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HYDRODYNAMIC SCALING LIMITS WITH DETERMINISTIC
INITIAL CONFIGURATIONS

By SHENGLIN LU
University of Michigan

We discuss the hydrodynamic scaling limits starting with determinis-
tic configurations for different models. Certain estimates on the entropy of
the system are derived.

1. Introduction. For a large system of interacting particles, the deriva-
tion of hydrodynamic scaling limits, besides being important for the under-
standing of the macroscopic behavior of the system, is of much interest in
itself. Recently Guo, Papanicolaou and Varadhan [4] gave a new approach to
the hydrodynamic scaling limit problem. The method involved is to control
certain aspects of the microscopic evolution by estimates on the entropy. If
the initial data have proper entropy bounds, they concluded that the system
has the hydrodynamic limit as a weak solution of certain nonlinear parabolic
equations. This approach has been applied to derive hydrodynamic limits of
various models. Fritz [3] generalized the method to the infinite volume
Ginzburg-Landau model, Varadhan to the nongradient Ginzburg-Landau
model [12], Quastel to the colored diffusion [7] and Varadhan to interacting
diffusion models [13]; see, for example, [1] and [8] for a review.

In this paper, we again consider the hydrodynamic limits, but we start
with deterministic configurations. In this situation, the initial entropy is
often infinite, so the bound on the initial entropy is not available. Proper
understanding of the evolution of the microscopic structure is necessary. To
get the hydrodynamic limit, we show that after a finite period of microscopic
time the entropy has certain bounds, and at the same time the macroscopic
structure has changed very little.

The main idea is based on the fact that since the evolution of the underly-
ing system is elliptic, reasonable conditions on the models as well as the
initial configurations imply moderate control on the entropy in a microscopi-
cally finite time.

Here we carry out our approach for the Ginzburg-Landau model and the
interacting diffusion model. These two models are different because the
corresponding systems conserve different quantities: the first one is a discrete
lattice model and the second one is continuous. In fact our approach can also
be applied to many other models, for example, simple exclusion models, zero
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range attractive models and these models in high dimensions and with
infinite volume [6]. Furthermore, the nature of our approach allows us to
understand the behavior of dynamics with more than one phase; see [15].
This is because we assume no more than certain macroscopic bounds of initial
configurations, which is different from the assumptions given in [4] and [14],
where in addition to the macroscopic bounds on the initial configurations, a
proper choice of reference states (Gibbs or local Gibbs states) is required for
the initial states.

The rest of the paper is organized as follows. In Section 2, we discuss the
Ginzburg-Landau models (gradient and nongradient) on the circle. In Section
3, we discuss the interacting diffusion model. The treatments are slightly
different because of the nature of the conserved quantities, but the technique
is still the same.

2. Ginzburg-Landau model.

2.1. Model and main results. For integer N > 1 let S, denote the peri-
odic one-dimensional lattice {j/N: 1 <j < N}, with charges x; at site j/N.
The vector x = (x;,...,xy) evolves in time as a d1ffus1on in RN with
generator

N d
ZW(xi’xin)(o.,x - )7

i=1 ﬁxi+1

N N
7L=Zl (xt?xz+l)( xi
N2
2

where
W(x,y) = —ay(x,y) +as(x,y) +a(x,y)(V'(x) = V'(y))

for suitable potential function V and strictly positive function a(x, y) with
bounded continuous first derivatives satisfying

0<C'<a(x,y) <C <o,
The functions a, and a, are the partial derivatives

Jda da
=— and a,=—.

a;
ax dy

The gradient version of this model has a(x, y) = 1, which in many ways is
easier to handle since certain cancellations occur when summation is per-
formed.

Assuming

f e V¥ dz =1,

then the diffusion is stationary and reversible with respect to the probability
measure ®y = exp(— LY V(x,)) dx, --- dxy on RV,
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For simplicity, we also assume

| exp(Ax — V(x)) dx = M(X) <= forall A €R,

| exp(alV'(x)| - V(x))dx <= forall o> 0,

and, for some positive constants C,, C; and C,,
-Cy<V"(x) <C, +C,V(x) forall x €R.

Since the sum x; + -+ +x, is conserved by the dynamics, the hyperplane
x; + - +xy = Nay of average charge a, is invariant under the evolution.
The dlfqulOIl restricted to this hyperplane is elliptic and ergodic with the
invariant measure duy , (x) as the conditional distribution of ®, given
xq + -+ +x5/N = ay. Therefore,

1
(1) d/'LN,aN(x) = Z

N,ay

N
exp(-— )» V(xi))&zlexlwamdxl e day.
i=1

The following stochastic differential equation version of the system will be
frequently used to discuss the microscopic structure:

2

(2) dx;(t) = ”]\;_[_W(xn x;01) + W(x,_y,x;)] dt

+ N[C’(xi’ %;01)dB; —o(x,_q, ;) dBi—l]’

where o(x;, x,,,) = m

Let us denote by Py . the diffusion process starting from determmlstlc
configuration (x,(0),. ..,xN(O)) (N,..., ) with 1/N)EN nY = ay, and
by f% the density of the process with respect to d My, g, at time ¢.

