which are natural
in the Gibbs context by

1(1): n=0on A}’

which are more natural for the contact process. For example, this is the
duality function which is used to express contact process duality; see Section
4 of Chapter 3, of Liggett (1985).

In making (1.2) precise, one could follow the example provided by the
Gibbs states. Since it is hot too easy to compute probabilities from (1.2), it is
better to use the formal expression (1.2) to motivate a precise definition which
is formulated in a manner similar to the one used to define renewal mea-
sures. This will be done in Section 2. We will see there that the v defined
formally by (1.2) is a renewal measure if and only if J, = O for all A other
than intervals. Therefore, it is natural to define the n-perturbations of
renewal measures as those v which are given formally by (1.2) with J, =0
for all A other than intervals and sets of diameter less than or equal to n. Let
M, be the class of such measures. We then define

A, = inf{A: there exists a v e'Mn which satisfies (1.1) with equality for

n

all A which are intervals or have diameter less than or equal to n}.

M, is the class of renewal measures and A, = 2 is the Holley-Liggett bound.
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Section 3 is devoted to the problem of solving (1.1) with equality for the
appropriate A’s. In particular, we compute A, = 1.941227..., the largest root
of the polynomial

40 — A2 —2A + 1.

In order to compute A,, one must solve a large but finite number of nonlinear
equations and then prove the existence (and monotonicity) of a solution of a
one (discrete) parameter convolution equation. In order to avoid excessively
complicated expressions, we will prove this existence and carry out the proof
of the inequalities (1.1) only in the case n = 2. We do solve the finite set of
equations (with the help of Mathematica) in case n = 3, however, to see what
bound this technique would generate at that stage. They can be solved for
A = 1.89349..., but not for slightly smaller A, so that one should expect that
A; = 1.89349... . Section 4 is devoted to proving (1.1) in case n =2, A >
1.941227..., thus obtaining the following theorem.

THEOREM 1.3. A, < 1.941227....

In the final section, we prove some inequalities which are needed in
Section 4.

There are two problems which we have left open. First, it is natural to
expect that A, < A, for every n. We have proved this for n = 2, but without a
substantial simplification in our proof, it is not clear how to proceed in the
general case. Second, it would not be surprising if A, | A,. We do not know
how to prove this.

2. Perturbations of renewal measures. Our first task is to use the
formal expression (1.2) to suggest a precise definition for the elements of M,,.
We assume that v is defined formally by (1.2), where J, = 0 for all A other
than intervals and sets of diameter less than or equal to n. (By the diameter
of A, we mean the difference of the largest and smallest elements of A.) In
the following, equalities involving »{n}’s are to be interpreted as those which
are obtained by canceling the (infinite) sums of J,’s which are common to the
v{ny’s which appear in these equalities. For any configuration 7, let 7, be the
configuration which satisfies 71,(j) = n(j) for j # & and n,(k) = 1 — n(k).
Note that

v{n}  v{n}

v{{} v{ )
whenever n(1) = 1, n(j) = ¢(j) for all j <1 and [ — k > n. Therefore, under
v, the conditional distribution of {n(j), j > [} given n(I) = 1 and {n(j), j <}
depends only on {n(j), I — n <j < }. Using renewal measures as a model,
this suggests that we define the conditional densities of the spacings between
_ successive ones by

oogren {B) = V{0l +R) =1,n(j) =0V I<j<l+EkIn(l)=1,
n(l —Jj) =sjV13j<n}.
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These conditional densities are not arbitrary. They satisfy some relations as a
consequence of v € M,. Next we will find these relations.

Take 0 <l <n—1and k>n — I For 1 <i <n, take ¢, §; € {0,1} with
8, = &, for 1 <i < l. Consider two configurations n and ¢ which satisfy

n(0) = {(0) = (k) = {(k) =1,
n(i)=e,, ({E)=6_;, n<i<O,
(i) =¢() =0, 1<i<k,
and (i) = {(i) otherwise. Define n* by
n*(i) = (i), i<k,
n*(k) =0,
n*(i) =n(i—-1), i>k,

and define ¢ * in terms of { in an analogous way. By canceling J,’s in (1.2), it
is not hard to see that

v{n*}  v{n)

vy vy’
so that

v{in*}  »{{"})

vin)  w{¢}
Therefore,

fel,sz ..... an_,l(k + 1)f81,82 ..... Bn_l(k) =fsl,sz ..... s,,_l(k)fal,az ..... 6n_1(k + 1)

whenever k£ + 1 > n and &; = §; for 1 <i <. Equivalently, there is a func-
tion a on {0,1}*~! so that

(2.1)

.....

whenever k + Il >nand ¢, = §; for 1 <i <l.

As a check, we now compute the number of free parameters, both in (1.2)
when the parameters are the J,’s and in (2.1) when the parameters are taken
to be the o’s and f’s. In the case of the J,’s, there is a one parameter family
corresponding to the intervals and an additional 2" — n — 1 parameters
corresponding to sets of diameter less than or equal to n which are not
intervals. In the case of the a’s and /s, there is the one parameter family
fi1,..1(), 2" 1 — 1 free a parameters (since one of the a’s is arbitrary) and
27~1 — n other f’s, which can be taken to be the f, . (&), where2 <k <
n—1and ¢,...,6,_, arenotallland &, ,,; = - =¢,_; =1
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In order to compute probabilities for v, we need more than just the
conditional spacing densities f, , . (k)—we need to have some (uncon-
ditional) cylinder probabilities. It will be convenient to use the notation

v(E1,80,e-r8m) =V(nin(k+1) =&p,...,m(k + m) = &,)}
for such probabilities and use the tail probabilities

B ononAR) = _Zkfel,sz,...,en_l(j)-
=

Then (2.1) implies
Fel,a‘g,...,sn_l(k) _ (&1, 895005 En-1)

