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BOOK REVIEW
TORGNY LINDVALL, Lectures on the Coupling Method. Wiley, New York, 1992.

REvVIEW BY NEIL O’CONNELL
Dublin Institute for Advanced Studies

This really is a delightful book. For me, not being an expert, it was as
though the author had set out to “charm me with his subject,” and like a good
teacher, he succeeded. The exposition is lively, unassuming, highly motivating,
and conscientious, similar in spirit to the books of Williams [5, 6]. The subject
is taught by example. In the words of the author:

To know a method is to have learned how it works. What we
have ahead of us is essentially a collection of applications of
a few basic ideas consisting largely of topics of wide common
interest with an attempt to maximize diversity.

It is intended to serve graduate courses and seminars in departments of math-
ematics, statistics and operations research. Basic familiarity with measure-
theoretic probability is assumed.

Written primarily as a textbook, it is also the first definitive reference on
the coupling method and its many uses. From a practical point of view it is
well signposted and, well, “mixing” in the sense that it can be opened and
understood to at least some extent at any point in the text. For a subject with
such far-reaching applications, the author has done well to include so many.
It seems to me that what is not included is at least hinted at and the reader
is well informed on where to look for more details. '

We will now present a brief introduction to the coupling method, just to
pique your interest. This will be followed by an outline of the text.

The coupling method. The coupling method provides an ingenious way
of comparing probability measures. The idea is to construct, if possible, ran-
dom elements on a common probability space in such a way that the compar-
ison may be carried out in terms of the random elements. Roughly speaking,
applications fall into three categories:

1. Establishing ergodicity and obtaining rates of convergence to stationarity
for Markov processes.

2. Justifying weak approximations.

3. Establishing inequalities.

The first two are achieved via estimates of total variation distances, based
on the coupling inequality. (The coupling inequality for Markov chains is de-
scribed below: we refer the reader to the text for a general version.)
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To illustrate the method, we have selected three typical applications, one
from each of the above categories.

The coupling inequality for Markov chains. Consider an aperiodic,
irreducible, positive recurrent Markov chain X = (X,) on the nonnegative
integers with transition matrix P = (p;;) and (unique) stationary distribution
m = (7). It is well known that, regardless of the initial distribution A, X,
approaches stationarity as n — oo. In other words, AP™ — 4. This is a classi-
cal result. To prove it by coupling, we introduce a stationary version of X: Let
X' be a Markov chain independent of X, with transition matrix P and initial
distribution 7. We now couple X and X' at the stopping time

T =min{k: X; = X}}
by defining a new process
Xi={%r niT
By the strong Markov property, X and X" are equally distributed, and so
|P(Xy = Jj) -7l =|P(X}, = j)— P(X;, = Jj)
=|P(X,=j, T<n)+P(X,=j, T>n)
-PX,=j,T<n)-P(X,,=j, T >n)|
<PX)=j, T>n)+P(X,=j, T>n).
Summing over j yields
1 IAP" — || =3 |P(Xy = j)—mjl <2P(T > n).
J

This is a special case of the coupling inequality. It follows from (1) that if
the coupling is successful, we have uniform convergence to stationarity. (The
coupling is “successful” if T is almost surely finite.) The coupling inequality
also provides a route for obtaining rates of convergence.

The Stein—-Chen method. In order to apply the coupling method for the
comparison of two probability measures, one must first find a suitable cou-
pling: this is often the hard part. The challenge of cooking up a clever cou-
pling is what makes the method so attractive, and has in many applications
produced some beautiful mathematics: the Stein—-Chen method for Poisson
approximation is such an example.

Let (Y, £ =1,...,n) be a sequence of Bernoulli.random variables, not
necessarily independent, with p, = P(Y; = 1). Set W = ¥}, Y, and A =
3% pi. The idea is that if the Y;’s are only weakly dependent and the p;’s are
‘small, the distribution of W should be approximately Poisson with mean A.
To formulate this, for each % let U, and V', be random variables on the same
probability space, satisfying

(2) Upr=q W, 1+ V= P(We-|Yr=1),
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with the convention that Vj = 0 if p;, = 0. Assuming that the p;’s are small,
the notion of weak dependence can now be expressed as “for each k, Ur =V,
with high probability.” Using the above coupling, one can show that

3 IP(W €)= pal <2(0A XYY" prEIUL — Vil
)
where p, denotes a Poisson distribution with mean A. The idea of the proof is
as follows. First note that if Z is Poisson with mean A, then
(4) E[AM(Z +1)—-Zh(Z)]=0

for any bounded function 4. This suggests that if E[AA(W)—WAh(W)]is small,
then the distribution of W is approximately Poisson with mean A. So for each
set A we find a function g for which

