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We consider the one-dimensional catalytic branching process intro-
duced by Dawson and Fleischmann, which is a modification of the super-
Brownian motion. The catalysts are given by a nonnegative infinitely
divisible random measure with independent increments. We give sufficient
conditions for the global support of the process to be compact, and suffi-
cient conditions for noncompact global support. Since the catalytic process
is related to the heat equation, compact support may be surprising. On the
other hand, the super-Brownian motion has compact global support. We
find that all nonnegative stable random measures lead to compact global
support, and we give an example of a very rarified Lévy process which
leads to noncompact global support.

1. Introduction and statement of main results.

1.1. Motivation. Let Y (t,dx) be the measure-valued branching process
sometimes called the super-Brownian motion. This process is described in the
recent surveys of Dawson (1993) and Dynkin (1994). The properties of the
support of Y have aroused considerable interest. For example, in two or more
dimensions, the support has fractional Hausdorff dimension. Also, as shown
by Iscoe (1988), if Y (0, dx) has compact support, then Y (¢,dx) has compact
support for all ¢ > 0. This property is unexpected, since at least heuristically
Y can be related to the heat equation with a noise term. To be specific, if we
assume (perhaps falsely) that Y (¢,dx) = y(¢, x) dx for some random function
y(t, x), then y would formally satisfy

ye=3Ay+ (2yy)W,
Y (0,dx)
dx ’
where y > 0 and W = W(t, x) is space—time white noise. Of course, we do not
expect the heat equation to have solutions of compact support.

While most probabilists have focused on the spatially homogeneous
measure-valued branching processes, Dawson and Fleischmann (1991) have

y(0,x) =
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introduced a measure-valued branching model X(¢,dx) in which birth and
death occur only at certain points. This model is called the catalytic branching
process or super-Brownian motion in a catalytic medium, because one can
imagine that catalysts are located at the points where branching occurs.
Catalytic branching processes can have very different properties than or-
dinary measure-valued branching processes. For example, in Dawson and
Fleischmann (1995) it is shown that for certain kinds of catalysts the random
measure X(¢,dx) has a density even in higher dimensions. On the other
hand, the usual measure-valued branching process has a density only in one
dimension.

In this paper, we examine the question of compact support for the branching
catalytic process. We consider catalysts given by an infinitely divisible random
measure with independent increments. We focus on the one-dimensional case,
so that such a random measure may be considered as the derivative of a nonde-
creasing Lévy process. While our choice is not guided by specific applications,
we believe that our model gives some idea of the range of phenomena which
can occur. Our methods depend on estimating solutions of elliptic equations
with random coefficients, and we were unable to extend our method to higher
dimensions. Allowing the catalysts to move would have involved the study
of random parabolic equations, which were even further beyond our reach.
Nonlinear parabolic and elliptic equations are a familiar tool in the field, and
Iscoe’s (1988) work on the support of measure-valued branching processes de-
pended on the study of a nonlinear elliptic equation.

1.2. Super-Brownian motion in a catalytic medium. The purpose of this
section is to describe the basic process. We begin by giving the rigorous defi-
nition of the random catalytic medium. Let % denote the Borel subsets of R
and 4. the nonnegative Borel measurable functions. Let €, denote the space
of nonnegative continuous functions ¢ on R and €2 the space of twice con-
tinuously differentiable functions. Let L denote an infinitely divisible random
measure with independent increments on R with Laplace functional

_logE{exp<—/Rf(x)L(dx))}
=/R/O""(l—exp(—)xf(x)))y(d,\)dx, fea,,

where v is a measure on (0, co) which satisfies [;° min(A,1)»(dA) < co. Under
this condition L is almost surely a locally finite random measure which we
subsequently refer to as the compound Poisson random measure with associ-
ated Lévy measure v and denote its probability law by @,. The stable random
measure of index a € (0,1) has Lévy measure

cadA

(1.2) vo(dA) = ml(/\ > 0)

(1.1)

and some normalizing constant ¢,. Compound Poisson random measures are
almost surely pure atomic. If the associated Lévy measure is finite, then the
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atoms are isolated. [Refer to Kallenberg (1983) for characterization and basic
properties of infinitely divisible random measures.] Also note that, for any
a € R, {L([a,a +t)): t > 0} is a nondecreasing process with independent
increments.