Esl,.sz,...,.s,,_l(k) a(8y,8:,...,8,_1)

whenever k + [ >nand ¢;=§; for1 <i <.
Now we can take 2 <k <n and ¢ €{0,1} for 1 <i < n — k& and compute
the following relations among cylinder probabilities on n sites:

v(&1y.eesEp_p»1,0,...,0)

(2.2)

= Y V(81yeees Oh_1sE1reeer En_pr1,0,...,0)
84y, 8,_1€{0,1}
= Z V(al""’ak—l’81""’sn—k’I)Een_,,,...,el,Sk_l,...,al(k)'

) 81,...,8,_1€{0,1}
Using (2.2), it follows that
a(&,_pre-r&151,...,1)v(&y,...,8,4,1,0,...,0)

(2'3) =Fs,,_k,...,sl,1,...,1(k) Z a(sn—k""’gl’ak_l’”.’al)
81,...,3],_16(0,1)

XV(81yeeey 815 €10 En_pr1).
To determine the cylinder probabilities for n consecutive sites of a shift
invariant measure, one must determine 2"~ ! quantities [e.g., the quantities

v(ey,..., &,_;,1) for arbitrary choices of the &’s]. There are 2"~ ! — 1 equa-
tions of form (2.3). Therefore, one further equation is needed. It is provided by

1=w»(1,1) + 2v(1,0,1) + 3v(1,0,0,1) + -
24 d
(24) =Y wen ) D E . (B),
&1, 8,_1€(0,1} k=1

which requires that the conditional spacing densities have a finite mean.
Therefore, an n-perturbation of a renewal measure v is parametrized by a
decreasing summable sequence
F(k) =Fy,  (k), .
a collection
a(ey, 89,005 £p-1)
"(this is 2"~ ! — 1 parameters because only ratios of a’s are relevant) and a
" collection of numbers
Fl;l,...,a,;_l(k)’
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where2 <k <n —1land &,,...,¢6,_, arenotalll,and ¢,_,., = - =¢,_;
= 1 which are decreasing in £ for all &’s. The corresponding measure v is
defined by (2.3), (2.4) and the fact that the conditional distributions of the
spacings are given by the F,  _ (k)’s defined by (2.2).

3. The equations. In this section, we consider the problem of finding an
n-perturbation of a renewal measure which satisfies (1.1) with equality for all
A which are intervals or have diameter less than or equal to n. These
equations for all A which have diameter less than or equal to n are
equivalent to

d
(3.1) avt(e‘l,...,aﬂH) ) =0
for all choices of ¢4,..., &,,, € {0, 1}. The equation for A which is an interval
of diameter £ — 1 is equivalent to
k
(3.2) Y »(0,...,0,1,0,...,0) = 2A¢(1,0,...,0),
j=1

where the cylinder probabilities on the left are on k& consecutive sites, with
the 1 appearing at the jth of these, and the cylinder probability on the right
is on k& + 1 consecutive sites.
In order to write (8.2) in a more useful form, take 1 <j < n and 2 > n and
write the following k-site cylinder probability in which the 1 is in the jth site:
v(0,...,0,1,0,...,0)
= Yy v(8y,...,8,_;,0,...,0,1)F, 0,801 s(k—J+1)
81,0, 8,_;€{0,1}
=F0,...-,0,1 ..... 1(k—j+1)
(33)  a(0,...,0,1,...,1) ,

Y (81,01 8,_;,0,...,0,1)
Treees an_je(O,l)

X «(0,...,0,8,_;,...,8;)
Fy o1k —j+1)(0,...,0,1,0,...,0)
F .. 0,1;“.,1(n -Jj+1)

.....

In (3.3), all cylinder probabilities except the first are on n sites and the
subscript on the F(k — j + 1) has j — 1 initial 0’s. The second equality is a
consequence of (2.2), while the third comes from (2.3). In particular, if j = 1,
(3.3) becomes

F(k)v(1,0,...,0)
A4 1,0,...,0) =
(34) ¥(1,0,...,0) o)

fo;‘ k > n, where the cylinder probability on the left is on % sites and the one
on the right is on n sites. Using (3.4) and (2.2), we have also that for j > n
and k£ —j + 1 > n, the k-site cylinder probability in which the 1 appears at
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the jth site can be written as
v(0,...,0,1,0,...,0)
(3.5) a(0,...,0) F(j)»(1,0,...,0)
=F(k—-j+1
(k=i+DoE 0 F(n) ’
where the cylinder probability on the right is on n sites.

We turn now to obtaining a better form for (3.2). Take 2 > n and use (3.3)
and (8.5) to reexpress (3.2) as

nil v(0 0,1,0 0) Fy . 01,.1(k—j+1)
Jj=1 ? » U, 1, U, ’ F0 ..... 01,..., 1(n —j+ 1)

X[1<wrnyz + Ly<nm)

(3.6) ) . v(1,0,...,0) «(0,...,0)
R VA C el L) ey e SRS

n<j<k-n+1

F(k + 1)v(1,0,...,0) -
F(n) '
All cylinder probabilities appearing in (8.6) are on n sites, and the first one

has the 1 at the jth site. The subscripts on the F’s have j — 1 zeros and n — j
“ones.