Here is the main result:

THEOREM 2.1. Assume there is a constant Cg, such that initial configura-
tions (Y, ..., nf) satisfy the following conditions:

D A/N)LY ,V(nN) < C4 for all N.
(i1) There is a function m, on S such that, for all smooth functions J on S,

Al}linxﬁ ZJ( ) iszSJ(B)mO(H)dG.

Then for every t > 0, each & > 0 and all continuous functions J(-),

28}=0,

where ay = (1/N)LN N and m(6,t) is the unique weak solution of the

(3) 11mPNa{ ZJ( )xi(t)—fJ(O)m(O,t)dH
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nonlinear diffusion equation

om(6,t) 19, J
() ot = 3 A0 0) (R (0, 6))) |,
m(0,0) =m0(9)’

where h(m) and 4(m) are the quantities to be defined below.

For each m € R, let h(m) = sup,[ Am — log M()\)] and let A = A'(m); with
this choice of A, we have a product measure @, on [1” R = () with each
coordinate having the distribution (1/M(A)e**~ V() dx. Let g(x_,,..., x;) be
a smooth function of (2! + 1) variables. We view this as a function g(w)
defined on Q. If we denote by T the shift operator (Tw)(i) = x,, ; if (i) = x;,
we can form the formal infinite sum

i= L g(Th).
k= —
Although ¢ does not really make sense, the partial derivatives 9¢/dx; are all
well defined. We can now write down the formula for 4(m):

ot at\I?
a(xl’xz)[l - (‘7—9‘_1 - 56_2)] },

where the infimum is taken over all functions g, varying ! as well as the
function of the (21 + 1) variables. The detailed discussion of this characteri-
zation can be found in [12]. Especially 4 = 1 when a = 1, which is the
gradient case.

For a density function fy with respect to wy , on the hyperplane of
average a,, we define the entropy function as follows:

G(m) = inf E9n
g

Hy, o, (fv) = [fv 108 fy diy, a0, (%).

Let (y,(2),..., yxy(@®) = (x,(¢/N?),..., xy(t/N?)) denote the nonspeeded
diffusion process. Then the diffusion generator is

1N d 9 \? 1N F) 3
= L (¥, % (‘—_ ) -5 LWy (—_ )
2i=1 ( +1) ay; Y1 2 i=21 ( Y ay; Y1

We continue to use %y, Py, and f{ to denote the generator, the
diffusion process and the density for the time changed process
(y4(8), ..., yn(2)). We will show the following theorem.

THEOREM 2.2. Under the same conditions as in Theorem 2.1, for all T > 0,
there exists a constant C, = C,(T) such that, forall 0 <T/2 <t <T,

(5) Hy o (fv) < C4N
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and, for every smooth function J on S and & > 0,

N-ox

1N i
(6) lim PN,aN{ Ni;t](ﬁ)yi(t) - fJ(O)mO(O) dé| = 5} = 0.

Theorem 2.2 reveals that although the initial configuration is far away
from equilibrium or local equilibrium states, the system demonstrates the
property that after a finite amount of time the entropy achieves linear growth
rate in the number of sites, whereas the macroscopic behavior is still the
same.

The proof of Theorem 2.1 needs a combination of Theorem 2.2 and the
following version of results given in [12].

THEOREM 2.3. If the initial density fyy on the hyperplane of average ay
satisfies

Hy ,(fy) <CsN forallN,

and if there is a function m, on S such that, for all smooth functions J on S
and every 6 > 0,

N
lim PN,GN{ —]%ElJ(—;\;)xi(O) — [J(6)m, db| > a} -0,

N-ox

then for every t > 0, each 8 > 0 and all continuous functions J on S,

1 X i
lim PN,GN{ N Y J(N)xi(t) - [J(O)m(t,()) do| = 8} =0
i=1

N-ox

with m(t, 0) being the weak solution of the nonlinear diffusion equation (4).

The difference between Theorem 2.3 and the result of [12] is that the
system considered in this paper occurs on typical hyperplanes instead of on
the whole space. Since the same techniques can be applied with slight
modifications, we omit the proof here. The interested reader can refer to [12].