Before turning to the construction of the catalytic branching process, let
us briefly recall the characterization of ordinary super-Brownian motion. Let
-#r(R) denote the finite Borel measures on R with the topology of weak conver-
gence. Super-Brownian motion is a continuous .#(R)-valued Markov process
with transition Laplace functional

(1.3) Ey(o){exp[— /°° o(x)Y (¢, dx)]} - exp[— /°° u(t, x)Y (0, dx)],

where u(t, x) satisfies
Uy = %uxx - 7u2,
u(0,x) = o(x) € A.

In the above, y is a positive constant which represents the branching rate.

We next turn to the construction of the super-Brownian motionin R in which
the branching rate is not constant but is determined by a fixed locally finite
random measure L given by (1.1). In fact it suffices to construct the process
for a typical realization of the medium. From an intuitive viewpoint X (¢, dx)
consists of infinitesimal Brownian particles undergoing critical branching. The
branching rate is controlled by the measure L. If a particle is at a point where
L is large, its branching rate is high. If L = 0 on a set A, then branching
does not occur there. Heuristically, if we imagine that the densities y(x) =
L(dx)/dx and r(t,x) = X(t,dx)/dx exist (but they may not), this process
would satisfy the equation

re = 3res 4+ (2ry(x)2W,
r(0,x)dx = X(0,dx),

where W is space—time white noise.

Still formally, the corresponding measure-valued branching process
X(t,dx) with probability law denoted by P.l;((O) would be given by a Laplace
transition function as in (1.3) except that the log-Laplace function u(z,x)
would satisfy

u —lu —uzL(dx)
(1.4) bT gt dx ’

u(0,x) = @p(x) € #B.

Of course, when L is given by (1.1), L(dx)/dx (which we sometimes will
write as L) is a singular term involving delta functions, but as in Dawson and
Fleischmann (1992) we consider (1.4) as shorthand for the integral equation

o0 t (%)
(15) wt,)= [ p(t,x,9)0(x)dy - fo / p(t = 5,%, y)ul(s, y)L(dy) ds,
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where p(t, x, y) is the fundamental solution of the heat equation u; = (1/2)uy,
on R. A solution of (1.5) is called a mild solution of (1.4).
In fact, under the additional assumptions that

[e.e]
/ exp(—cx?)L(dx) < oo, Ve>0,
—0o0
and that ¢ belongs to an appropriate class of nonnegative continuous func-
tions, existence and uniqueness of mild solutions of (1.4) which are continuous
in ¢ and x are established in Dawson and Fleischmann [(1992), Section 2] and
the catalytic branching process with this log-Laplace function is obtained in
Dawson and Fleischmann (1991).

An alternative approach, which is employed for example in Dawson and
Fleischmann (1994), is to use Dynkin’s general construction [cf. Dynkin (1991,
1994)] in which the branching rate is given by an admissible Brownian ad-
ditive functional. In particular, if L is a finite measure on R and ¢; ,(w) de-
notes the local time of the Brownian motion w, then the additive functional
ki(w,t) = [£;(w)L(dx) is admissible. The existence of the corresponding
measure-valued branching process X (¢, dx) follows from Dynkin.[(1994), The-
orem 3.1]. In addition, according to Dynkin [(1994), Theorem 3.2] the process
X (¢,dx) almost surely has right-continuous paths.

However, for our purposes it is convenient to employ some modification of
these constructions. Although technically our construction is not contained
in the previously mentioned references, it involves only ideas and methods
which appear in them, and for this reason we will simply give an outline of
the construction of the modified process we consider.