Next, we will find a necessary condition for (3.6) to have a bounded
solution for F(.) if (2.2), (2.3), (2.4) and (3.1) are satisfied. Suppose that these
equations all have solutions, multiply (8.6) by x**! and sum (3.6) for & > n.
Let

M=Y F(k)x*,

k=n
which is finite for |x| < 1 by (2.4). The result is that M satisfies the following
quadratic equation:

v(1,0,...,0)(0,...,0)
F(n)a(l,...,1)
»(1,0,...,0)
__7(_71_)__
(3.7) _nz—:1 y(O,...,0,1,0,...,0).a(0,...,0,1,...,1)xjM
Fo o01,..1(n—-j+1ea(l,...,1)

2

=

j=1
+2A2(1,0,...,0)x"
Fo ..... 0,1,..., l(k_j+l)V(O,...,O,].,O,...,O)
" t o F —i+1
- 0,....01,.,1(n—Jj+1)

1<j<n<k<n+j-1

X[Ljckrnyn T Lisn/m] =0
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Therefore, the discriminant of this quadratic is nonnegative for every |x| < 1.
This is the necessary condition we were looking for. We will call it condition
C(n). If the discriminant is strictly positive for all these x’s, we will say that

strict C(n) holds.
Next, we will carry out the computatlons for several values of n in order to

see when C(n) holds:
n = 1. After canceling a factor of v(1), (3.7) becomes

M? - 2\M + 2\x =0,

so condition C(1) becomes A > 2.
n = 2. After canceling a factor of v(1,0) and multiplying by F(2), (3.7)
becomes
a(0)

a(1)
Equation (3.2) with £ = 1 gives
v(1,1) = (22 - 1)»(1,0)

M?—2(A—x)M + 2)AF(2)x2=0

and with 2 = 2 gives
a(1)v(1,0) = AF(3)[a(0)»(0,1) + a(1)»(1,1)].
Equation (2.3) with 2 = 2 gives
a(1)v(1,0) = F(2)[a(0)»(0,1) + a(1)»(1,1)].
Finally, (3.1) for the cylinder set (0, 1, 0) gives
2a(1) + 2Aa(0)F(3) = (3 + 40) a(0)F(2).

These four equations can be solved to give

v(1,1) a(0) 4r-2
=2A-1, = ,
v(1,0) a(l) 4r-1
42 -1 42 -1
F(2) = and F(3) =

(4r + 1)(2r - 1) MAr+1)(2A-1)

Therefore, condition C(2) becomes

(A=) =z
for all |x| < 1 or, equivalently
A > (the largest zero of 4% — 7TA% — 21 + 1) = 1.941227... .
n = 3. After multiplying by F(3) and dividing by »(1, 0, 0), (3.7) becomes

«(0,0) §(0,1,0) F(3) a(0.1)
20 T T 00,0 R eyt M
(3.8) :
‘ v(0,1,0)
+-2AFK3)x34-————————FX3) 4=

¥(1,0,0)
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To compute the values of the unknowns which appear in this expression, we
(with the help of Mathematica) solve 10 equations in 10 unknowns. The
equations are (3.2) with £ =1,2,3, (2.3) with 2 =2 and ¢, =0, 2 = 2 and
&, =1, k = 3, and (3.1) for the cylinder sets (0, 1, 0), (0,0, 1,0), (0, 1,0,0) and
(0,1, 1,0). The solution can be expressed in terms of A = AF(4) /F(3) which is
a zero of the polynomial

[A(3 + 41) — (3 + 6A)][2A*(3 + 4A) — h3(27 + 421 + 122 + 161°)

+h%(45 + 781 + 4017 + 6813 + 321%)

—h(33 + 621 + 43X + 8813 + 64A%)
+3(1+ A)(3 + 31 + 222 + 102%)].

(3.9)

The solution is then given by

v(1,1,1) 1+A-2%—h
J(1,1,0) 2 2—a+2h
v(1,1,0) 2+ Ar-2h
»(0,1,0) 2(k-1)
v(1,0,1)
v(1,0,0)

(2+A—=2R)(-1-21—A2+h +2Ah)

=A-1,

F —3
@) 1+ A+ 2A2+228 20 —h(2+ A+ A%) + A%’
3+ 31— h(3+21)
Fo(2) = AA - 1) ’
—3(1+ A)%(21 + 1) + h(6 + 221 + 23A% + 423)
—h%(2) + 1)(41 + 3)
F(3) =

1+ A2 4+ 23+ 201 — 225 — AR(2 + A + A%) + AR?
and

@(0,0) (A —1)(=3~51+h(3+42))

a(0,1) 3+31—h(3+2A) ’

a(1,0) (Ar+1)(h—-1)(-1—-A+ A2 +h)

a(1,1) (=2 -A+2R)(—-1-21-A%) +Rh(1+2))°

@(0,1) (=3 -31+h(3+22))

a(1,1)  2(A—-1)A(h - 1)

(-3 - 5A +h(B+40))((1+2-22)(22% +1)

: —h(2+ A+ 2%) +A?)

3(A + 1)%(2A + 1) — k(6 + 221 + 23A% + 42%)
. +h%(1 + 2))(3 + 41)
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Using these expressions, we see that the nonnegativity of the discriminant of
(3.8) is equivalent to
0<A?—2Ax + (7 + 101 — 6k — 8Ah) x?
(3.10) (3 + 51 — 3h — 4AR)(1 + 50 — A — 4Ah)
A— AR

To find the smallest value of A for which this holds for all |x| < 1, solve the
equation obtained from (8.10) by replacing < with = and x by 1 for 4 in
terms of A and put the result in (3.9). Except for factors which are nonzero for
positive A, the resulting polynomial is the product of
9024\ + 158420110 — 48481° — 423864\ — 3801447
(3.11) — 380561° + 86708)° + 32667A* — 22163
— 2142)2% — 1801 + 39

and
212 — 12 + 3.