2.2. Entropy bound. From earlier works (see [4], [11] and [12]), we know
that a proper bound on the entropy growth plays a key role in deriving
hydrodynamic scaling limits. In this section, we study properties of the
entropy growth for the Ginzburg—Landau model with deterministic initial
configurations. The main result is the following proposition.

PROPOSITION 2.1. If the initial configurations satisfy the conditions in
Theorem 2.1, then there exists a Cq = C¢(T') such that, for all 0 <T/2 <
t<T,

[ £ log £ diuy,o\(%) < C6N.
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We introduce a new diffusion process Qy ,,, which is described by the
following stochastic differential equation:

dy;(t) = %[(al(yi7yi+1) = ay(¥i> ¥iv1))
—(ay(yi-1, %) — a2(yi—l’yi))] dt
+ 0 (¥ Y1) dB; — 0 (i1, ¥:) dBi 1,
¥:(0) = ;.

The new process has the same initial configuration as that of Py , , and has
its infinitesimal generator in divergence form:

Z( d d ) o )( d d )
= = Yiy Y - |
&yz+1 ay; B Y1 ayi

In addition, the invariant measure on the same hyperplane Y~ ,y, = Nay of
average ay is

dVN aN(x) 6(21‘1 19.=Nay) dxl cte de.
Obviously the process @y , occurs on the hyperplane of average ay. If we
rewrite the generator .%), as

() fy=s % ()~
v=5 L ——a(¥) >
2 ij=1 9y; Y 9y;
then
A(y) = (aij(y))
an T a; o —Qp9 0 0 —an,1
—ap ay ot ays —ay 3 0 0
= 0 —ay 3 aggtag, - 0 0 ,
—ay 1 0 0 o —Gy-1 N Av-1,N T an1

with a;; = a(y;, y;) and for a € RY,

N
a'A(y)a = Z ai,i+l(y)(ai - ai+l)2
i=1

by the assumption on the boundedness of a(:, - ),

(8) C~1By < A(y) < CBy,

with
2 -1 0 - 0 -1
-1 2 -1
-1 0 0 - -1 2

We denote by g the density function of the diffusion process @y ,, with
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respect to duy . at time ¢. Then

9) Hy aN(fN) /fN 1°g fi dl’«N a(¥) + /fN log g3 dpy o, ()-

The first term is simply the relative entropy of density functions on the same
hyperplane. To estimate this term, we need the following lemma.

LemMmA 2.1. Foranyt > 0,

dQN, ay
dPy ..,

1 N
= exp{ft—z— Z O'(yi,yi+1)(vl(yi) - V,(yi+1)) dp;
Ex 04 ;-1

1 N 9
_gf ; [V,(yi+l) - Vl(yi)] a(y;> Yis1) ds}.

This is an application of the Cameron—Girsanov theorem (see Stroock and
Varadhan [9]). Since both ff and gk are marginal densities of the corre-
sponding diffusion processes, by the property of relative entropy for pro-
cesses, we have

Py .
ffN Ing dity, o (¥) < EPV.en log kol
N dQN,aN

1., X
=EPN’"N[§£) Y (¥, i) [V (5i41) _V'(yi)]zds ’
i-1

Moreover, gy = Gy/(Wy ,,(¥)), where Gy is the density of the diffusion
Qy,,, at time ¢, but with respect to dvy ,, on the hyperplane of average ay,
and

So
[ 108 g diy, () = [ £ log Gy diy,ap(9)
+ [ £ log Uy o ()" dity 0 (¥)-
By our assumption on the potential V,
N-1 N-1
Zy a0y = fsNeXP(— Y V(y) - V(Nazv - X yi)) dyy =+ dyy
i=1 i=1

< exp(C;)
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for some constant C; > 0 dependent on the lower bound of V. Then

ZV(y, ]

i=1

ffN IOg\PN aN(y) d”’N aN(y) - 1OgZN ay +EfN

N
= Efven| 3 V(yi(2))

i=1

+C.

So the proof of Proposition 2.1 is reduced to the following lemma.

LEMMA 2.2. There exist constants Cg = C4(T) and Cy = Co(T') such that,
forall 0<T/2<t<T,

(10) E' log G < CgN
and, for 0 <t < T,

(11) EP|§V(yi(t))] <GyN,
i=1
N
(12) Ep[fot ‘_Zla(yi’yi+1)(vl(yi+l) - V'(yi))z ds] < CyN.