The main idea is to construct the basic process as the a.s. limit of an in-
creasing sequence of .#r(R)-valued processes defined on a common probability
space. In order to do so, we first construct, for each K € N, an #(Eg)-
valued process X k(t), where Eg = Ufﬂ{n} x (—n,n). We consider the
Markov process wg in Ex which, starting at (n,x), x € (—n,n), is defined
by wg(t) = ({n},w(t)), 0 < t < 7., wg(1,) = ({n + 1},w(7,)), where
7, = inf{t: w(¢) = £n} and w is a standard Brownian motion starting at
x. Finally, the process wx dies at time 7x. Consider the random measure
on Eg defined by Lx({n} x (a,b)) = L((—n,n) N (a,b)), n < K, and the
admissible additive functional k7, (wk,t) := [ £;,(wk)Lk(dy). The resulting
superprocess is denoted by X g (¢). _

Given a measure u € .#r(R), we take as the initial measure for X,

forn>1, Xx(0,{n} x B) ;= u(BN[n—1,n)U(~n,—n+1]).

Note that if K’ > K, then the law of X kg restricted to Eg is identical to the
law of X . Thus the laws Pﬁ’{é) of X g form a consistent family whose projec-
tive limit yields the probability law of an .# ( E,)-valued process X .., where
Eo :=Uply{n} x (-n,n).

We then define the increasing sequence of .#7((—K, K))-valued processes:
Xk(t,B) =Yk | X (t,{n} x B).
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It can be verified that the log-Laplace function for the process X g(t)
satisfies

K
uk(t, x) = / . Pr(t,x,3)¢(y)dy

t rK
‘/0 /_K pr(t —s,x, y)uk(s, y)L(dy)ds

and

K
E(Xk(t,B)) = /_ . /B pr(t,x, y)u(dx) dy,

where pk(t,x, y) denotes the fundamental solution of the heat equation with
Dirichlet boundary conditions on (— K, K ). Moreover, a modification of the ar-
guments of Dawson and Fleischmann (1992) imply that, when ¢ is continuous
with support in [ — K, K], this equation has a unique solution which is jointly
continuous in ¢ and x and measurable in L. Finally, a standard argument
shows that E(X g(t, B)) = [z /% px(t, x, y)u(dx) dy.

We then define the .#r(R)-valued process with initial measure u by

X(¢,dx) = Kl’im Xk(t,dx).

The process X (¢,dx) is the super-Brownian motion in the catalytic medium L.
We extend pg(t,-,-) to R x R by setting pg(¢,x,y) =0ifx or y ¢ (—K, K).
Then pgk(t,-,-) 1 p(¢,-,-) and, by the monotone convergence theorem,

B(X(t,B) = [ : [ ptt,x yu(dz) dy.

Since the sequence X k(¢,-) is increasing in K, so is the associated sequence
of log-Laplace functions ux(¢,-). By the monotone convergence theorem the
log-Laplace function of X(¢) is given by u(¢,x) := limg_.o ug(¢, x). Finally
applying the monotone convergence theorem again we obtain

u(t,x) = lim ug(¢, x)

K
= lim /_K pr(t, x,y)e(y)dy

K—o0

t prK
= lim [* [ pk(t—s,x%,y)uk(s, y)Lidy) ds
0 J-K

K—oo

o t poo
= [ bt yedy— [ [~ p(t—s,xus 3)Lidy)ds.

Note that this constuction only requires the local finiteness of L, but that we
do not obtain (nor do we require) the uniqueness of the solution to (1.5) nor
the right continuity of X (¢).

The weighted occupation time process for super-Brownian motion was in-
troduced by Iscoe (1988). Since the process X g introduced above is right con-
tinuous and X is the increasing limit of the X g, they are measurable and the
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occupation time processes fot Xk(s,-)ds and fot X (s, ) ds are well defined. Let
X (0) € #F(R) have support in (—K, K), let y € €, have support in (—K, K)
and let 6 > 0. Following the arguments in the proof of Theorem 3.1 in Iscoe
(1986), one can check that the corresponding Laplace functional is

t poo
Bk fes| -0 [ [~ 00 Xuts.dw s |}

(1.6) -
- exp[— [ oxtouit, X0, dx)],

where vg(0y;t, x) is the solution of

u(t,x) =0 [for x € (K, K)‘]
t oK
.7 = 0/0 /_K pr(t—s,2,y)4(y)dyds
K
— /Ot /_K pr(t—s,x, y)u?(s,y)L(dy)ds [for x € (=K, K)].

