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DIVERGENCE OF SHAPE FLUCTUATIONS IN TWO DIMENSIONS

BY CHARLES M. NEWMAN! AND MARCELO S. T. P1za?

New York University and University of California

We consider stochastic growth models, such as standard first-passage
percolation on Z¢, where to leading order there is a linearly growing de-
terministic shape. Under natural hypotheses, we prove that for d = 2,
the shape fluctuations grow at least logarithmically in all directions. Al-
though this bound is far from the expected power law behavior with ex-
ponent y = 1/3, it does prove divergence. With additional hypotheses,
we obtain inequalities involving y and the related exponent ¢ (which is
expected to equal 2/3 for d = 2). Combining these inequalities with previ-
ously known results, we obtain for standard first-passage percolation the
bounds y > 1/8 for d = 2 and ¢ < 3/4 for all d.

1. Introduction. A subject that has attracted considerable attention in
recent years is the nature of the fluctuations of growing interfaces [see Krug
and Spohn (1991) for a review]. In this paper we consider several models (in-
cluding standard first-passage percolation) of a stochastically growing subset
B(#), of the lattice Z¢ (d > 2), at time ¢. The interface between B(¢) and its
complement will (under natural hypotheses) grow linearly in ¢ with a deter-
ministic shape. The magnitude of the fluctuations of this interface about its
mean shape is believed (under further hypotheses, as discussed below) to be
typically of the order of ¢t¥ with y depending on the dimension d. The expo-
nent y is predicted to equal 1/3 for d = 2 [see Huse and Henley (1985), Kardar
(1985), Huse, Henley and Fisher (1985) and Kardar, Parisi and Zhang (1986)].
There have been varying discussions about the nature of y for higher dimen-
sions ranging from the possible independence of y on d [Kardar and Zhang
(1987)] through the picture of y decreasing with d while always remaining
strictly positive [see Wolf and Kertész (1987) and Kim and Kosterlitz (1989)]
to the possibility that for d above some d., ¥ = 0 and perhaps the fluctuations
do not even diverge [see Natterman and Renz (1988), Halpin-Healy (1989) and
Cook and Derrida (1990)].

Relatively few rigorous results have been obtained about the shape fluc-
tuations. For some models, Kesten (1993) has proved that y < 1/2 [see also
Alexander (1995) for related bounds]. For other models, Wehr and Aizenman
(1990) have derived a rigorous lower bound, y > (1 — (d — 1)¢)/2, in terms of
another exponent ¢ about which little was known rigorously. The exponent ¢
is such that n¢ is the order of the fluctuations about the mean for the location
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where the growing B(t) first touches a hyperplane at distance n from the ori-
gin. It is conjectured that y and ¢ should satisfy the relation y = 2¢ —1 for all
d [see Krug and Spohn (1991)]. There had been no proof that the shape fluctu-
ations diverge for any model in any dimension d > 1. In this paper, by building
on the methods and results of Wehr and Aizenman (1990), Kesten (1993) and
Alexander (1995), we obtain two types of results. The first type is a proof of di-
vergence (at least logarithmically fast) valid for several different models when
d = 2. We note that for an important special case of first-passage percolation,
a different proof was obtained by Pemantle and Peres (1994). The second type
of result is an upper bound on £. For standard first-passage percolation, this
bound, together with the results of Kesten (1993) and Alexander (1995), yields
¢ < 3/4 for all d which, when combined with the Wehr-Aizenman inequality,
gives y > 1/8 for d = 2.

The models we consider are defined in terms of a family {7(e)} of (nonnega-
tive) random variables indexed by the nearest neighbor edges e of Z%. We will
generally think of the 7(e)’s as passage times through the edges (although in
some contexts it is natural to regard them as energies associated with the
edges). These models, known in the probabilistic literature as first-passage
percolation models, were invented by Hammersley and Welsh (1965) to model
the spread of a fluid through a porous material. Early results are surveyed in
the book by Smythe and Wierman (1978) and more recent results by Kesten
(1986, 1987).

The set B(t) is defined as the collection of all sites in Z? reachable from
the origin by a (nearest neighbor, self-avoiding) path along which the sum of
the 7(e)’s does not exceed ¢. In one type of model, paths are restricted to have
no coordinate ever decrease. We will call these directed first-passage perco-
lation models; in the physics literature they are often regarded as directed
polymer models (at zero temperature) with the 7(e)’s regarded as edge ener-
gies. Note that in the directed case B(t¢) is a subset of the positive orthant
Zi, and for d = 2 the directed paths are equivalent (by a 45° rotation) to the
space—time paths of a (discrete time) simple random walk on Z!. In the second
type of model, there is no restriction on the paths. We will call these undi-
rected first-passage percolation models (or simply first-passage percolation
models). 3

The rate at which B(#) grows with ¢ depends on the percolation proper-
ties of the edges with 7(e) = 0. Let us consider, for example, (undirected)
first-passage percolation with independent identically distributed (i.i.d.) 7(e)’s.
(This will be the first of three models we treat in this paper.) Let p. = p.(d)
denote the critical value for standard independent nearest neighbor bond per-
colation on 7% [see Grimmett (1989)]. It is clear that when P(7(e) = 0) > Pes
then B(t) becomes infinite after a finite time. One of the basic results of the
subject (which we review in more detail in the next section) is that when
P(7(e) = 0) < p., B(t) is (for large t) approximately the intersection of Z¢
with £By, where By is a deterministic bounded convex subset of R%. A simi-
lar result is valid for directed first-passage percolation with i.i.d. 7(e)’s (the
second of the three models we treat). In this case the appropriate hypothesis
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is that P(7(e) = 0) < pd", where pd" is the critical value for independent
nearest neighbor directed bond percolation on Zi.

The directed percolation critical value plays a different, but related, role
when for some A > 0, P(7(e) < A) = 0 while P(r(e) = A) > p‘cﬁ’. In this case,
B(t) grows linearly but By is not strictly convex [see Durrett and Liggett
(1981)]; this is so for both directed and undirected first-passage percolation.
For example, in the directed case when d = 2, the boundary of By includes a
straight line segment

(1.1) {(x1,x9): x1 + 22 =1/A, |x2 — x1] < ao/A},

where ag in (0,1) is a function of P(7(e) = A) — p‘cﬁr. In the d = 2 undirected
case, the boundary of By includes the line segment (1.1) together with the
three segments obtained upon rotating (1.1) by multiples of 7 /2.

To analyze the fluctuations of the boundary of B(¢), one should consider
separately the parts of the boundary growing in different directions. Thus we
define T, (%), for a unit vector £ in R?, to be the time ¢ at which B(¢) first
reaches the lattice site closest to nx (with some deterministic rule for breaking
ties). The time constant in direction % is

To(®) _ . E(Ta(®)
n

n—o00 n

(1.2) w(z) = lim

n—>oo
and the asymptotic shape By (as a subset of R? or of ]Ri) is
(1.3) Bg = {r%: % is a unit vector and r < 1/u(%)}.

Our investigation of the fluctuations of B(¢) is in terms of the asymptotic
growth of the variance of T, (%),

(1.4) var(T,(2)) = E(Tn(%)*) - [E(TA(£) .

We remark that the results we obtain for “point-to-point” passage times like
T,.(x) easily extend (by the same methods) to other passage times, like the
“point-to-plane” passage time from the origin to a plane (perpendicular to X)
at distance n from the origin or to other “point-to-region” passage times.

Under appropriate hypotheses, the predicted asymptotic behavior of
var(T,(%)) is given by a power law usually denoted by n2X so that y des-
ignates the growth exponent of the standard deviation of T',(X) as n — oo.
For d = 2, x is believed to be 1/3 and the appropriate hypotheses should
presumably be whatever is needed to guarantee that w(x) > 0 and that the
boundary of By have a finite radius of curvature at the point x/u(%) where
it intersects the ray, R; = {rx: r > 0}. We will call such an % a direction of
curvature for By; a precise definition will be given in Section 3 below. For a
discussion of the relation between curvature and the exponents y and &, see
Section 7 of Krug and Spohn (1991).