According to Mathematica, the largest root of (3.11) is A = 1.89349... . For
this value of A, the values of the other variables are (to the accuracy given)
h = 1.21798,

F(2) = 0.279018, F,,(2) = 0.244753,
F(3) = 0.149839, F(4) = 0.0963829,

v(1,1,1) 2.62059 v(1,1,0) 3.34331
v(1,1,0) * »(0,1,0) ’
(3.12)

v(1,0,1) 0.893493 «(0,0) 0.887718
v(1,0,0) © w(0,1) ’

a(0,1) a(1,0)
= 0.814073, = 0.963413.

a(1,1)y a(1,1)

To the given degree of accuracy, the right side of (3.10) is then
3.58531 — 3.78699x + 0.177196x2 + 0.0244748x3,

which is nonnegative for |x| < 1. Therefore, C(3) is satisfied for A =
1.89349... . Setting the second factor in (3.9) equal to 0, we have an implicit
definition of 4 as a function of A near (A, ) = (1.21798...,1.89349...). The
derivative A'(A) = 0.0160094 ... at this point and one can then compute the
derivative of the right side of (8.10) with x = 1 at this point. This derivative
turns out to be strictly positive. Therefore we conclude that strict C(3) is
satisfied for A just to the nght of 1.89349..., while C(8) is not satisfied for A
just to the left of 1.89349..
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At this point and for the remainder of the paper, we restrict our attention
to the case n = 2. First, we will show that C(2) is sufficient for (3.6) to have a
decreasing summable solution F(-). Let @ = a(0)/a(1) and write (3.6) as

k-1
(8.13) 2F(k)+a ) F(j)F(E+1—j)=2AF(k+1), k=2

j=2
Let f(k) =F(k) — F(k + 1). In order to write (38.13) as equations for f,
subtract (3.13) for £ + 1 from (3.13) for %, obtaining

k-1
(3.14) 2f(k) + ajg.zF(J)f(k +1-j)
— aF(2)F(k) = 2Af(k +1), k=2

Performing the same subtraction on (3.14) and then replacing 2 by & — 1, we
obtain

k-2
(3.15a) 2[1 - aF(2)]f(k - 1) + aj§2 ) (R —J) +2Af(k + 1)

=(2+2)N)f(k), k= 3.
The corresponding equation for 2 = 2 is
(8.15b) [1 - aF(2)]F(1) + 2A£(8) = (2 + 21 f(2).

[This can be obtained from (3.14) with %2 = 2, using the known values of
a, F(2), F(3).] Note that (3.15) can be solved recursively for f(k), & > 3, and
the solution is unique. The values of f(1) and f(2) were determined earlier.
The problem is to show that this solution is nonnegative and sums (for 2 > 1)
to 1.

We begin by defining the generating function

(3.16) d(x) = ki F(k)x*.
=1

Multiplying (3.13) by x*, summing by 2 > 2 and using the value of F(2) leads
to a quadratic equation for ¢ whose solution is given by

x2

2x
a[¢(x)—x]=A—x—A‘/1—T+m.

Note that the quantity in the square root is nonnegative for all |x| < 1 if and
only if A > 1.941227..., which we assume from now on. Factor the quadratic

in the square root as

2x - x?

' A A1+ 4))
with b < a. For the range of \’s we are considering, a, b € (0,1] (e.g., if
A=1941227..., a =1, b = 0.03027...). Now use the expansion for the

N 1- =(1-ax)(1-bx),
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square root

(3.17) Vi-t=1-2Y% v

to write an expansion for ¢. Equating coefficients with (3.16) leads to the
following expression for F(m) for m > 2:

aF(m) = ZAg%[(%)m + (%)m]
—a ¥ (27 - 2)! (2k—2)!(a)j(b)k'

jrhem MG = DI R(E -1 4
J,k>1

This can be written more simply in terms of the sequence

(2m - 2)! (a)’"‘

ml(m — 1)1\ 4

[Compare with (1.18) of Chapter 6, of Liggett (1985).] We get

H(m) =

2A
F(m) = TH(m)

(3.18) n H(j)H(k) b
X 1+(b/a) —2j+k2=m—7:[(—mj—(b/a) .
Jy k=1
Put
_gim 20 _2A 5 LA D A
(8.19) ¢ = ”lll_l)no° Hom) ~ a [1 2k§1H(k)(az) ]_ o

We need an estimate on the rate of convergence in this limit. To obtain it,
write

_F(m)] 2maf m1 b *TH(m — k) _ _k]
|- ] - [QEIH(“(a) THm)

£ (] (3]

Since H(m)a™™ is decreasing, the terms in the first sum above are nonnega-
tive. To get a lower bound, we may then neglect the first sum and replace
H(k)a™® by 1 in the second sum, obtaining

- fm] iy

a
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For the upper bound, begin with the simple inequality
2m 2m — 1\%/?
2m — 3 S(2m—3) . m>1
which implies that H(m)a ™(2m — 1)3/2 is increasing. Using this and the
fact that (1 + x)%/2 < 1 + 2x for 0 < x < 1, we see that
H(m - k) L " 4k

Hm) ¢ =% Zm-2k-1

Therefore,

F(m) 4rm b \* 4k
m[c~H(m) o 1sk§m/2H(k)(?) 2m - 2k — 1
4rm H(k)H(m - k) (f’_)k

' H(m)

a

m>k>m/2 a

IA

16A = b\*
Y H(R k| —
= T HH )
4rm ( b )'"/2 m-1 H(k)H(m — k)
+ PRNSEDENN,
k=1 H(m)
4rb 4rm ( b )'"/ 2
+ - .

aya(a - b) a
The first part of the last equality comes from differentiating (3.17) and the

second part can be proved by generating functions. By explicit computation of
a, b, it is easy to check that

a a

a

3.20 b .

. - < —.
( ) a 16A
Using this, we see that

‘T Hm)|= 2

1 F(m)] 1
—’]BSm < —

for m > 4.
Now put A(m) = H(m) — H(m + 1), which is easily seen to be nonnega-
tive. Then

h(m) 2m -1 3
—~=1-a >
H(m) 2m+2  2m +2
and hence
X B H(m) H(m+1)
- f(m) = ch(m) = == = 15tm + 1)
(3.21)

m+1

hmfe- 2252 - ]
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for m > 4. Since h(m) is nonnegative, it follows that f(m) is nonnegative for
m = 4. The nonnegativity of the first few values of f can be checked directly:

_ 2M4r-3) (A—1)(4r - 1)
== nm+y’ &= om0’
(-1 -4 1) (4r — 1)(5A%2 — 61 — 1)

f(3) » f(4) =

A2(2A — 1)(4r + 1)° A3(2A — 1)(4r + 1)°

In Section 5, we will also need an upper bound similar to (3.21), which is
derived in a similar way:

(3.22) f(m) < h(m)[c + -‘%4-], m > 4.