Let 0 < x < K. Letting X(0) = 8, in (1.6), it follows that vk (8¢, ¢, x) is
nonnegative and monotone increasing in both ¢ and . Note that v (8¢, ¢, x) <
sup,, [o /"% Pr(t —s,%,9)09(y) dyds < oc.

1.3. The global support of X. Given u € #r(R), let supp(u) denote the
closed support of w. The global support of a measure-valued process X(-),
Gsupp(X), is defined to be the closure of ;.o supp[ X (¢,dx)]. Let L be a
fixed locally finite measure on R. In this section we relate the question of
compact global support for the super-Brownian motion in the catalytic medium
L to a nonlinear singular elliptic boundary value problem. In the next section
(Section 1.4) these results will be applied to the case in which L is a typical
realization of a random catalytic medium.

Before stating the next result, let us recall some basic facts from the theory
of distributions which can be found, for example, in Schwartz [(1966), Chap-
ter 2, Section 4]. A distribution on R (or any open interval) whose second
derivative (in the sense of distributions) is a locally finite measure (either
signed or nonnegative) is a continuous function of bounded variation on every
finite interval. Moreover, if its second derivative is a nonnegative measure,
then (i) it is a continuous, convex function and (ii) its first derivative exists
in the usual sense except possibly at a countable set of points, and it is an
increasing function having left and right limits at every point.

A solution to the boundary value problem

1, L(da)
(1.8) Ve = V(%)=

v(a1) = B, v(ag) = Bs,

for x € (a1, as),
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is a continuous convex function v, defined on [a1, a2], which has the required
boundary values and such that, for every a; < x¢ < x0 + x < as,

Xo+x S
(1.9) v(xo+x)=v(xo)+v’(xo+)x+2/ dsf v2(¢)L(dt).

X0 0

THEOREM A. Assume that supp(X(0)) C [a1,a2] C (- K, K).

(a) There exist positive sequences Bi1n, 1 00, Ban 1 00, such that for each
n the boundary value problem (1.8) has a unique solution v(Bin, B2, X) With

B1 = Bin and B2 = Bz
(b) Given any sequence of functions v(B1,n, Bz, x) satisfying the conditions

of (a),
P% 0){Gsupp[ X] C [a1,a2]}

(1.10) = Pl)’((o){supp[X(t, dx)]N[a1,a2]° =3 for all t > 0}

= Jim exp[~ [ 0(Ba. Ba 0)X(0,d) |

n

PROOF. Letting ¥, € €+ 1 1k k) - l{a;,0o)c @and then ¢ — oo in (1.6), we
obtain

E% ) {eXP[—O /Ooo Xk(s,[a1,a2]) ds] }
(1.11) g
= exp[—/ UK,al,az(O,x)X(O, dx):l,

where

vK,al,az(O, x) = tl—ifg UK,al,az(O, t? x)’
UK,a,05(0, 8, %) = '}Lrglo v (0, t, x).

Note that the function vk 4, 4,(0,t, x) satisfies (1.7) with ¢ = 1[4, 4,)c (by the
monotone convergence theorem).

We will show that the second distribution derivative v,y of Vg 4,,4,(0, %) is
a signed measure and it satisfies the equation

1 L(dx)

(1.12) évxx = v%(x) fix
This implies that vk 4,4,(0, ) is continuous (cf. remarks made immediately
before the statement of Theorem A).

To obtain (1.12), let ¢ € ¢ have support in (—K, K). We will show that,
uniformly for small 2 > 0,

- Ol[al,az]c(x)'

lim %[ [ 0RO 14 20 (x) i~ [ 06,8, 206(3) dx] —o.

t—o00
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Because Uk 4,,0,(0,2 + B, x) — UK g,0,(0,t,x) > 0, it suffices to prove this for
¢ > 0. Then using the latter fact and (1.7) with the roles of s and ¢t — s

interchanged, we obtain

0 < lim %[ [ 0ain(0,8+ 1 2)0(x) dx ~ [ 0K a0 t,x)¢(x)dx]

t—o00

1 gtk
< lim ﬁ{/x f[pr(S, %, ¥)014, 0,0 (y) dy

t—00

— [ s, % Wt 4 s y)L(dy)]¢>(x> dxds

t
+f0 /fpx(s,x,y)[v%{,am(t—s,y)
— 0%, (R =5, 9)](x) de(dy)ds}

< tlilg2K6sup{¢(x)/pK(t,x,y)dy]

=0.