As remarked at the beginning of this introduction, in high dimensions the
question of divergence of fluctuations is somewhat controversial and a finite
radius of curvature of By in a given direction might not imply divergent fluc-
tuations. For d = 2, however (and for other low dimensions), var(7T,(x)) is
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expected to diverge as n — oo except in the special cases associated with
either vanishing time constants or asymptotic shapes which are not strictly
convex. These special cases, where var(7, (%)) does not diverge for all or some
X’s, are as follows:

CASE 1. ii.d. undirected first-passage percolation with P(7(e) = 0) > p..

CASE 2. iid. undirected first-passage percolation with P(7(e) < A) = 0,
P(r(e) =A) > pglr, A>0.

dir
c -

CASE 3. i.i.d. directed first-passage percolation with P(r(e) =0) > p

CASE 4. iid. directed first-passage percolation with P(7(e) < A) = 0,
P(r(e)=A) > p¥r A > 0.

In Case 1, T',(%) stays bounded as n — oo, for any %, and in Case 3 it does
so if £ = (%1, %2) In Ri is such that |2 — X1| < ao(£1+ X2). Here a, is the same
as in (1.1). In Cases 2 and 4, T, (%) — An(%; + X3) stays bounded as n — oo if
X in Ri is such that |£9 — %1| < ao(%1 + £2).

The first set of results in this paper for i.i.d. directed or undirected first-
passage percolation with d = 2 are proofs that the hypotheses believed neces-
sary to guarantee n2X behavior for var(T, (%)) for every % are in fact sufficient
to yield divergence of var(T,(%)) for every & (at least logarithmically fast).
Theorem 2 of Section 2 covers the undirected case away from Cases 1 or 2 (or
the limits of those cases), while Theorem 3 of Section 2 covers the directed
case away from Cases 3 or 4 (or their limits). We do not treat in this paper
the cases where var(T,(%£)) should behave like n2X only for certain #’s. We
note, however, that for directed first-passage percolation our techniques can
be readily adapted to prove divergence of var(T,(%)) for precisely those &’s.
This is possible both when P(7(e) = 0) > pdr and when P(r(e) = A) > pgir
for A > 0 [while P(7(e) < A) = 0]. On the other hand, either additional hy-
potheses or improved techniques seem to be needed to obtain such a result for
undirected first-passage percolation [i.e., in the P(r(e) = A) > pd* situation].

The third and last model we treat in this paper is undirected first-passage
percolation, but with dependent 7(e)’s related to the d = 2 standard Ising
ferromagnet {o,: x € Z?} according to

_ 1 T +1, if o, # oy,
(1.5) 7((x, y)) = —5(0x0, 1)—{ 0, ifo,=o0,.

This model is closely related to a model of random surfaces in three dimen-
sions [Abraham and Newman (1988, 1989, 1991)] and our fluctuation results
are applied elsewhere [Abraham, Fontes, Newman and Piza (1994)] to study
the roughness of those surfaces. Our fluctuation result for the Ising first-
passage model (Theorem 4 of Section 2) is completely analogous to our result
for the undirected i.i.d. case with 7(e) taking only the values 0 and 1; that
is, away from the parameter region where the edges with 7(e) = 0 percolate
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(and off the boundary of that region), var(7T, (%)) diverges as n — co at least
logarithmically for every Xx.

The proofs of all our logarithmic results have the same overall structure:
First, a general lower bound on variances and a nonprobabilistic inequality
about sequences (see Theorem 8 and Lemma 1 in Section 3) together show that
for d = 2, var(T, (%)) will diverge at least logarithmically in =, if the expected
number of certain “local defects” for T,(%) within distance % of the origin
diverges at least linearly in k. Then, arguments related to the shape theorem
will yield this linear divergence. Roughly speaking, a local defect for 7', (%) is
a local region in Z2, where a change of configuration will reduce T', (). The
exact meaning of local defect will depend on the exact model being considered,
as will the exact proof of the linear divergence of their mean number.

The second set of results in this paper concern power law lower bounds for
var(T,(%)). For i.i.d. undirected percolation, our result (roughly speaking) is
that y > 1/8 for d = 2. More precisely, away from Cases 1 or 2 above (or
their limits), we prove that, for any & > 0, var(T, (%)) diverges faster than
n'/8-¢ provided two additional hypotheses are valid: (i) E(exp[B7(e)]) < oo
for some B > 0, and (ii) the unit vector % is a direction of curvature for By. The
first additional hypothesis ought not to be necessary. The second additional
hypothesis ought to be extraneous since it should automatically be valid for
all £ away from Cases 1 and 2 (or their limits). Unfortunately, all we know for
sure is that there are at least some &’s which are directions of curvature. This
follows from Lemma 5 of Section 6, which asserts the existence of at least one
such %. The symmetry of Z? under rotations by multiples of 7/2 then implies
that there are at least four such directions. Because of the nonconstructive
nature of Lemma 5 (and of the shape theorem), we cannot assert that any
particular X (such as a coordinate direction) is a direction of curvature. Clearly
the subject of first-passage percolation is in need of some good qualitative
results on the nature of the asymptotic shape By.

The power law results are based on arguments which restrict the local
defects for T, (%) to lie within a strip parallel to £ of width n¢. The key point
here is to get an upper bound on ¢. This is done by deriving the exponent
inequality ¢ < (1+ x')/2 (see Theorem 6; here x’ is an exponent related to
x) and using the bound, x’ < 1/2 for all d, of Kesten (1993) and Alexander
(1995).

The remainder of the paper is organized as follows. In Section 2, we define
more precisely the various first-passage percolation models under consider-
ation, review the asymptotic shape theorems known for them and state our
main results about divergence of fluctuations. Theorems 2, 3 and 4 of Section 2
are our logarithmic bound results for the three types of models we consider.
Theorems 5, 6 and 7 of Section 2 are power law bound results; although the in-
equality y > 1/8 of Theorem 7 is only proved for i.i.d. undirected first-passage
percolation with d = 2, versions of the exponent inequalities of Theorems 5
and 6 (and parts of Theorem 7) are valid for other models and for d > 2 (see
the remarks following Theorem 7). In Section 3, we first prove Theorem 2 in
the special case of 0 or 1 valued 7(e)’s. We then give (in Theorem 8) a far-
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reaching generalization of the first part of that proof in the form of a lower
bound on the variance of a random variable [such as T',(%)] in terms of proba-
bilities of local defect events. This lower bound, which is very similar to lower
bounds of Wehr and Aizenman (1990), is applied in Section 4 to independent
first-passage percolation (leading to the proofs of Theorems 2 and 3) and is
applied in Section 5 to prove the Ising first-passage percolation result, The-
orem 4. It is applied in Section 6 along with geometric arguments related to
the curvature of By to prove the power law results, Theorems 5, 6 and 7.

2. Definitions and main results. In this section we define more pre-
cisely the various first-passage percolation models referred to in the Introduc-
tion and state our main results of both types—logarithmic and power law.

A first-passage percolation model on Z¢ is defined as follows. To each (near-
est neighbor) edge of Z¢ we attach a nonnegative random variable 7(e) (the
“passage time” for the edge e). In the simplest setup we take these variables
as i.i.d. random variables, but we will also consider below (some) cases where
the 7(e)’s are dependent.

We define then for a path r consisting of edges ej,es,... ,én the passage
time of r as
n
(2.1) T(r)= ZT(ei)'
i=1

Different models may be obtained by considering restrictions on the allowed
paths. The directed first-passage percolation model is obtained if we restrict
ourselves to directed paths; that is, we are allowed to travel only along paths
where coordinates never decrease. The case where the paths are unrestricted
will be referred to as the undirected first-passage percolation model. Although
we will not do so, it is of course possible to also consider intermediate situa-
tions where coordinates are allowed to decrease in some directions but not in
others.
We then define for two vertices u,v € Z% the passage time from u to v as

(2.2) T(u,v) =inf{T(r): r is an allowed path from u to v}.

For a unit vector % in R? we define v(n, %) to be the point in Z¢ closest (in
Euclidean distance) to nx (with some deterministic rule for breaking ties) and

(2.3) T,.(x)=T(0,v(n,x)).