4, The inequalities. The purpose of this section is to show that the
inequalities (1.1) are satisfied by the v € M, corresponding to the f(-) deter-
mined by (3.15). Fix a finite subset A of Z and define functions L and R on Z
by the conditional probabilities

L(k) = v{n=00n A N (~w,k) | (k) = n(k +1) = 1},
R(k) =v{n=0o0on AN (k,») | n(k) =n(k—1) =1}.
We will also need the conditional probabilities in which the conditioning is on
n(k £ 1) = 0 instead of 1:
Ly(k) = v{n=00n AN (-,k) | n(k) =1,7n(k+1) =0},
Ry(k) =v{n=00on AN (k,») | n(k) =1,n(k —1) =0}.
These can be written in terms of L and R by breaking up the relevant

probability according to the value of the first I at which n(I) = 1. For
example,

Lo(k) = fo(1)L(k — 1)1y 14 + l :E,_lfo(k —-DLy(1),
lgA

L(k) =f(D)L(k = 1)l 14+ z ‘k;,_lf(k = 1) Lo(1).
I£A

(4.1)

Since fo(1) =1 — aF(2) and fy(k) = af(k) for k > 2, one can eliminate the
sum from the two expressions in (4.1), obtaining

(42) Lo(k) = aL(k) + (1 — a)L(k — 1)14_y¢ 4
Similarly,

(4.3) Ry(k) = aR(k) + (1 — a)R(k + Dlgsiea:
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Next, we evaluate the expressions which appear when the derivative on
the left (1.1) is computed. The positive terms in the derivative are

2 v{n(k) =1,1=00n A\ {k}}

k€A
(4.4) j<§<ly{n(j) =n(k)=n()=1,1n=0
jl,zfé?q

on(AN(—x,7)) U(j,k)U (k1)U (AN(Lx))}.
Breaking up this sum according to whether £ —j = 1, [ — £ = 1, neither or
both, and using the “renewal-like” property of v, we see that except for a
factor of

v(1)[1 - aF(2)]
1+(1-a)F(2)’
the right side of (4.4) can be written as
1)y X  Lk-1R(k+1)
h-1k 1A
+ \ ; . f(l = k)L(k — 1)Ro(1)
r 5 Tea
(4.5) + X f(k—J)Ly(J)R(k +1)
J+1<k
jhiiea

— E—)DF(L—k)L,(j)Ry(1).
TTaR @) =, B DR L()Eo(D)
j{afeéa

Using (4.1), the third term above can be written as
Y, L(E)R(E+ 1) —f(1) Y L(kE - 1)R(k +1).
k€A . k€A
k+1¢A k—1,k+1¢A
Similarly, the second term in (4.5) can be written as
Y, L(k-1)R(k) -f(1) Y L(k - 1)R(k+1).
k€A k€A
E-1¢A E-1,E+1¢A
Using (3.15a), the last term in (4.5) can be written as
o L Lo(DR(D[(X+ M) F(L-))
1— aF(2) ey O( 0( [( ) (
J,lEA

(46) ML=+ 1) - [1— «F(@)] (I —j - 1)]
- T f(k =D)L= k) Lo(j) Ro(D).

1-aF(2) J¥l<k<l-1
k,j,leA
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Note that each of the sums above is trivially divergent; the meaning of the
difference of the sums is the difference after identical summands are can-
celed. Using (4.1), half of the first term in (4.6) can be written as

1
s [IZRo(l)L(l)—f(l) Y Ry(I)L(I- 1)

1-aF(2) zA 1-1,l¢A

~f2) L Ro(DL(L-2) —f(3) X Ro(l)Lo(l—zs)]

1-2,l¢A 1-3,l1¢A

-m[éfeo(z)w +1) = (1) T Ro(L(D)

—f(2) X Ro(})Lo(I-1)

iI-1,l¢A

~f(3) L Ro(DLo(I-2) —f(4) ¥ Ro(l)Lo(l—?»)]

1-2,l¢A -3,l¢A

— L R(DL(I-1) +f(1) ¥ Ro(I)L(I-2)

leA 1-2,1¢A
+1(2) X Ro(})Le(l - 3).
1-3,l¢A
Using (4.2) and (4.3), this can be written in terms of the L’s and R’s without
the subscript 0. The other half of the first term in (4.6) is written in a similar
fashion, with the roles of the L’s and R’s reversed. Using (4.1) and the
corresponding relations for the R’s, the last term in (4.6) becomes

- L(R)R(k) —2f(1 L(k—-1)R(k
Ter@ | SLMRM) 20 T Lk - DRR)
+£2(1) Yy L(k - 1)R(k + 1)|.
B—1,k,k+1¢A

Putting all these computations together yields a rather long expression for
(4.4). We will not record it here, but will use it shortly in giving the overall
expression for (1.1).

The negative terms in the expression for the derivative in (1.1) are simpler.
Except for a factor of — A, they are

Y v{n(k+1)=1,7=00n A}

#1724
+ Y v{n(k—1)=1,7=00n A}
#5584 -
(4.7) »(1)
, T - wF@ | 2, MR DRk

k+1¢gA

+ Y ‘Ly(k—1)R(k-1)|.

k€A
k—1¢A
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Using (4.2) and (4.3), this can be written in terms of the L’s and R’s without
the subscript 0.