The proof of Lemma 2.2 needs the following upper bound for the heat
kernel of a general operator in divergence form.
For an elliptic operator in divergence form,

(13) “(Z_E Z_ lj( )—

with symmetric a(x) = (a,;)} ;_,, satisfying
(14) Ca'Ba <a'a(x)a < C'a'Ba

for some positive constant C and symmetric matrix B with positive eigenval-
ues, we have following estimate of the upper bound for the heat kernel:

PROPOSITION 2.2. The heat kernel T(x,y) of the parabolic operator & —
d/dt has the Gaussian-type upper bound

Cl) 1 ( (y —x)'B Yy —x)
—75 ex

b

15 I(x, =
where él and C, are positive, uniform constants independent of the dimen-
sion and the operator, depending only on C.

Proposition 2.2 can be proved by using the argument in Fabes and Stroock
[2] and a proper change of coordinate scales; see Lu [6].
Now we proceed to the proof of Lemma 2.2.
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ProoOF oF LEMMA 2.2. [(10).] Since the coefficients of the generator _<Z7N in
(7) satisfy relation (8), by Proposition 2.2, we have the following upper bound
for the density function Gj:

Ccit (y = m)'Bg,} (y — )
Gi(m,y) < ——— exp| — y
~v(m, ) N1p, 172 exp 3iC,,

Here B, is the restriction of By to the subspace defined by the hyperplane
of average ay, B;N1 is the inverse of B, on the hyperplane and C,, C,, are
functions of C. A simple calculation shows that B, has positive eigenvalues

Aj=2—2cos(2j7r/N), j=12,....,.N—-1,

so |B| = TTN71,. Since log(1/T1),) < C;, N for some uniform constant C,,
there exists a C;5(T") such that, for all T/2 <¢ < T,

log(GY) < Cy5(T)N.

Note that we need the condition ¢ > T /2 > 0 to get the correct upper bound.
[(11).] By It6’s formula,

N N
d}ZlV(yi(t)) = -3 ‘gl[v,(yi) - V,(yi+1)]W(yi’yi+l) dt

(16) N
+% '_El [V”(yi(t)) + V”(yi+1(t))]a(yi? Yir1) At

+ dmartingale.
By the boundedness of a,, a,, we have
(V'(x) =V'(y)W(x,y)
= (V'(2) = V' () [a(x, ) (V'(2) = V'(9)) + ax(x, ) — ax(x, )]
2 =Cy + 3a(x, 7)(V'(x) = V()
for some fixed constant C;, which depends on the bounds on a,, a,. By the
assumption that V"(x) < C; + C,V(x) and (16),
N
Efven Y V(5:(t))
i=1
P i1 N , , 2
(17) <Cy;N-E N"’N[O'z' Y (a(y ¥ V' (3141) = V()] ds
i=1

¢ N N
+ CmfoEPN,aN ~=Zlv(y,.(s)) ds + ~§1V(yi(0)).
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Using Gronwall’s inequality and the assumption on initial configurations,
there exists a constant C,4(T") such that, forall 0 <t < T,

N
EPv.on ¥ V(3:(t)) < Cig(T)N.

i=1
[(12).] It is obvious from (17) that

¢ N 2
EPN'aNf Y a(y, Y )V (yis1) = V()] ds
0,2

N N
<Cy _EIV(”’L') - E.Elv(yi(t))

N
+ C17[0tE[‘_ZIV(yi(S))dS]-

By the assumption of the lower bound on the potential V and Lemma 2.2 (11),
then

N
' ’ 2
EPN’“”f E (55 ¥ir D[V (9i41) — V()] < CyN,
0;-1
forall 0 <t < T with C,3 = C4(T).
Thus we have proved Lemma 2.2. Proposition 2.1 is an immediate conse-

quence. O

2.3. Macroscopic behavior. In this section, we will prove the following
proposition.

PRrROPOSITION 2.3. For any finite t > 0, § > 0 and all smooth functions J
on S,
lim P, >68) =0.
va)w e { }

This result tells us that in a finite period of time, the nonspeeded diffusion
process has made little change macroscopically.

N

Z('pm—wwmmwe

PROOF OF PROPOSITION 2.3. For a smooth function J, we use Itd’s formula:

—24 pm——zd )

:1 N

- ;2f zw( )W(y, $), ¥i+a1(s)) ds

fZW(%u»nmmwmw

Here VJ(i/N) = N(J((i + 1)/N) — J(i/N)) is the discrete differential of J
at i/N. Since W(x, y) = ay(x,y) — a,(x,y) + alx, yXV'(x) — V'(y)), and
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with the assumption on a(-, ) and inequality (12) in Lemma 2.2, then we
know the right-hand side goes to zero in probability. Therefore, by our
assumption on initial configurations, in any finite time ¢ > 0, the macroscopic
structure of the system remains unchanged. O

2.4. Remarks.

1. As we see in the proof of Proposition 2.1, we need the bound on the
distribution of the configuration {x,(¢),..., x5(¢)}; see Lemma 2.1. So the
assumption on the initial configuration in Theorem 2.1 is one of many
natural choices. Basically, it requires that initial configurations be dis-
tributed reasonably well; that is, satisfy condition (i) in Theorem 2.1.