This is equivalent to the definition of T, (%) given in Section 1.
The time constant in the % direction, w(x), is defined as

(2.4) w(%) = lim T";’A‘).

n—-oo

The existence of this limit (almost surely and in L) for the case £ = &; =
(1,0,...,0) immediately follows [under mild conditions on the 7(e)’s] from the
subadditivity property, T(u,v) < T(u,w) + T(w,v). The existence of u(x)
for general & may be rephrased in terms of the properties of the asymptotic
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behavior of the set B(t) of vertices which can be reached from the origin by
time ¢. For technical convenience, B(t) is usually replaced by the subset of R,

(2.5) B(t)={v+U: ve B(@),
where U is the unit cube:
(2.6) U= {(x1,...,%q): |x;| <1/2 for each i}.

Under various natural conditions on the 7(e)’s, it is known that the behavior
of B(t) for large t is governed by a “shape theorem,” according to which B(t)
grows linearly with ¢ and has an asymptotic shape which is nonrandom. In the
undirected first-passage percolation model, with i.i.d. 7(e)’s, a version of the
result [with a stricter hypothesis on the 7(e)’s than necessary] may be stated
as follows [Richardson (1973), Cox and Durrett (1981) and Kesten (1986)]:

THEOREM 1. Consider the undirected first-passage percolation model with
i.i.d. 7(e)’s such that E(7(e)?) < oco. If u(é1) > 0, there exists a nonrandom,
compact, convex subset By in R® (with nonempty interior) such that, almost
surely,

(2.7) Ye>0, (1—-&)By C %B(t) Cc(1+¢&)By foralllarge t.

If u(ey) =0, then, almost surely,

(2.8) Y bounded K in RY, K Cc 1B(t) for all large t.
Furthermore u(é;) > 0 if and only if

(2.9) P(7(e) =0) < p,,

where p. = p.(d) is the critical value for independent nearest neighbor bond
percolation on Z%.

The above result establishes a strong law of large numbers for the sequences
Tr(%). A natural question one may ask concerns the fluctuations of these
quantities. We will consider the asymptotic behavior of the variance of T',,(%):

(2.10) var(T,(%)) = E(TA(%)?) — [E(T. (%))

Logarithmic lower bounds. Our first result is a logarithmic lower bound
for var(T,(£)) for d = 2. The hypotheses are related to nonoccurrence of

percolation of edges with 7(e) assuming the lowest possible value. To make
this precise we define

(2.11) A=inf{x: P(7(e) < x) > 0}
and pd* = pdir(d) to be the critical value for independent nearest neighbor
directed bond percolation on Z¢. Our first result may now be stated as follows:
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THEOREM 2. Consider undirected first-passage percolation on 7¢ with i.i.d.
passage times such that E(7(e)?) < oo and var(7(e)) > 0. Assume in addition
that one of the following two conditions is satisfied:

(2.12) A=0 and P(7(e)=0) < p.d),
(2.13) A>0 and P(r(e) =) < p¥(d).
If d =2, then there exists a constant B > 0 such that
(2.14) var(T,(x)) > Blog(n)

for n > 1 and all unit vectors % in R

We remark that the special case of Theorem 2 with exponentially dis-
tributed 7(e)’s was proved, using different methods, by Pemantle and Peres
(1994).

In the case of directed first-passage percolation, one can mimic the proof
of Theorem 1 and obtain a shape theorem, but with a weakened version of
(2.7). In particular, for d = 2, with i.i.d. 7(e)’s such that E(7(e)?) < oo and
P(1(e) =0) < pgir(2), there exists a nonrandom, convex subset By of Ri (with
nonempty interior) such that, almost surely, for any 8§ > 0, a modified version
of (2.7) is valid in which By and B(t) are replaced by their intersection with
the cone in Ri, {(x1,%2): 8 < x1/x92 < 1/8}. The difficulty with the unmodified
version of (2.7) is that u(%) may not be continuous as £ aproaches a coordinate
direction. Nevertheless, we obtain the following result on fluctuations.

THEOREM 3. Consider directed first-passage percolation on Z¢ with i.i.d.
passage times such that E(1(e)?) < oo and var(r(e)) > 0. Assume that

(2.15) P(r(e) = A) < pi"(d),
If d =2, then there exists a strictly positive constant C such that
var(T, (%)) > Clog(n)

for n > 1 and all unit vectors % in Ri.

Next we consider a first-passage percolation model with dependent 7(e)’s re-
lated to the standard two-dimensional ferromagnetic Ising model in an exter-
nal magnetic field 4. [For more information on Ising models, see, e.g., Georgii
(1988)]. The Hamiltonian is given by

J
(2.16) H = 3 Z 00y — h;ax

(x,5)

with J > 0, the first sum over nearest neighbor edges and the Ising spin
variables o, taking values +1. The passage time for the edge between nearest
neighbor vertices x and y is defined as

+1, ifo,#o0y,

(2.17) 7((x,9)) = —3(0:0, —1) = { 0, ifo,=0
) x — Yy
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Here, we take {o,: x € Z%} to have as its joint distribution the Gibbs distri-
bution [with formal density proportional to exp(—H)] obtained by taking the
standard infinite volume limit with free boundary condition.

The shape theorem holds in exactly the same form as for the undirected
model with i.i.d. 7(e)’s except that the criterion for the positivity of the time
constant w(é;) is different here. Let J, denote the critical value of the coupling
constant J, above which there are multiple infinite volume Gibbs distributions
(when A = 0). It was proved recently by Higuchi (1993a, b) that percolation of
like spins [which of course is equivalent to percolation of 7(e) = 0 edges] occurs
only when J > J. or when J < J. and |k| > h.(J), where A (J) > 0 for J <
J. and h.(J.) = 0; in the complement of this region there is no percolation.
This extended earlier results of Coniglio, Nappi, Peruggi and Russo (1976). In a
recent paper, Fontes and Newman (1993) have proved [see also Chayes (1993)]
that w(é;) > 0 in the interior of the nonpercolating regime, that is, when
J < J. and |h| < h.(J). We have then the following result on fluctuations.

THEOREM 4. For the d = 2 Ising first-passage percolation model defined
above, there exist constants D(J,h) > 0 such that

(2.18) var(T,(%)) = D(J, h)log(n)

for n > 1 and all J, h in the interior of the nonpercolating regime.

Power law results. Except in some remarks, we restrict attention now to
ii.d. undirected first-passage percolation. Before stating the first power law
result, we need to define two critical exponents. For any direction %, define

(2.19)  x; = sup{y > 0: for some C > 0, var(T,(£)) > Cn?" for all n}.

Although x; is not believed to depend on £ (under the assumptions of our
theorems), there is no proof that this is so. A similar situation occurs for
the next critical exponent &;, which concerns the transverse fluctuations of
minimizing paths for T, (%).

Let M, (%) denote the (random) set of all sites in 72 belonging to some time-
minimizing path from the origin to v(n, £). Let L; denote the line {aX: a € R}
and, for y > 0, let A} (%) denote the cylinder of radius n” parallel to X; that is,

(2.20) AN(x)={z¢€ R%: d(z,L;) <n”}.

Here d(z, A) for A c R? denotes the Euclidean distance inf,c4 [z — y|. The
exponent £; is then defined as

&; =inf{y > 0: for some C > 0,

(2.21) R
P(M,(%) c AL(%)) = C for all large n}.
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The inequality in the next theorem was originally obtained by Wehr and
Aizenman (1990) for directed first-passage percolation, and under the assump-
tion that 7(e) has an absolutely continuous distribution with bounded density.

THEOREM 5. Assume the hypotheses of Theorem 2, but for general d. Then,
for any unit vector % in R?,

(2.22) Xi > k(_d:%
2

We will refer to (2.22) as the Wehr-Aizenman inequality. It is not expected
to help yield a strictly positive lower bound on y; for any d > 3 since it is
believed that ¢; > 1/2 for any d > 2. However for d = 2, one only needs an
upper bound on &; strictly below 1. The next theorem gives an upper bound on
&; in terms of an exponent y’; when combined with previous results of Kesten
(1993) and Alexander (1995) on y/, it will yield £é; < 3/4 for d = 2 (at least
for some %’s). The exponent x’ takes into account not only the fluctuations of
T,.(%) about its mean (for all %), but also the deviation of the mean from the
asymptotic expression nu(x). Our precise definition is

(2.23) x' =inf{x: (¢ —t*)By C B(¢t) C (¢t + t*)By for large ¢, almost surely}.