Combining the results of these computations (the algebraic manipulations
involved here are substantial; they are eased by the use of Mathematica) and
using the values obtained in Section 3 for a and the f’s, we find that, except
for a factor of »(1), the left side of (1.1) is given by

4r -3
T (4A + 1)(4r — 1) k,kéﬁAL‘k)R(k *2)
21— 1
+mk§AL(k)R(k + 1)
24 — 1

+———__2A(4A ) k+§£AL(k)R(k + 1)

164 —4A2 - 22 -1)(2A -1
o 2)( ) Y L(k)R(k)
AM4r - 1) ey
2(16A* — 16A% + 5A% — 41 + 2)
- 3 Y L(k)R(k+1)
A(4r - 1) R k+1€A

(823 —10A% + 91 — 4)
- 2 x L(k)R(k + 2)
AM4r - 1) R k+1,k+2¢A

4) - 3
+ > Y L(k)R(k + 3)
(4r +1)(4X — 1) |, k+2,2+324

+ Yy L(E)R(k + 3)
k,k+1,k+3¢A

4\ - 3
- 3 )M L(k)R(k + 4)
(4A+1)(4A = 1)" b h+1,k+3,k+4eA

(4.8)
(41 + 1)(2A — 1)?
(A1)

x[ Y L(R)R(k—-1)+ Y L(E)R(k - 1)]
keA kE—1¢A

(41 — 3)(21 — 1)(4A + 1)
" 2(4A — 1)°

x[ Y L(E)R(E)+ ¥ L(k)R(k)

k,k+1¢A k,k—1¢A
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21 ¥ L(k)R(E + 3) — 2A-1
AMAN —1)% 4 hi1, k52, he3ea 2M41-1)
x[ Y L(kHR(k+2)+ Y  L(k)R(k+ 2)]

k,k+1¢A k+1,k+2¢A

L @A-D@Er+ )

L(E)R(k
24\ — 1) [k—l,k§+leA (B)B(E+ 1)

+ Y L(k)R(k+ 1)].

Bok+1,k+2¢A
Next, we rearrange (4.8) using the shorthand notation
I(k) =L(k) —L(k — 1)14_1¢ 4, r(k) =R(k) —R(k + 1)1, 4-

Expression (4.8) becomes

- Mo Y Wk-Dr(k+1
(Ar+ 1)(4A — 1)? 41 kt1ea ( " )

A-1
—_— I(k—1)r(k
+/\(4/\"1)2k—1§eeA( Dr(k)

_ (422 + 2+ 1)(2A-1)

I(R)r(k
ITZTEEE T
4.9 22 —-1)(4r + 1
@9 [ CAZHEED [ & ey + T ikyr(k)
2(42 - 1)* pE5e, AT

(@At 1EA -1 [ YUk + DR+ X Lk + 1)r(k)]

(41 - 1)* k+leA
+——21:1— Y L(k-1Dr(k)+ Y IU(k)R(E+1)
2A(4A - 1)[ ks, AT ]

In order to show that (4.9) is nonpositive, we need to show that the
functions / and r satisfy some inequalities. The ones for / are stated below;
the ones for r are analogous. The proposition will be proved in Section 5.

PROPOSITION 4.10. (a) I(k) = 0 for all k.
) k+D<UR)ifkeA.

‘We continue with the proof that (4.9) is nonpositive. Think of writing (4.9)
as a sum over maximal intervals in the complement of A of the contributions
corresponding to those intervals. Only in the case of the first term in (4.9) is
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there any ambiguity about which interval to associate it to, and that only
occurs when the £ € A. In that case, we ignore the term, which is negative
anyway. Suppose then that [ m, n] is a maximal interval in the complement of
A,sothat m —1,n + 1€ Aand m,...,n & A. We consider the case in which
the interval is a singleton separately from the general case. In both cases, we
will multiply (4.9) by 2A(4A — 1)2(4A + 1) to remove the denominators. It will
sometimes be useful to write L and R in terms of the functions corresponding
to sets obtained from A by removing a point. For example, suppose that
k& Aand k — 1€ A. Let L* be defined as L was, but with respect to the set
A\ {k# — 1}. Then

(4.11) L*(k—1) =L(k-1), L*(k) =L(k) +f(1)L(k - 1),
L*(k+1) =L(k + 1) + f2(1)L(k — 1) + f(2)Ly(k — 1)
(4.12) =L(k+1) + [f2(1) + af(2)]L(%k - 1)
+(1-a)f(2)L(k — 2)1; _s¢ 4
and
L*(k+2) = L(k +2) + [F3(1) + £(2) fo()]L(k - 1)
+[F(1)£(2) + F(3)] Lo(k — 1)
(4.13) =L(E+2)+ (1) +(1-a)f(2
+2af(1)f(2) + af(3)]L(k — 1)
+(1 = a)[A(D)f(2) +F(B)L(k — 2)1p_5¢ a5

where the last equality in (4.12) and (4.13) comes from (4.2). Equations
(4.11)-(4.13) can be rewritten as

(4.14) L(k—1)=L*(k-1), L(k)=L*(k) - f(1)L*k - 1),
(4.15) L(k+1) =L*k + 1) — [f2(1) + af(2)]L*(k - 1)
(1= a)f(2)L*(k — 2)1j_5¢ 4
and
L(k+2)=L*k+2) - [f3(1) +(1-a)f(2
(4.16) +2af(1)f(2) + af(3)|L*(k — 1)
—(1-a)[F()f(2) +FB)|L*(k — 2)14_s¢ 4
Case 1: m = n. We need to show that the following quantity is nonpositive:
—(4r = 3)A[U(m = 2)r(M) 1 g ) + Um)T(m + 2)1 (15 a))
—2(2A — 1)(4A + 1)I(m)r(m) — 2A(4A + 1)%(21 — 1)°
X[l(m + 1)r(m) +{(m)r(m - 1)]
+(4A—1)(4A+1)(2A— 1) [L(m-1)r(m) +I(m)R(m+1)].
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Ignoring the first term above, which is negative, it is easy to see that [using
the nonnegativity of /(m) and r(m)] we need to show that

(4.17) (4 — 1)L(m — 1) < 2A(4A + 1)(2A — 1)i(m + 1) + I(m)

and the analogous inequality for the R’s and r’s. Using (4.14) and (4.15) to
write this in terms of the starred quantities, we see that we need to prove
that

0<2AM4Ar+ 1)(2XA — 1)I*(m + 1) + I*(m) + 2(A — 1)I*(m - 1).