2. It is obvious that the gradient model is a special case of the model
discussed here. In fact, the derivation for the gradient model is straightfor-
ward because the heat kernel G§ for the new process can be computed
explicitly; see [6]. As for the infinite volume Ginzburg-Landau model,
certain prior estimates are needed to control the boundary terms; the
techniques developed in [3] can be used. See [5] and [6].

3. As seen from the proof of Theorem 2.2, the constructed process with a
special choice of potential function can help us to get the entropy bound in
a finite microscopic time. In fact, the selection of the potential function is
not unique; for example, we can choose a quadratic potential function. We
can achieve similar estimations by the same method.

3. Interacting diffusions on the circle. In contrast to the
Ginzburg-Landau model, which conserves the total charge, the interacting
diffusions considered below conserve the total number of particles.

3.1. Model and main results. We denote by S the circle of unit circumfer-
ence and consider a system of N interacting Brownian motions with S as a
state space satisfying the following system of stochastic differential equa-
tions:

N
dx;(t) = -N Z .V’(N(xi(t) —x;(t)))dt + dBi(¢),

(18)
i=1,2,...,N.

Here (B,,..., By) are N independent Brownian motions on the circle and
V(:) is an even function on R satisfying the following assumptions:

(A1) V is twice continuously differentiable;
(A2) V >0, V(0) > 0 and V has compact support;
(A3) V() is repulsive in the sense that ¥(z) = —zV'(z) > 0.

Then the process {x,(¢),..., xy(¢)} is a Markov process of diffusion type on
S¥. the N-fold copy of S, with an infinitesimal generator given by

1N g2 N J
(19) N_EE 2 _NZV,(N(xi_xj))a—x'

X J*i
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It is easily verified that

N N g N 5
N = .glexp( Z;,CV(N( x;— xk))) %exp(— .ZV(N(xf - xk)))ﬁ’

ax; ik

N =

so that .#} is formally symmetric with respect to the measure

1 N
duy(x) = ZeXP[_ Z(V(N( X~ xj)))] dxy -+ dxy,

i,J

where Z, is a normalization constant and is chosen to make u, into a
probability measure.

We start X(0) = (x,(0),..., x5(0)) at a deterministic configuration. We
denote by f(xq,..., x) the density at time ¢ with respect to u,, which is a
solution of the forward equation

d
(20) 1
t —
fNIt=0 - NT E 8(‘15(1) ’’’’’ aﬁ(N))'

TESN

Here .#y is the N-permutation group and (a?, ..., aY) is the initial determin-
istic configuration. We choose the initial density in the form (3) because the
initial data (x,(0),..., x,(0)) can be any arrangement from the initial con-
figuration (al,...,ad) without changing the initial empirical measure as
given below. The empirical distribution of the process at time ¢ is defined by

1 N
Ev(t, A) = N ‘EIXA(xi(t)) for AcS,

and ¢&y(t) is viewed as a random measure on S. If we denote by .#,(S) the
space of probability measures on S, we can view £y (-) as a stochastic process
with values in .#,(S). Let @y denote the induced measure by &,() starting
with the deterministic configuration (a?,...,aX) on C(0,T1],.#,(S)). Our
main result is to show that under suitable assumptions on (al, ..., ad) the
measure @, as N — » will concentrate on a single measure-valued trajec-
tory which is a solution of a certain nonlinear diffusion equation.

In order to describe this nonlinear diffusion equation, we have to introduce
some thermodynamic functions of one-dimensional systems with pair interac-
tion given by V(-). The partition function in a finite region [0, /] with activity
A is given by

© nai

A e" 4

Z(LA) = ) ?/; -~-j;exp(—2V(xi —xj)) dx; - dx,;
n=0 tJ



HYDRODYNAMIC SCALING LIMITS 1843

free energy is defined by

log Z L, A
RO = fim

K

and it exists and is a convex function of A for all A; and

dF

p(/\)=a

is the “density” corresponding to the activity A and is a continuous strictly
monotone function of A. This function can be inverted to yield A = A(p) as a
function of p. The free energy expressed as a function of p, that is,

P(p) =F(A(p)),

is called the pressure and is again a continuous strictly montone function of
density p. For a detailed discussion of these thermodynamic quantities, see
[13].