Before stating Theorem 6, we need to give a precise definition for % to be a
direction of curvature for By. Basically we require that at the point z = x/u(%)
on the boundary 9By, a sphere S of finite radius can be inserted (locally)
between a tangent plane to By and int(By), the interior of By. More precisely
we require the existence of some closed Euclidean ball D in R? of finite positive
radius (and any center) such that the following two conditions hold:

CONDITION 1. There is a subset S’ of the sphere boundary /D which is
open (as a subset of dD) and which contains z [= £/u(%)] but no point of
int(By).

CONDITION 2. D Nint(By) # .

Condition 2 guarantees that D is on the correct side of a tangent plane.
For future use we note that because By is convex and compact, the overall
definition is equivalent to one in which Conditions 1 and 2 are replaced by the
following: :

CONDITION 1. 9D contains z.
CONDITION 2. D D By.

THEOREM 6. Assume the hypotheses of Theorem 1 with d > 2 and P(7(e) =
0) < pc(d). Then, for any % which is a direction of curvature for By,
1+ x

(2.24) fr = —5—
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REMARKS. Let us define

(2.25) X = Sup x.

x

On a heuristic level, one has y < x’ because x’ includes deviations of E(T',, (%))
from nu(x) as well as fluctuations of T, (&) about E(T,(x)), but this compari-
son between y and x’ is not rigorous since y; was defined in terms of variance
and ' in terms of almost sure behavior. Nevertheless, (2.24) should be thought
of as a rigorous partial affirmation of the nonrigorous identity in the physics
literature, y = 2¢ — 1, which is believed valid for all d > 2 (with ¢ the common
value of all the £;’s). Indeed, the proof of (2.24) given below in Section 6 is es-
sentially a rigorized version of the derivation of y = 2£ — 1 given by Krug and
Spohn (1991). We note that, as in its heuristic version, the argument is mainly
geometrical (with probabilistic considerations playing only a peripheral role)
and is applicable in rather wide generality to first-passage type models with
an asymptotic shape By. In particular (2.24) is valid for the d = 2 Ising model
of Theorem 4.

The last theorem combines Theorems 5 and 6 with previously known results
to obtain exponent bounds for d = 2:

THEOREM 7. Assume the hypotheses of Theorem 2 with d = 2. Then
(2.26) max(y’, x) > 1/5.

Assume in addition that E(exp[B7(e)]) < oo for some B > 0. Then, for any
direction of curvature %,

(2.27) £z < 3/4, Xz > 1/8;
thus
(2.28) X >1/8.

REMARKS. Inequality (2.26) is also valid for the d = 2 Ising model of The-
orem 4. The upper bound for &; of (2.27) comes from (2.24) and the upper
bound, x’ < 1/2 for all d, of Kesten (1993) and Alexander (1995). Their bound
on x’ (see the proof of Theorem 7 in Section 6 below) yields

(2.29) £; <3/4 for all d.

It is believed that ¢; = ¢ = 2/3 for d = 2 and that ¢ is decreasing in d. We
remark that versions of Theorems 5 and 6 and the bound x’ < 1/2 remain
valid for i.i.d. directed first-passage percolation. In particular, (2.27) is valid
for d = 2 and (2.29) for all d as long as % has no vanishing coordinates. (See
the discussion preceding Theorem 3 above.) In order to conclude (2.28), one
would simply need to know that there is some direction of curvature, but the
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soft argument we use for this in the undirected case (see Lemma 5 of Section 6)
is not applicable in the directed case.

3. Special case and general approach. We begin this section with a
proof of Theorem 2 for the case of 0 or 1 valued 7(e)’s. After that, we present
in Theorem 8 below an abstract generalization of one of the basic inequalities
used in the 0 or 1 valued case; that generalization will be used in subsequent
sections to prove Theorem 2 in its entirety as well as Theorems 3 and 4.

So we now restrict attention to undirected first-passage percolation on Z?2
with i.i.d. 7(e)’s taking the values 0 and 1 with probabilities p and ¢ = 1 —
p. We will assume that the underlying probability space (Q, %, P) is the
canonical one: () = {0, 1}]Ez (where E? is the set of all nearest neighbor edges in
7%), F is the usual o-field generated by cylinder sets, P = P, is the Bernoulli
product measure and 7(e) is the coordinate variable w(e) for each e. Our object
is to derive the logarithmic lower bound (2.14) for the variance of T, (%) with
constant B > 0, providing only that p < p. = p.(2). The constant B may
depend on the value of p but not on the unit vector £ in R%.

Our first step is to express T' = T,(X) as an infinite series of martingale
differences. This is in the spirit of Aizenman and Wehr (1990) and of Wehr
and Aizenman (1990). To do this, we begin by deterministically ordering all
the nearest neighbor edges: e, eq,.... For future purposes, we will choose a
“spiral” ordering, that is, one in which for each L, all the edges within each
box A = {—L,—L +1,...,L}? come before those in A;,; but not in A;. We
then define F, to be the o-field generated by 7(e1), ..., 7(ex) (and Fy to be the
trivial o-field). The passage time 7T is then the almost sure L! and L? limit
of the martingale E(T | ;) as B — oo and so, since martingale differences
are uncorrelated, we have the standard identity,

(3.1) var(T) = ivar[E(T | ) — E(T | F-1)]
k=1

Next let us define, for each &, T9 and T} to be the random variables obtained
from T by setting 7(e;), respectively, to 0 and 1. That is, we may express w
for each & as (w(ep), @*), where &* is the restriction of w to E?\ {e;} and then
define for 8 = 0 or 1, T%(w) = T(w(es), &%) = T(8, &%).

A moment’s thought on the definition of T in the 0 or 1 valued context
shows that the random variable H, = T} — T only takes the values 0 and
1 and should be thought of as the indicator variable of the event that e; [or
more accurately, the value of 7(e;)] “matters” for T. When H;(w) = 1, this
means precisely that in the configuration (1, ®*), some minimizing path for
T passes through the edge e;, or equivalently it means that in (0, ®*) every
minimizing path for T passes through e;; Hi(w) = 0 corresponds precisely
to the complement. Thus we may write T = T + H}7(e;). Because T9 and
H, only depend on &* and &F is independent of w(ey) = 7(ey), it follows that
E(TY| 7)) = E(TY | Fi-1), E(Hpr(er) | F1) = m(ex) E(Hy | F-1) and

E(T | %) — E(T | Fp-1) =[7(er) — E(r(er)) | E(H} | Fp-1).
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This latter random variable has zero mean, so its variance may be calcu-
lated by squaring, then evaluating the %;_; conditional expectation using the
independence of 7(er) and “;_; and finally taking an overall expectation.
Substituting into (3.1) yields the identity

var(T) = pg 3" E(E(Hy | F11)?)
k=1

=pg) E(P(H,=1|F11)%.
k=1

(3.2)

Let us define F}, to be the event {H;, = 1, 7(e;) = 1} or equivalently the
event that 7(e;) = 1 and some minimizing path for T passes through e;. We
will describe this as the event that e, is a minimizing 1-edge. Then we have,
using independence and the Cauchy—Schwarz inequality, that

1 1
(4.3) E(P(H, =11 #10) = B( 3 P4 | i) = i P(FWP = PFA,
Thus we obtain the key inequality
o0
(3.4) var(T) > pq y_ P(F)%.

k=1

Let us denote by a;, the probability P(F}). The next step of the argument is
to apply the following lemma [which is a variant of a lemma used by Pemantle
and Peres (1994)] to replace the right-hand side of (3.4) by an expression
involving the partial sums:

k
(3.5) Z P(Fj) = E(number of minimizing 1-edges among the first & edges).
J=1

Our logarithmic lower bound for var(T) will then follow after we show that
(3.5) is bounded below by Bi+/k for £ < Cn2. We remark that the constant
1/12 appearing in the lemma is not optimal.