(5) P(W € A) — pi(A) = E[Ag(W + 1) — Wg(W)],
namely, the solution to the equation
(6) Ag(k+1)—kg(k) =14() — pr(A), k=0,
with g(0) = 0. It can be shown that for any j, & > 0,
M 18(J) — g(R) < (LA )~ &I,
and so we have

|P(W e A) — pa(A)| = |IE[Ag(W + 1) — Wg(W)]]

= |2 piBLe@s+ 1) = £(Vi+ D]

<(@AAXDY prEIUR — Vil.
k

The result now follows from the fact that

(8) |P(W €)= pal =2sgp|P(WeA)—pA(A)I-

The estimate (3) is in fact a generalization of the celebrated Le Cam theo-
rem, which states that for independent Y;’s,

IP(W €)= pall <2 pi/A < 2max pi.
. k

To see this, note that in this case E|Uj — V| = pr and 1A A1 < A7,

For variations of this result and other applications of the Stein—Chen
method, we refer the reader to the text (and references therein) and the book
of Barbour, Holst and Jansson [1].
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Domination. The idea of using the coupling method to establish inequal-
ities has been applied in a variety of situations. We have taken a simple ex-
ample from the introduction of the text, where the idea can be used to prove
something which is intuitively obvious, but otherwise hard to prove. Consider
two independent, recurrent birth and death processes X and X’ with the same
transition rates and suppose Xo < Xj. Just as in the first example, we couple
X and X’ at

T =inf{t: X,=X,}

and define a new process X" by

X,t,={Xt, t<T,

X, t=T.

Now X and X” have the same distribution and, because we have skip-free
paths, X7 < X, for all ¢ > 0. It follows that for any nondecreasing function
g, Eg(X,) < Eg(X]}) for all ¢ > 0. As the author puts it, “What alternative
proof of that do you support?”

The author attributes the idea of coupling to Doeblin, who published a
paper [2] in 1938 where the basic ergodic theorem for discrete state space
Markov chains was proved using the coupling method. However, the method
did not become established until it was found to be an indispensable tool in
the study of interacting particle systems, which really took off in the 1970’s.
The author regards the papers of Pitman [4] and Griffeath [3] as “crucial for
the awareness of the method.”

Outline of Lectures on the Coupling Method. The body of the text is
divided into six chapters:

I. Preliminaries
II. Discrete theory
ITI. Continuous theory
IV. Inequalities
V. Intensity-governed processes
VI. Diffusions

Chapter I is foundational. The term “coupling” is defined and the coupling
inequality established in its most general form. The idea of a “maximal” cou-
pling is introduced: Roughly speaking this is a coupling that achieves equality
in the coupling inequality.

Chapter II starts with an account of coupling of discrete renewal processes,
including a proof of the discrete renewal theorem and some rate results. There
. is not a renewal equation in sight, an omission which the author announces
to be intentional. Renewal theory is a major theme throughout the book. Con-
sequences of the coupling inequality for Markov chains are discussed, and the
remainder of the chapter is devoted to examples in card-shuffling, random
walks and Poisson approximation.
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In Chapter III, the discrete renewal theory results of Chapter II are gen-
eralized to continuous time and to regenerative processes, and coupling is
applied to Markov chains on a general state space. The rest of the chapter
is concerned with questions regarding maximal coupling and ergodicity for
Markov processes.

Chapter IV has Strassen’s theorem as its basic result, which, roughly speak-
ing, states that for a pair of stochastically ordered probability measures (on a
partially ordered space E) there exists an associated coupling of almost surely
ordered random elements (of E). The chapter includes a “gallery” of examples
where the coupling method can be used to establish inequalities, ranging from
percolation to Bernstein polynomials.

Chapter V demonstrates the use of coupling in the study of Markov pro-
cesses which are defined in terms of transition intensities, such as general
birth and death processes, interacting particle systems and renewal processes.
There is also a section on embedding in Poisson processes, with applications
to urn models and renewal processes.

The last chapter is devoted to the coupling of diffusions. For one-
dimensional diffusions, a straightforward coupling (analogous to the one
described in the Markov chain example above) will, due to path continuity,
be successful. In higher dimensions the problem is not so easy, and one is
faced with the challenge of finding an alternative coupling which will be
successful. The author presents some examples where certain coupling can
be guaranteed, including multidimensional Brownian motion and diffusions
with radial drift and constant dispersion (variance).
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