Here is our main result:

THEOREM 38.1. Assume there is a constant ¢ such that the initial configu-
rations (a¥, ..., al) satisfy

1
(21) N ZV(N(af" - a}v)) <c,
i)
for all N, and

1 N
Jim % L J(all) = [7(0)p0(0) d,

for all smooth functions J(-) on S and some density function py(6) on S such
that p(0) > 0 and [p,(0)d6 = 1.
Then for every t > 0 and any continuous J(-) and each & > 0,

. Ca
lim [E S du =0,

where

y

1 N
Ey = {x; ﬁiiLlJ(xi) —fsJ(O)p(t,O)d(’

and p(t, 0) is defined as the unique solution of
d 1 P o
;{P(t’e)‘_g[ (p(t, ))]oo’

p(t,0)|-0 = po(0).

If we look at the behavior of the system on the microscopic scale, that is,
the behavior (y(¢),..., yx(¢)) = (x(¢/N?),..., x,(t/N?)), then their dynam-

(22)
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ics can be described as

1 X 1
dy(t) = —= X V/(N(yi(t) - yj(t))) dt + — dB;(t).

N 7w N
We still use /3 to denote the density of (y,(¢),..., yy(¢)) with the same initial
configuration (a?,..., ad). Similar to Section 2, we will establish the follow-
ing theorem.

THEOREM 3.2. Assume that the initial configuration satisfies the same

conditions given in Theorem 3.1. Then there exists ¢; = ¢(T') such that, for
T/2<t<T,

[ 1og fiy dpy < ;N

and, for all smooth functions J on S,

1 N
Iy:nwp{lﬁi;cf(yi(t)) - fsJ(B)po(e)de > a} - 0.

3.2. Some results involving Gaussian densities. In this section, we will
give some results concerning Gaussian densities and related estimations.

LEMMA 3.1. If W(x) is a function that is supported on [—1/(20),1/(21)]
and is bounded there by a constant |W||, then for any (x,,..., xy) € SV,

N AK N
Y W(x; —x;) < IWlI— L V(N(x; — x;)).
i,J i,J

Here K and m satisfy the following relations: n = 3V(0) and N/(2IK) = 8,
with 8 > 0 chosen so that V(x) > n, if |x| < 8.

For the proof of this lemma, please refer to Varadhan [13].
For later convenience, let ¥,(x) = 1/ V27t X _ _ . exp(—(x — k)%/2t), with
x € S, be the Gaussian density on the circle. .

LEMMA 3.2. For given positive constants a; and 0 < a < b <1, thereisa
universal positive constant C, depending only on «a,, and 0 <a < b < 1 such
that, for x > 0,

x?exp(—a;x?) < Cfb[l — cos(xu)] du.

This can be proved by an elementary analysis.
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LeEMMA 3.3. There exists a constant c¢;(V), depending on T and V, such
that, for 0 <T/2 <t < T and any (x,,..., xy) € SV,

N N
;‘Ift/Nz(xi —x;) < cT(V)NxV(N(xi - x;)).
i,J ij

PrROOF. Step 1. At first we will find a nice U which is supported on
[- 3,3l and U = 7 > 0 for |x| < 2 for this lemma to hold. Notice that both
W(x) and U(x) are functions on S. Then

Y, ye(x) = Y exp(2wikx) ¥ (k),
k= —w

o]

U(Nx) = Y exp(2mikx)Uy(k),

k= —o
N @ N ZA
Eq,t/Nz(xi - xj) = E Z exp(2mixk)| Y (k),
i,J k=-w|l=1
N @ N 2 )
ZU(N(xi —x;)) = X | X exp(2mix;k)| Uy(k).
i J k=-w|l=1

Here W/, (k) and Uy (k) are the Fourier coefficients of V¥, ,n2(x) and U(Nx).

We see that W} (k) = exp(—272k2%¢/N?) by a simple computation, so from
the relations given above we only need to construct a function U which is
even, nonnegative and such that

(23) Wi (k) < cyNUy (k)

for a certain constant ¢, > 0.
We construct U as follows:

U(x) = fll/zzfa(x)da,

with

0, x< —a,
x

1+ —, —a<x<0,
o

fa(x) = x

1—-—, 0<x<a,
o

0, x> a.

Then we can see U is positive, even with compact support. Additionally,
U(0) = , U(x) = 0 for |x| > 3 and U(x) > n > 0 for |x| < & for proper 1, and
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U(Nx) has Fourier coefficients as follows:

Uy (k) = flizzexp(%rikx)U(Nx) dx

— [da["" exp(2mikx)f,(Nx) dx
1/4 -1/2
12 2 La k x
= fl/4 da[ﬁfo cos(2wﬁx)(1 - ;) dx]

_ fl/zda2N(1 —cos(2m(k/N)(a)))
1/4

472k % ’

sofor 0 <T/2<t<T,(23)is a consequence of Lemma 3.2 by the proper
choice of c,.