LEMMA 1. For any positive a;’s and m > 1,

m

m 1 -1 /m-1 k 2
(3.6) Soa? = E(Z k—l) ( T k‘l[k‘1/2 ZajD .
k=1 k=1 k=1 j=1
PRrROOF. Let us define the following three positive sequences:

m
(3.7) bm = Zak, Cm = m—1/2’ dm =m(cm — Cmy1).
k=1
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Then, by elementary manipulation of series and the Cauchy—Schwarz inequal-
ity,

0 <bmem =bic1+ »_[(br — bp-1)ck + br-1(ck — c-1)]

k=2
m m—1
(3.8) =Y apcr+ Y bj(cir1—c))
k=1 =
m 12 / m 12 m-1
<(La) (24) -
k=1 k=1 k=1

Our claimed inequality (3.6) is an immediate consequence of (3.8) and the fact
that

(3.9) dp=k(1—=[k/(1+E)IY2)E Y2 > (1/V12)k7 Y2 for k> 1.
This can be obtained by noting that

d x V2 2¢+38[ x T2 .
1 Zle(1- -1 T fi
(3.10) dx{x< [1+x:| )] 2x+4[x+1] >0 forx=>0,

so that
(3.11) x(1—[x/(1+2)]2)>1-[1/2]"% > 1/v/12 for x > 1. o

Combining this lemma with the key inequality (3.4), we see that

-1 2
(3.12) var(T)zm—B—%( ) k‘1> ( ) k‘1> > Blog(n)

12 k<Cn2+1 k<Cn?

provided that the mean number of edges in (3.5) is at least B1+/% for k < Cn2.
Now, let us define the passage time T';, to the boundary of the box Ay as

(3.13) TL = min{T(0, x): max(|x1|,|x2|) = L}

and let us denote by C; the number of edges totally within Ay. If nX is
outside of (—L, L)% (which will be so if L < n/+/2), then any minimizing path
for T, (%) must pass through the boundary of the box Az and hence must pass
through at least 7', edges e within Az which have 7(e) = 1. Thus the number
of minimizing 1-edges among the first C, edges is at least 7' and

(3.14) P(F;) > E(Tr) provided L(k) < n/v2,

1

k
Jj=

where L(k) is the largest L so that C; < k. There are positive constants Bs
and Bj such that, for all %, [ Bav/k] < L(k) < B3k and so

k
(3.15) Y P(Fj) = E(T(p, /) provided k& < (B3)*n*/2.
Jj=1
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For small %, where [ Bavk] = 0, one has P(Fy) > P(r(ej) =1forl < j <
4) = ¢* and thus the desired lower bound of the form B;vk for Z’Ll P(F;)
with 2 < Cn? would follow from (3.15) and the fact that

(3.16) lim E(T.)/L = u(p) >0 for p < pe.

This fact is a consequence of the shape theorem [see (2.7) and (2.9)], which
implies that for p < p., T1/L has the almost sure positive limit u, equal to
the smallest p such that the set p By intersects the boundary of [ 1, 1]2. Since
T /L < 1, the desired limit (3.16) of the mean follows. We remark that u is
easily seen to be u(é;) because of the convexity and symmetry properties of
the set By.

We have now completed the proof of Theorem 2 for 0 or 1 valued 7(e)’s. The
remainder of this section will be devoted to generalizing the key inequality
(3.4) in a sufficiently abstract setting so that it can be applied to all the cases
treated in Theorems 2, 3 and 4 as well as to Theorem 5.

The abstract setting involves a random variable T with 'E(T?) < oo on
the probability space (Q, %, P) where Q = R! = {w = (w;: i € I)} is the
space of real valued sequences indexed by a countable index set I, & = %!
is the usual o-field generated by Borel cylinder sets and P is (for the time
being) any probability measure on (), % ). For U any subset of I, ¥ (U) will
denote the o-field generated by {w;: i € U}. In the undirected first-passage
context of Theorems 2 and 5 with i.i.d. 7(e)’s, I will be E2, the set of nearest
neighbor edges in Z2; in the directed i.i.d. context of Theorem 3, I will be
the set of nearest neighbor edges in Zi. In both of these cases P will be the
product measure which is the joint distribution of the 7(e)’s. Finally, in the
Ising context of Theorem 4, I will be Z? and P will be the infinite volume
Gibbs distribution.

In our general setting, we have a sequence U, Uy,... of disjoint subsets
of I. Sometimes, as in the case of i.i.d. O or 1 valued 7(e)’s, the U;’s will be
singletons corresponding to some ordering of I. Mimicking the notation used
earlier, we will express o for each % as (w*, @%), where w* (resp. ®*) is the
restriction of w to U}, (resp. to I\ U}y). We also have, for each £, disjoint events
DY and D} in #Y+. These are generalizations of the events w(e;) = 0 and
w(er) = 1 from the 0 or 1 valued case. Accordingly, we again mimic our earlier
notation and define

(3.17) Hi(w) = T}(6") - TY(aY),

where

(3.18) T9(&*) = sup T((w*, ")), Ti(a*) = 1nlf) T((w*, &%)).
wkeDg wre Ile

A positive H, represents a minimum amount that 7' is reduced by moving w*
from D} to DY while keeping &* fixed.
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THEOREM 8. Assume the general setting just described and the following
three hypotheses about P, the U}’s, the D’s and T:
(i) Conditional on F (I \ U, Up), the & (Up)’s are mutually independent.
(i) There exist p,q > 0 such that, for any k,
(3.19) P(o* e DY | F(U%)) > p, P(w* e D} | F(US)) > q as.
(iii) For every k, Hy > 0 a.s.

Suppose that, for some ¢ > 0 and each k, F, € . is a subset of the event
{H} > &}. Then

(3.20) var(T) > pge® Y P(F})>.
k

Preparatory to proving Theorem 8, we present the following general lemma,
where the conditional variance of a random variable with respect to a sub-o-
field is defined, as usual, by

(3.21) var,(X)=E(X?| %) -[E(X | £)]?
and where & v &’ denotes the smallest o-field containing & and £'.
LEMMA 2. Let T € L2(Q, 7, P) with (Q, F) = (RL, #!) as above and let

&,%1,e,... be sub-o-fields of F. If £1,Ys,... are mutually independent,
then

(3.22) var(T) > Zvar(E(T | Zr)).
)

If, conditional on £, the £}’s are mutually independent, then

(3.23) var(T) > ZEvarj(E(T | £V Zr)).
P

B

PROOF. We recall the standard fact that for any sub-o-field #,

var(E(T | #)),
Evar(T).

For the first part of the lemma, we denote &; v --- v &} by Z;, the trivial
o-field by %y and &1 VvV Z2 Vv --- by & . Consider the martingale E(T | ),

which converges (in L?) to E(T | F). It follows from (3.24) and standard
martingale reasoning that

var(T) > var E(T | &) = Y _var[E(T | ) — E(T | F3-1)]
k

(3.24) var(T) = Evar y(T) +var(E(T | #)) > {

(3.25)
> ) var[E(E(T | F3) — E(T | F3-1) | £3)].
F

Since &, C %, we have E(E(T | %) | <) = E(T | #:) and since,
for the first part of the lemma, £, is independent of %,_;, we have
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E(E(T | $3-1) | £r) = E(T). Hence the right-hand side of (3.25) equals
that of (3.22). For the second part of the lemma, we begin with var(T) >
E var ,(T). We now apply the first part of the lemma to a regular conditional
probability given &, w(w,dw’). [See, e.g., Durrett (1991), pages 199-200;
here we are using the countability of the index set I so that R’ can be re-
garded as a complete separable metric space with %’ its Borel o-field, which
guarantees the existence of regular conditional probabilities.] The conditional
independence of the «#;’s with respect to & implies that for P-almost all w,
the o-fields 4 A &) are independent sub-o-fields of % in the probability
space (Q, 7, u(w,-)). The first part of the lemma then yields

(3.26) var;(T) > ) var (E(T | £V %¢)).
%

Taking the expectation yields (3.23). O
Another lemma we will need is the following.

LEMMA 3. Suppose X € L2(Q, %, P), D° and D! are disjoint events in &
and £ is a sub-o-field of F such that P(D° | #) > 0 a.s., for § = 0 and 1.
Then

P(D% P(D')
vartX) = p(poy + P(DY)

where x5 = E(X 1p5)/P(D?), and
P(D°| £)P(D!'| %)

(3.27) (x1 — x0)?,

_ 2
(328) Vary(X) > P(DO | f)—{- P(Dl | j)(Xl Xo) a.s.,
where
(3.29) Xs=E(X1ps | £)/P(D°| #) for 8=0and 1.