However, this is true by part (a) of Proposition 4.10 (applied to the starred
quantities).
Case 2: m < n. We need to show that the following quantity is nonpositive:

—2(4A-3)A Y (k- 1)r(k + 1)

m<k<n

+2A—1)4rA+1) ¥ I(E)r(k+1)

m<k<n
—(422 + A+ 2)(2A — D)(4A + D[I(m)r(m) + I(n)r(n)]
24N+ A+ 1)(2A - 1)(@A+ 1) Y U(k)r(k)

m<k<n
— 241 + 1?21 - 1)°
x[im)r(m-1)+2 ¥ Uk+1)r(k) +i(n+ l)r(n)]

m<k<n

+(4A — 1)(4A + 1)(2A — 1)[L(m — 1)r(m) + I(n)R(n + 1)].

Taking our cue from Case 1, we use (4.17) to remove L(m — 1) from the above
expression and the analogue for the R’s and r’s to remove R(n + 1). Then
replace M4\ — 3) in the coefficient of the first sum by the smaller quantity
(A — 1X4A + 1) and then cancel the common factor of (4A + 1) from all the
terms. We then see that we must show that the following expression is
nonpositive:

—2(A-1) ¥ Uk-1r(k+1)+2A-1) ¥ I(k)r(k+1)

m<k<n m<k<n
C(4A2+ A+ 1)(2A — 1)[l(m)r(m) +2 Y Uk)r(k) + l(n)r(n)]
m<k<n

— 2A(21 — 1)%(4A + 1)[l(m)r(m -1) + z(n{ + 1)r(m)Lys ey
: P2 Y Uk+Dr(k)

m<k<n-—1

FU(n)r(n = Dlgs gy + Un + l)r(n)].
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This can be rewritten as

-(A-1) ¥ (UE-D[r(k+1)—r(k)] +[U(k-1) - I(k)]r(k + 1))

m<k<n
-4+ A+ 1)(20-1)
x[l(m)r(m)lmm +U(m+ Dr(m + Do meg

+2 Yy I(B)r(k) +U(n—1)r(n— 1)1, nig

m+1l<k<n-1

+l(n)r(n)1(n>m+l}

—2A(21 — 1)%(4A + 1)[l(m)r(m — Dl ey + L+ DF(M) s many
+i(m + 2)r(m + 1)1, .3
+2 Y I(k+1)r(k)
m+1l<k<n—2
+l(n - l)r(n - 2)]'(n> m+3)
+l(n)r(n - 1)1(n>m+2)
+i(n + l)r(n)l(n>m+1)]
+i(n - D[(A-1)r(n) — (422 + A+ 1)(2A - Dr(n - 1)
—2A(4A + 1)(2A — 1)?r(n - 2)]
+r(m+ D[(A = 1)I(m) — (42% + A + 1)(21 — 1)I(m + 1)
—2M(4A + 1)(2A - 1)%U(m + 2)].
By Proposition 4.10, it suffices to show that
(A= 1)I(m) — (422 + A + 1)(2A — 1)I(m + 1)
—2A(4A + 1)(2A - 1P I(m +2) <0
(and the corresponding statement for the r’s). This is equivalent to
(8A3 — 2A% + 21 — 2)L(m) + (32A* — 32X3 + 202 + 1) L(m + 1)
< (321* — 2423 + 2X)L(m + 2).

Rewriting this in terms of the starred quantities using (4.14)-(4.16), this is
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equivalent to
0 < (322" — 2423 + 2X)1*(m + 2) + (8A* —2A2 + A — 1)I*(m + 1)
+(A = D[I*(m - 1) — I*(m)]
2(2023 — 13A% + 1)

vy Lm-D
(4rA-1(@B2-2a-1)
A(4r + 1) L*(m - 2)1(m—2eA)~

However, this is a consequence of Proposition 4.10.

5. Proof of Proposition 4.10. We begin by computing
1-L(k) = v{n(j) = 1forsome j € AN (—o,k) | n(k) = n(k + 1) = 1}
Y v{n(j)=1,1=00n AN (-,j)In(k) =n(k+1)=1)

J<k

JEA

X v{n(j) =1, n(j +1) =01 n(k) = n(k + 1) = 1}Ly(j)

(5.1) Ik

+ Zk v{n(J) =1,7(j + 1) = 11 n(k) = n(k + 1) = 1}L()
Jj<
jeA

g [v(k =) Lo(J) +w(k = J)L(j)],

Jj<

JjEA

It

where the sequences v(k) and w(k) (k > 0) are defined by the last equality.
These satisfy the initial conditions v(0) = v(1) = 0 and w(0) = 1, w(1) = f(1).
Also, the argument which led to (4.1) and (4.2) implies that they satisfy the
recursions

k-1
v(k) =f(1)v(k - 1) + _Z‘zf(j)[av(k =)+ @ =a)v(k—j- 1] +f(k)
i-

and

k-1
w(k) =f(Lw(k-1) + Z2f(j)[aw(k -+ A -a)wk-j-1)]
=

for & > 2. Later, we will prove that if x(k) = v(k) + w(k) or x(k) = av(k) +
w(k), then x(k) is decreasing and concave:

"(5.2) x(k+1) <x(k) and 2x(k+ 1) <x(k+2) + x(k)

for & > 0. Now we will use these facts to complete the proof of Proposition
4.10. :
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The first statement is immediate if 2 — 1 € A, so assume that £ — 1 & A.
Then by (5.1) and (4.2),
k)= X [v(k—1-j)Lo(j) +w(k—1—j)L(J)

Jj<k-1
JjEA

—v(k =) Lo(J) — w(k = j)L(J)]
X [L)ev(k =1 -j) - av(k -))