Step 2. Let W be the constructed function U in Step 1. By applying Lemma
3.1, we then get the desired inequality with a proper change of constant. O

3.3. Entropy estimation. For scaled interacting Brownian motions, with
state space S, the dynamics of the circle of unit circumference, starting with
deterministic initial conditions, can be described by the following SDE:

N
dx,(t) = =N ¥ V'(N(x,(t) —x,(2)))dt +dBi(¢), i=1,2,...,N,
JiJj#i
Foun s 5 [ Bl
80 = = L 8 |
o 9 N resy \i=1

Similar to the Ginzburg-Landau model, we study behavior at a micro-
scopic level, that is, the behavior of {y,(t )}, = {x,(¢/N?)}Y ,, which can be
described by the following dynamics equation:

1 1
dy(t) =~ L VI(N(n(t) —5(1)) dt + = dB(t), i=12,...N,
N jijei N
with the same initial condition. We denote by f, y(y1, ¥s,..., yy) the den-
sity function at time ¢ with f(g), y the same as in (20). In this section, we
show the following proposition.

PROPOSITION 3.1. If the initial configuration satisfies the conditions as
given in Theorem 3.1, then there exists a constant ¢, = ¢(T') such that, for all
T/2<t=<T,

fﬂZ),N log ﬁZ),N duy < cyN.

This gives the estimation of entropy growth for interacting diffusions at a
microscopic level. Before the proof, we need some notation. For any 7 € %)



HYDRODYNAMIC SCALING LIMITS 1847

(the permutation group) we denote by £ an(¥1,..., yy) the density function
of (y4(2),..., yy(¢)) with initial data (y,(0),...,yy(0) = (@ry s Crny)-
Then fifz},N(y]_? - yn) = (1/N! )ZreyN fﬂa,t(yl? - ¥n). To apply our argu-
ment, we are going to choose a new process @, with potential V = 0 and
starting from the same initial data. Denote by 8, v yl, .., yy) the corre-
sponding density function at time ¢, and also denote by gra n(y1, ..., yy) the
density function of (y(2),..., yN(t)) with initial data (y,(0),..., yy(0) =
(a,qy--+> @) corresponding to the dynamics with V(-) = 0. The following
relation is obvious:

t 1 t
g(a),N(yl""’yN) = NT E gﬂa,N(y1’~~~’yN)'

¢ ‘rrEyN
In fact,
oo NN 9
gran(Yise-syy) = b exXp| — 5 Z‘(y‘—a,,(i)—ki)
=k ..... (V ) 2t Jj=1 !
Then we have
f ﬁa} N it g{ta),N
JFiyn Tog £y n diy = Efeon log“2 4 Efin.n 10g =N
g(a) N N
24 ;
(24) < 2Ef.n log—— f( 2L+ log B¢~ (gly, n)
(a) N
— Efio.x log(Wy)
(25) = (1) + (IT) + (III).

Here we have used the entropy inequality and the fact that ¥, is the density
of uy with respect to Lebesgue measure on S».

For part (III), we have

Ef.n log(Wy) ' = log Zy + Ef.v
(26)

N
L V(N(y; —yj))J,

i#j

N
fsNexp(— EV(N(x; — x]))) dx; - xN) <0.

i#]

log Z,, = log

Proposition 3.1 is a consequence of the following lemmas.

LEMMA 3.4. Assume the conditions in Theorem 3.1. There exists a constant
cs(T) > 0 such that, for 0 <t < T,

N
EPN[ )y V(N(yi(t) - yj(t)))] <c¢s(T)N,

i#]

PN[;;[; ( (3:(s) — yj(s)))] ds <c5(T)N.
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ProOOF. For the process Py, we have

d ¥ V(N(y,(t) - 5,(1)))

i#J

== L VI(N(ou(®) = 3(0))[V/(N(ou(6) = 34(1))
iJ,
~V'(N(y,(t) = 3:(2)))] at
+ Z.V"(N(yi(t) - y;(¢))) dt + dmartingale.