PROOF. We begin with the top inequality of (3.24) with T replaced by X
and # taken as the o-algebra generated by D° and D!. Now E(X | #) may
be represented as a random variable on a three-element probability space. The
probabilities of the three elements are p = P(D%), q = P(D')and1-p—q =
P(D?) with D? = (D°U D')¢, and the random variable takes values xo, x; and
x9. Since, for any Y, var(Y) is the infimum over a of E((Y — @)2), we have

var(E(X | #)) = inf[ p(xo — )* + q(x1 - @)* + (1 - p — q)(x2 - a)?]

(3.30) pa

(%1 — x0)%,
p+q

> inf[ p(xo — @)® + q(a1 - a)?] =

which yields (3.27). The conditional version (3.28) is obtained by applying
(8.27) to a regular conditional distribution for X given ¢ [see, e.g., Durrett
(1991), pages 198-199]. O
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PROOF OF THEOREM 8. We let &, = (Up) and & = F(I\ U, Uyz) so
that (3.23) of Lemma 2 is applicable. We then use (3.28) of Lemma 3 with
X =E(T| £V %) and D’ = D} x RI\Ut, Since T'1po < T9 1po and D° € 5,
we have
3.3 X1lpo=E(T| £V Zp)lpo=E(T1lpo | £V F1) < E(T)1pe | £V &)

' =E(T)| 4V %) 1po = E(TY | £) 1po,

where the last equality is a consequence of the & v (/. &;)-measurability
of T% and of hypothesis (i) of the theorem. This upper bound for X 150 and an
analogous lower bound for X 15 show that X, and X; of (3.29) satisfy

(3.32) Xo<E(TY|¥), X1>E(T; | ¥),
so that
(3.33) Xl—onE(T}e—T‘,)e|f)=E(Hk|f)20 a.s.,

where we have used hypothesis (iii) of the theorem. This and hypothesis (ii),
when inserted into (3.28), imply

vary (X) > 24
(3.34) p+q

> pqe[P(Hy > e | £)]%

[E(Hr| £))* = pqE(H, | £)T

Thus, from (3.23) and the Cauchy—Schwarz inequality, we have

var(T) > pqe® ) E[P(Hy > | £)) > pqe®y_ P(H} > &)?
k k

(3.35) st P _
> pge® ) P(F.)*
k

4. Proofs of logarithmic bounds for independent first-passage per-
colation. In this section we apply the methods developed in the last section
to undirected and directed first-passage percolation with i.i.d. 7(e)’s to prove
Theorems 2 and 3. We begin with Theorem 2, but rearrange the two cases,
(2.12) and (2.13):

(4.1) P(1(e) = A) < pc(2),
(4.2) A>0 and p.(2) < P(r(e) = A) < p&i*(2).

PROOF OF THEOREM 2, CASE (4.1). We apply Theorem 8 of the last section
in the following context: I = E2 is the set of nearest neighbor edges in Z2, P is
the joint distribution of the i.i.d. 7(e)’s, T' = T, (%) for some unit vector £ and
U, = {ew}, where ey, ey, ... is the same “spiral” ordering used at the beginning
of the last section to prove the 0 or 1 valued case of Theorem 2. We define

(4-3) Dg = (*Oo’a]’ D]]é = [b’ OO),
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where a and b are constants [depending on the common distribution of the
7(e)’s] chosen so that 0 < a < b and such that

(4.4) P(r(e) <a) >0, P(7(e) < b) < p.(2).

If P(r(e) = A) > 0, then a may be chosen as A. The three numbered hy-
potheses of Theorem 8 are easily seen to be valid: (i) because the & (U})’s
are independent even without conditioning; (ii) because (by independence) the
inequalities of (3.19) are equalities with p = P(7(e) < a) and ¢ = P(r(e) > b);
(iii) because T is a coordinatewise nondecreasing function of w. Finally we let
e=b—aand

(4.5) F}p ={r(ex) > b and some minimizing path for T passes through e;}.

Mimicking the language used in the proofin the 0 or 1 valued case, we describe
this as the event that e, is a minimizing b-edge.

We may now apply Lemma 1, as in the 0 or 1 valued case, which reduces the
proof to showing that Zle P(F}), the expected number of minimizing b-edges

among the first & edges, is bounded below by Biv% for k < Cn2. To do this
we consider the undirected first-passage percolation model with i.i.d. passage
times

R 1, ifr(e)>bd,
(4.6) T(e) = {0, if 7(e) < b.
Note that p = P(7(e) = 0) < p.(2) by our choice of b [see (4.4)]. We define
T'1 to be the passage time to the boundary of the box Ay for this first-passage
model. The remainder of the proof is exactly as in the 0 or 1 valued proof
given in Section 3 with (3.14)—(3.16) all valid [except that p in (3.16) should
be replaced by pl. O

PROOF OF THEOREM 2, CASE (4.2). Again we apply Theorem 8 with I, P
and T as in case (4.1), but with different choices of U}, DZ and F'; than before.
We remark that the arguments we will use in this case are very similar to the
block construction arguments used by van den Berg and Kesten (1993). Indeed,
it has been pointed out to us by those authors that a modest strengthening of
a certain property of minimizing paths they derived [see their (2.16)] would
allow us to prove case (4.2) of Theorem 2 with essentially the same choices
of Uy, DZ and F; as we used in case (4.1). They further note that such a
strengthening can be derived by their methods. In order to make our proof
more self-contained, we will not pursue this approach to case (4.2).

To define the Uy’s, we begin by partitioning Z2 into boxes A,, indexed by x
in Z2, which are translates of the basic box A L ={-L,—L+1,...,L}? centered
at the origin: A, = (2L + 1)x + Ar. The scale size L will be chosen later. We
then partition E? into related U,’s with U, containing all the edges totally
within A, and all edges partly within A, which touch, say, the western and
southern boundaries of A,. We choose a spiral ordering x1, xo, ... of the sites
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of Z? and take U, = U x,- We choose
(47) D(}; = (*oo’a]Uk’ Dllg = (b’oo)Uk’
with a = A and b > A a constant such that

(4.8) P(7(e) < b) < p¥r(2).

c

The three numbered hypotheses of Theorem 8 are again immediately seen to
be verified with

(4.9) p=P(r(e)=0"I,  g=P(r(e) > n)"",

where |U1| = number of edges in U;.
Finally we let &€ = min(b — A,2A) and choose

F}, = {there exist two sites in A, which
(1) both belong to a minimizing path for 7', and
(4.10) (2) are separated by Euclidean distance at least L and
(8) are not connected by any directed path of edges
with 7(e) < b}.

In the definition of F, a directed path means one which either goes only north
and east or else only north and west or else only south and east or else only
south and west. To see that F;, C {H}, > ¢}, note that if w = (w®, @*) € F}, and
we first replace all 7(e)’s with e in U, by A [i.e., * is replaced by (A, A, ..., A)],
then either there was a directed segment of a minimizing path between two
sites in the box for which the replacement of a minimizing edge with 7(e) > b
by a 7(e) = A edge reduces the passage time T by at least b — A, or else there
was a nondirected segment of a minimizing path between two sites in the box
whose replacement by a directed segment (with at least two fewer edges than
the nondirected segment) of 7(e) = A edges reduces the passage time by at
least 2A. If we next replace all 7(e)’s with e in U}, by values greater than b,
then the T [for the 7(e) = A in U, situation] is increased by at least b— A (if a
new minimizing path still passes through U}) or else by at least the amount
(> &) that it was reduced previously (if the new minimizing path bypasses
U}). We remark that the second condition in the definition of F';, was not used
yet, but will be needed below.

As in case (4.1), an application of Lemma 1 reduces the proof to showing
that Zf;l P(F;) > BivVE for k < Cn? We will show that this is true for
sufficiently large L. To do this we will define a site first-passage percolation
model related to the Fj’s. For each x in Z2, we define 7% to be the indicator
variable of the event F% whose complement is

F*¢ = {there exist two sites in A,, separated by Euclidean
(4.11) distance at least L and connected by some directed
path of edges with 7(e) < b}.
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Note that F, D [F;, N ﬁ'xk], where

A

F, = {a minimizing path for T touches at least two
(4.12) points in A, which are at least distance L
apart}.