J<k-1
JjEA

tw(k —1-7) —w(k —j)]
+L(J ~ Dljore 41 — @) [v(k — 1 -j) —v(k - j)]]
L ID(av +w)(k - 1) = (av+w)(k - j)]

J<k-1
JjEA

+ X LU -D(v+w)(k—1-j) = (v+w)k—j)].
J<k-1
j-1eA
JjEA
The expressions in brackets are nonnegative by (5.2), so the nonnegativity of
I(k) follows by induction on k.
The proof of the second part of Proposition 4.10 is similar. Take 2 ¢ A and

write
() —l(k+1)
=2L(k) —L(k + 1) — L(k — 1)1j_;, 4
=2L(k) —L(k+1) ~L(k - 1) + L(k — 1)1, _; 4
=[-2w(1)L(k - 1)
+[v(2)Lo(k — 1) + w(2)L(k — 1)] + L(k — D]1p-1c4

+ L [[v(k—1-J) +v(k+1~j) - 20(k = )] Lo(J)

J<k-1
JjEA

+{w(k — 1 —j) + w(k + 1 - j) - 2w(k - )] L()]
= [F2(2) + af(2)]L(k — D1, _1cq
+(1=a)f(2)L(k — 2)1y_sea,1-1c4

+ X UD)(ev +w)(k+1-j)

j<k-1
JjEA
t(av+w)(k-1-j)—2(av +w)(k —j)]
+ X LG -D[(v+w)(k-1-j)
j<k-1
j-1eA
JjeEA
+(v+w)(k+1-j)-2(v+w)k-Jj)],
which is nonnegative by part (a) of Proposition 4.10 and (5.2).



UPPER BOUND FOR THE CRITICAL VALUE 721

We next turn to the proof of (5.2). Define a sequence x(%) by x(0) = 1,
x(1) = f(1) and

x(k) =f(1)x(k - 1)

k-1
+ X f(Dlax(k—j) + (1 - a)x(k —j— 1] +df(k)

Jj=2

(5.3)

for £ > 2. We need to show that this sequence is decreasing and concave for
d = 1 and for d = a. The proof is based on the following identity, which holds
for & > 4:

3203 — 1202 - 50— 1
(Ar+1)(21-1)
320 — 402 + 422 -1 + 3
(41 + 1)(21 — 1)°

32A* + 1402 — 121 — 3

df(k) + (1 — a)f(k — 1) = 2xx(k + 1) — x(k)

x(k—1)

(5.4) e T
1222 -9r — 1
- 2 7x(k — 3)
(41 + 1)%(21 - 1)
4% — 3\
sx(k —4).

+ 2
(41 + 1)%(21 - 1)

The proof involves a rather lengthy and unenlightening computation which
begins by using (5.3) twice to express x(k) in terms of a convolution of the f’s
and then uses (3.15) to write this convolution in terms of f itself. After a
substantial amount of cancellation, one is led to (5.4). Rather than carrying
out this computation, the reader is encouraged to check (5.4) for a few values
of k.

Letting A(k) = x(k + 1) — 2x(k) + x(k — 1), (5.4) can be rewritten as

A(k) =2f(k) + yf(k — 1) —ulA(k —1)

(55) + vA(k — 2) — wA(k — 3)

for & > 4, where the coefficients are given by

d
zZ = -2_)\’
(41 — 1)(2A — 1) — 2Ad(4A — 3)
Y= 202X — 1)(41 + 1) ‘
' 4rT+ A +1
u

T 20(4r + )22 - 1)’
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A—1
T 2M4A + 1)(2r - 1)°’
4r -3
T 24+ 1)22A - 1)

We need some information on the behavior of ratios of f’s. Using (3.19),
(3.20) and A > 1.941227..., it follows that ¢ > 4.48..., and hence by (3.21)
and (3.22) that

_f(m) h(m)
(5.6) Fom D <L W2l me4
Next, let o (k) = A(k)/f(k + 1). Then (5.5) becomes
f(k) - 1)
o(k) =[z—-uo(k- 1)]m + [y +vo(k - 2)] f(k )
f(k - 2)
—wo(k — 3)f(k 1)
We wish to show by induction that
(5.7) 0<o(i)<1

for all i > 3. This will prove (5.2). In fact, it is easier to show it only for A
slightly larger than 1.941227..., and that is all that is needed to prove the
theorem. We will perform the following computations with A = 1.941227...
(which implies a@ = 1). Since all the inequalities will be strict and only finitely
many are needed, these will be valid for slightly larger A as well. Here are the
values (to the accuracy given) of the relevant quantities:

2=02195 (fd=a), 2z=02576 (ifd=1),
y=100381 (ifd=a), 2z=00102 (ifd=1),
u=01837, ©v=0.0033, w =0.0037.

Suppose (5.7) holds for i = k 3,k — 2,k — 1. We then have the recursion
for o that

f(k) f(k—2)
O'(k) = 0.036m - 0.0o4m
and
f(k) f(k—1)
O'(k) < 0.258m + 0.041m.
For any m > 4, (5.6) and the logconvexity of £ imply that
f(m) h(m) M 12
m <1. 127m <1. 127@ 1.127 < 2.

Therefore it follows that (5.7) holds for i = k£ provided that 2 > 6. It remains
to show that o(k) > 0 for 1 <% < 5 and o(k) < 1for 3 <% < 5. This is done
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TABLE 1
n f(n) x(n) o(n) x(n) o(n)
1 0.732236 0.7322 1.5522 0.7322 1.4044
2 0.129829 0.6660 0.7675 0.6468 1.0955
3 0.051142 0.6390 0.3460 0.6174 0.4337
4 0.025869 0.6210 0.3244 0.5992 0.3345
5 0.015161 0.6079 0.3223 0.5861 0.3285

by direct computation. In Table 1 the middle two columns correspond to
d = 1 and the last two columns correspond to d = a.

Acknowledgment. I would like to thank the referee for providing the
derivation of (2.1), which is simpler than the one I originally gave.
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