By assumption on potential V, we have

d Y. V(N(5:(8) —y;(2)))

1#j
= —szkV'(N(yi(t) —yj(t)))V/(N(yi(t) “yk(t))) dt
iJ,
+ Z.V”(N(yi(t) - ;(¢))) dt + dmartingale

2 ¥ | S V(N(u) - ()

i=1)j=1
+ 2 V”(N(J’i(t) - yj(t))) dt + dmartingale.

i#j
Taking W(x) = V”"(Nx) in Lemma 3.1, we have

TV (N(3(8) = 5,(8))) = LV (N(5:(8) = 3,(2))) + N(=V'(0))
< e LV(N(5(t) = 5,(1))) + N(-V"(0))
= 6 L V(N(3.(8) = ,(1))) + N(cgV(0) = V(0)).

i#j

Using Gronwall’s inequality,

E[ T V(N(5.(8) - 3(1)))

i#j

< [ ZV(N(al - aV)) + N(cgV(0) — V"(0))t|(1 + cqtes’),

i#j

so Lemma 3.4 follows by the assumption on the initial configurations. O
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LEmMMA 3.5. Assume the conditions in Theorem 38.1. For all T > 0, there
exists a constant c,(T) > 0 such that, forall 0 <T/2 <t < T,

log E¢w.ngt, « < c;N.

Proor. By symmetry, we have

Eg(a,,zvgt = 1 Z ngraNg
{a}, N N' {a}, N

TES
=Egé,Ng(ta},N
1
= 1 Z Ega Ng ra, N
N TES N
and
Egé’Ngatra N
NN N2 N N
I, —a . — B
/SN{(V )N ki;_w ( Z( =) 1) )}
NN * N2 N .
- ) > exp(——z ~ Uiy — ks ) dxy -+ dx
(27) {( 27Tt)N ki= - 2t = ( (1) 2) 1 N
N 2N N o N N
=fsN( 27'rt) I L;_ (—5—( = Ay — k) )}

© N2 )
x| ) exp(— (% —a,q - ké)z) dx, - day,
” 2t

= — o

and for any x € S a simple calculation shows

[ i exp —g(x—a—k{ 2)Hkiz exP(_

ki=-w
s[ N exp(——(x—a—ki )H Y exp(——(b—kg )}
4 ; 6
ki=—°° k2=—oo
Therefore,

E&angt =
gﬂa,N '/:SN( ot
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N i N? \2
< (/6) 1’11( L o exp(—a(ai—aw(i)—ki)))
N

= (6)N/2 H‘Paz/Nz(ai — Q)

and, moreover,

1 N N
NI ) l’I‘I’st/Nz(a Uriy) < NI, I1 ( X Vi ne(a; ~ af))
* ﬂGyNL_ = =1
1]1 N N
<% [Nz Z=1‘I’3t/zv2(ai - aj)] .

Using Lemma 3.3, there exists a constant ¢;(V) > 0 such that, for T/2 <
t<T,

N
W, n2(a; — a;) <cp (V)N ) V(N(ai - aj))

1 i,j=1

M=

i

~.
Il

and, by our assumptions on initial configurations,

N N
Y Vs, n2(a; —a;)| < cg NV.

i,j=1

Therefore, for T/2 <t < T,

1
> Hq'3t/N2(a Qry) < ‘N—,cévNN

TES N L=

N!
and

log E¢wngl, v <c;N for0<T/2<t<T
for some uniform constant c,. O

LEMMA 3.6. Assume the conditions in Theorem 3.1. Then there exists a
constant cq = ¢o(T) > 0 such that, for 0 <t <T,

ﬁa) N

Ef@.n log—= < c4N.

g(a) N

The proof follows the same way as in Section 2. We once again use the
entropy property for diffusion processes, the Cameron—Martin formula and
also the estimates in Lemma 3.4.
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3.4. Macroscopic behavior.

PROPOSITION 3.2. For any finite time t > 0 and smooth function J on S,

1 N
giggoP{’ﬁigJ(yi(t)) ~ [I(0)po(0) a0

25}=o.

The proof of this proposition is similar to the proof of Proposition 2.3. We
use It6’s formula and certain estimates derived in Section 3.3.

Theorem 3.2 is just a combination of Propositions 3.1 and 3.2, and Theorem
3.1 is a consequence of Theorem 3.2 and [13].

3.5. Remarks. The condition on the initial configurations is still a re-
quirement on the distribution of the initial configurations. Simply notice that
if all configurations (al,...,aY) are concentrated around one point,
(1/N)L; V(N(a) — a}’)) is almost N>. After a finite microscopic time the
particle can only move by distance 1/N, so the entropy is still very large
(about N log N) and the desired bound cannot be attained. The natural
condition on the initial configurations is therefore that the configurations
should be properly distributed on the unit circle. This property is displayed in
our condition (21). We have already seen that at a later time, this property is
carried through in the evolution of the system; see Lemma 3.3. Recently, by
using different estimations, Uchiyama [10] derived entropy bound similar to
that in Theorem 2.2.
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