The site first-passage percolation model we wish to consider is the one with
(ii.d.) site passage times 7% defined on the graph with vertex set Z? and edge
set E?* = {pairs of x-neighbors in Z2}. Two distinct sites, (x1,x2) and (y1, y2)
in Z2, are s-neighbors if |x; — y1| < 1 and |x2 — y3| < 1; that is, *-neighbors are
either ordinary nearest neighbors or else diagonal nearest neighbors. We wish
to compare Z';l P(F;) to the mean of T%,, the passage time to the boundary
of the box A

T = min( Y 7% 7y is a *-connected path of sites in
xey

(4.13)
72 from the origin to the boundary of A M).

The point of our choice of *-connection is that the set of x’s in Z2 for which
F. occurs is a *-connected set containing the origin and at least one site on
the boundary of Az, providing nx [recall T = T',(x)] is outside of the square
[-L—M(2L+1), L+M(2L+1)]? [which will be so if M+1 < (2L+1)"1n/+/2l.
Under the same conditions on M, L and n, the number of £’s with x; in the
box Ay for which Fj, occurs is bounded below by T%, and so we have as an
analogue of (3.14):

k
(4.14) J_Zl P(F;) > E(T} ;1 ;) Providing vE/2+1/2 < 2L+ 1)7'n/v2.

If we can show that (for large enough L)
(4.15) lim E(Ty)/M = un* >0,
M—oo

then it will follow that Z?ﬂ P(F;) > Bk for ky < k < Cn?. This together
with an ad hoc bound for & < kg will complete the proof.

The positive limit in (4.15) would follow from the (Z2, E?*) site analogue of
the shape theorem, providing

(4.16) p* = p*(L) = P(r}; = 0) = P(FY’) < p;(2),

where p*(2) > 0 is the critical value for independent site percolation on
(Z2,E%). A proof can be obtained by essentially the same arguments used
in the “standard” version of Theorem 1 [see Kesten (1986)].

We claim that the inequality of (4.16) is valid for sufficiently large L because
the requirement (4.8) on b implies that p*(L) — 0 as L — oo. This last claim
is a direct consequence of the directed percolation result [see Aizenman and
Barsky (1987) for one main ingredient] that since P(7(e) < b) < pgir, there
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exist ¢ > 0 and ¢’ < oo such that the event A(x, y), that x and y are connected
by some directed path of edges with 7(e) < b, satisfies

(4.17) P(A(x,y)) < ce~cl*=I,
Here || x| is the Euclidean distance. Thus

p(L)=P(FSy) < Y P(A(x,)
x,yin A
(4.18) lx=yI=L
<c'L? L >0 asL — occ.

This completes the proof of case (4.2) of Theorem 2. O

PROOF OF THEOREM 3. The proof here is mostly like that of case (4.1) of
Theorem 2. Again we apply Theorem 8. This time I = Ei, the set of nearest
neighbor edges in Zi, P is the joint distribution of the i.i.d. 7(e)’s, T = T, (%)
for some unit vector £ and U = {e,}, where ey, eq,... is some spiral ordering
of ]E%r The D’,Se’s are defined as in (4.3) with 0 < a < b chosen so that

(4.19) P(r(e) <a) >0, P(7(e) < b) < p:}if(2).

We again define F, by (4.5) and let & = b — a. Again Lemma 1 reduces the
proof to obtaining the appropriate B;+/k lower bound on the expected number
of minimizing b-edges among the first VE edges in ]Ei To derive this bound,
let T';, denote the minimum number of 7(e) > b edges on directed paths from
the origin to the boundary of Az N Zi. Then, even in the absence of a complete
shape theorem in the directed case (see the discussion preceding Theorem 3),
it can be shown [e.g., by arguments like those used to obtain (4.15) in the proof
of case (4.2) of Theorem 2] that liminf E(T1)/L > 0. We leave further details
to the reader. O

5. Proof of logarithmic bound for Ising first-passage percolation.
This section is devoted to the proof of Theorem 4. As usual, we begin by ap-
plying Theorem 8, but this time we will need to apply it many times with
different choices for the U,’s, D3’s and F)’s and then average the resulting
lower bounds for var(T). In the Ising context, I = Z2, P is the infinite volume
(free boundary condition) Ising model Gibbs distribution for the given parame-
ters o and h [which is supported on the subset {—1,1} of R), and T = T, (%)
for some unit vector £, defined in terms of the dependent edge passage times

1, if w, # w,y,
0, ifwy,=w,, for(x,y)e E?

(5.1) ((x,9)) = {

[see (2.17) and note that in the notation we have inherited from Section 3, w,
is essentially the Ising spin variable o,].

Let S denote a (site) lattice animal (at the origin); that is, a nonempty finite
subset of Z2 containing the origin which is connected (by the edges of E?). Its
boundary, denoted 4S, is the set of sites not in S which are nearest neighbors
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of some site in S and its closure, denoted S, is the union of S and 4S. For each
lattice animal S, we will choose the U}’s and so forth as follows. Let Rs be the
smallest positive integer such that all the translates, S + Rgx for x € Z2, are
not only mutually disjoint, but also are not nearest neighbors of each other
G.e., S+ R;x is disjoint from S+ Rgy for every x, y € 7% with x # y). We then
take Uj, = S + Rgx}, where x1, X, ... is a spiral ordering of Z? and note that
hypothesis (i) of Theorem 8 follows from the nearest neighbor spatial Markov
property of nearest neighbor Ising models. [We remark that for a finite range
Ising model, hypothesis (i) would be valid with U, = S + (Rg + r)x; and r
large enough.]

Let us denote S+ Rgx, by U9 so that U = 9S+Rgx, and Uy, = UUIUY.
We then choose

(5.2) DY ={w, =+1for x € U},

(5.3) D}, = {wx = +1 for x € JUY, w, =—1for y e UY}.

Hypothesis (ii) of Theorem 8 follows from the usual formula for the conditional
probabilities of a Gibbs distribution, with p and ¢ depending on ¢/ and % as
well as S. Hypothesis (iii) is valid because when | e = +1, the change from
|y, = +1 to = —1 either reduces T by 2 (if a minimizing path entered and
exited UY) or by 1 (if a minimizing path enters but does not exit U (,)e or vice
versa) or else leaves T unchanged. Finally we take £ = 1 and

(5.4) F, = {coIU,e € D}e} N {Rsxy lies on a minimizing path for 7'}.

It should be clear from our discussion of hypothesis (iii) that F;, Cc {H} > &}.
We will describe the second event on the right-hand side of (5.4) as the event
that Rsx; is a minimizing site.

Theorem 8 gives us the inequality (3.20) with the above definitions. Let us
also consider alternate definitions in which the +1’s and —1’s are interchanged
in (5.2) and (5.3) with the resulting F',, p~ and g~ appearing in (3.20). If we
average these two inequalities and use the fact that (a? + 52)/2 > (a + b)2/4,
we obtain

(5.5) var(T) = ;psqs ) P(G1)?,
k

where pg = min(p, p~), gs = min(q,q~) and
(5.6) G = FrUF}, = {Rgx; is a minimizing site} N{¢(Rsxz) = Rgx;+S}.

Here € (x) denotes the “like-spin cluster” at site x, that is, the maximal con-
nected set of sites y containing x and with each w, = w,. [To be overly precise,
¢ (x) should be defined as the empty set if w, # +1.]

Let us denote by G, the event given by the right-hand side of (5.6) but with
Rsxy, replaced by x. If we were to replace our original choice of U}’s by the
translates S + Rgx;, + y for a fixed y € Z?, we would obtain an analogue of
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(5.5) but with the G.’s originally appearing replaced by G ,. Averaging these
inequalities over y in the box {0,1,..., Rg — 1}? yields the bound

(5.7) var(T) > rg Y P(G.)*

xeZ?

with rg = psqs/(2Rs)?. Next we average (5.7) over all lattice animals S with
cardinality |S| < M and use the fact that the average of squares is greater
than the square of the average to conclude that

(5.8) var(T) > ry, > P(GM)?,
xezZ?

where r, > 0 depends on M, h and J, and where
(5.9) ny = {x is a minimizing site and |€(x)| < M}.

This completes our use of Theorem 8.

To apply Lemma 1, we reorganize (5.8) by using a spiral ordering x1, xo, . ..
of the sites in Z2. By the usual reasoning, it then suffices to. show that, for
L < n/+/2, the mean of

(5.10) Yﬁl = {number of x in Ay which are minimizing
' sites with |€(x)| < M}

grows at least linearly as L — oco. However, for L < n/v/2,

(5.11) Yﬁl > min( Z 1IK(x)ISM),

VI=L\ x5y

where the minimum is over (site self-avoiding) connected paths starting at the
origin containing |y| = L sites. Now the elementary inequalities

NN = (M+1) Y Lewpsm+ Y Lewiu

xey x€y xey

> Myl - M) Licwysu

xey

(5.12)

together with (5.11) imply that

(5.13) Y{ > L(l - M‘llmla)L(L‘l > |g(x)|).
yi=

xey

The desired linearly growing lower bound on Yﬁl (and hence on its mean)
is then an immediate consequence (by choosing M large enough) of a result
of Fontes and Newman (1993): For (J, h) in the interior of the nonpercolating
regime for the standard Z? Ising model,

(5.14) lim sup max L™} Z [€(x)] < oo a.s.

Lo l7I= xey

We remark that this result was used by Fontes and Newman (1993) to prove
the Ising model shape theorem in the nonpercolating regime.
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6. Proof of power law inequalities.

PROOF OF THEOREM 5. This proof is along the same lines as the proof of
Theorem 2 given in Section 4, except that Lemma 1 will be replaced by a
simple Schwarz inequality. We will consider here the general d version of case
(4.1), that is, P(7(e) = A) < p(d); the more complicated case where A > 0 and
pe(d) < P(7(e) = A) < p¥™(d) may be handled by the same type of argument
used for it in Section 4.

Using the same notation as in the proof of this case of Theorem 2, we again
let F; be the event that e; is a minimizing b-edge for T, (%) so that Theorem
8 yields

6.1) var(T,(%)) = pa(b—a)® 3 P(Fy)*.
k=1

Let us denote by F, the event that e is a minimizing b-edge for T,(%). For
any vy > &;, we define

(6.2) Vo =[(1+ 8)nu(£)Bo] N A} (X),
(6.3) &, = {e € E%: each endpoint of e is in V,},
(6.4) A, = the event that M, (x) C V,.

Then from (6.1) and the Schwarz inequality,

N2 2
(65)  var(Tu(2) = patb—a)® 3 P(Fo= @%li)[ 3 P(Fe)] .

Now | &, | grows like n1+(@-17 while

(66) Y P(F.) = P(A,) E( S 1r | An) _ P(A) E(i 1, | An).
k=1

ecéy ecé&y

Now since y > &3, #(A,,) is bounded away from zero by the definition (2.21) of
¢; and by the shape theorem. The shape theorem for the 7(e) variables of (4.6)
also implies that }_7. ; 1z, > Dn for large n a.s., which implies at least linear
growth for the second factor on the far right of (6.6). Thus var(T, (%)) grows
at least like n'~(¢-D7, Letting y approach &; yields the desired inequality
(2.22). O

PROOF OF THEOREM 6. We assume x’ < 1 since in any case ¢; < 1 follows
from the shape theorem. We will show that if % is a direction of curvature for
By, then for every y > (1 + x')/2, P(M,(%) c A}(%)) - 1 as n — oco. We
begin by noting that

(6.7) My(#)= |J [B:(0)NBr,@)-n(v(n,%))],
0=t<Tn(%)
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where
(6.8) Bi(y) ={z€Z% T(y,2) < t}.

The expression (6.7) for M, (%) is just the statement that any site touched by
a time-minimizing path from the origin to v(n, ) must be reached from the
origin by some time ¢ [< T,(£)] and that it must be possible to reach from
there to v(n, %) in the remaining time. From the definition of x’, we have for
any k > x' that

(6.9) T,(%) <nu(x)+n* forlarge n, a.s.,
and for any fixed y that
(6.10) Bi(y)c y+ (t+¢t“)By for large ¢, a.s.

These imply that for any « > y’ the following is valid with probability ap-
proaching 1 as n — oo:

(6.11) M,(x) C U {(t4+n)BoN[nx + (nu(x) —t+2n<)By]}.
0<t=np(%)+n~

The remainder of the proof is a purely geometric (nonprobabilistic) argument
that the RHS of (6.11) is contained in the cylinder A} (%) of radius n” for
all large n. The desired result follows immediately from the next lemma by
letting « approach y’. Recall that L; is the straight line passing through the
origin and n%. O

LEMMA 4. Let « € (0,1). If X is a direction of curvature for By, then there
is some constant ¢ € (0,00) so that, for any t1,ts > 0 with t1+ty < nu(x)+3n*
and any y € t1Bo N [nX + t2 By,

(6.12) d(y,L;) < cnY%  for large n.

PrROOF. Without loss of generality we may suppose ¢1 + t2 = nu(x) + 3n*.
Choose ty € [0,nu(X)] such that ¢; — 3n* < tp < ¢t; and nu(X) —ta < tp <
nu(X)—t3+3n*. Denote by H the (d —1)-dimensional hyperplane through the
origin which is parallel to the tangent hyperplane to By at the point &/u(X).
If there is more than one tangent hyperplane, we choose one which is also
tangent at X/u(%) to a ball D satisfying Conditions 1’ and 2’ just above Theo-
rem 6. Let H; for i = 1,2 denote the closed half-spaces on the two sides of the
hyperplane H + #y%/u(%) so that the origin is in H; and n% is in Hg. Then
we have the inclusion

(6.13) {t1BoN[n& +teBo]} C {(t1BoN Hz) U ([nX + taBo] N H1)}.

We will show that (6.12) is valid for y € t;Bo N Ha. A change of coordinates
then gives (6.12) for y € [nX + t2Bo] N Hy. By Condition 2’ for the ball D,
t1Bo C t1D. We now have a ball D containing the origin which is tangent at



DIVERGENCE OF 2D SHAPE FLUCTUATIONS 1003

/() to H+ %/ u(X). For ¢y < nu(%) and ¢ € [to, 2o +3n ], we need to show
(6.12) for y in the intersection of #;D and the “far side” of #o(H + x/u(X)).
This intersection is contained between H + toX/u(%) and H + ¢1%/u(X) and is
in fact the “polar cap” of the sphere #1 D (a sphere of radius ¢; p for some fixed
p) sliced off by H + tox/u(&). The thickness of the cap (along the direction
perpendicular to H) is ¢; — ¢9 < 3n* and thus its transverse diameter is

2([pt1]% — [pt1 — (t1 — t0)1*)V/2
(6.14) < 2[2pt1(t1 — to)1Y? < 2[2p(nu(£) + 3n<)3n<]Y2
— O(n(1+K)/2).

Since the line L; passes through the cap, (6.12) follows. O

PROOF OF THEOREM 7. Let % be a direction of curvature for By. We have
from Theorems 5 and 6 for d = 2 that

(6.15) x: = (1—x)/4,
which implies that
(6.16) max(x’, xz) > 1/5.

When P(7(e) = 0) < p.(d) and the moment generating function condition on
7(e) is valid, Kesten (1993) and Alexander (1995) have proved that

(6.17) x <1/2 for all d.

Inserting this bound into (2.24) and (6.15) yields (2.27) for d = 2 and (2.29)
for d > 2. Finally (2.26) and (2.28) follow by taking the supremum over x and
using the next lemma. O

LEMMA 5. Let B be a nonempty bounded subset of R%. Denote its interior,
closure and boundary, all defined in the usual way by int(B), B and JB =
B\ int(B). There exists at least one point z € 9B such that, for some closed ball
D with radius p € (0,00), z € dD and D D B.

PrROOF. Let D, denote the closed ball of radius r centered at the origin.
Except for the single special case where B consists of only the origin, we take
p =inf{r > 0: D, > B}, D = D, and z any point in D, N B. We leave details
to the reader. In the special case, take D to be any sphere with positive radius
whose boundary passes through the origin. O
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