On the other hand, if ¢ € €2, then

lim% I:UK,al,az(oyt+ h,x)¢(x)dx — f vK,al,az(O,t,xw(x)dx]

t—o00

{fMUK (6 t x)dx
h ,a1,02 Yy

1 h
+ il- /(; /[/ pr(h—s,x, y)ol[al,az]”(y)dy

-/ pK<h—s,x,y>v%{,al,a2<e,t+s,y)L(dy)]¢>(x>dxds}

= lim
t—o00

K _
=/MUK,a1,ag(0,x)dx
1 h
+—{f0 dedx¢(x)U Pr(h —s,%,¥)01(4, 0,1 (y)dy

h
—fpx(h—s,x,y)v%,al,az(é?,y)L(dy)]],

where {T,If : h > 0} denotes the semigroup of the killed Brownian motion. The
first identity follows from (1.7), and the last limit follows by the monotone

convergence theorem.
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Take ¢ € €2 with support in (—K, K). Then letting & | 0, it follows that
[ $0ex(®)0k0000(0, 8 dx + 6 [ Loy (0)0(x) dix

- [ VK aras (8, )2b(x) L(dx) = 0.

However, this implies that the second distribution derivative of vg 4, 4, is a
(possibly signed) measure and that the left and right limits of the first deriva-
tive of v(x) = VK q4,,4,(0, x) satisfy

@(xﬂ:)—zfxi 2( )L(d)_zefxil (y) dy + const
(1.13) dx - %o vy Y %o [a1,a21c\Y) @Y + const,

for x e (—K,K)

[because any two primitives of a distribution differ by a constant; cf. Schwartz
(1966), Chapter 2, Section 4]. Integrating again (i.e., taking the second
primitive) we obtain (1.9). Note that limg_, e Uk q,,4,(6,%,ai) = oo since, for
example, P (fo Xk(s,(a1 —1,a1))ds > 0) = 1 for any t > 0. [The latter is
verified by calculatlng the first two moments of fo Xk(s,(a1 — 1,a1))ds,
Chebyshev’s inequality and a Borel-Cantelli argument.] This implies that
limg_, 00 UK,al,az(oaai) =00

Since t — X (t) is right continuous and the map u — supp(u) is lower
semicontinuous [cf. Dawson (1993), Theorem 9.3.1.2], the event supp(X g (¢))N
[a1,a3]¢ =D (Vt > 0) is measurable. However, the set supp(X(¢))N[a,az]® =
G (Vt>0)=N%_supp(Xk(t)) N[ai,az2]° = (V¥ ¢t = 0) and hence is also
measurable and

Pﬁ(o){supp[X(t, dx)]N[a,az]° = for all t > 0}
= I}l_r)r;o P%ao){supp[XK(t, dx)]N[ai,az]° = for all ¢ > 0}

(114) = I}l_r)r;o P‘%((O){./o Xk(s,[a1,az]¢)ds = O} (by right continuity)

= lim lim exp[ [oo UK,a1,05 (0, ) X (0, dx)] [by (1.11)]

K—o0 -0

a.
= lim exp[— / 2v(31,n,32,n,x>X<o,dx>],
n—oo a,

where B1, = Uka,a(0n,a1) and Bz, = UK g 6,(0n,a2) With 6, 1+ oo. The
fact that B1, 1 oo, Bz, 1 oo follows from the fact that v(B1, Bz, x) is in-
creasing in B1, B2 (which will be established in Lemma 2.2) and the fact that
limg_ o0 UK a1,0,(6,@;) = oo [which was explained in the comments following
(1.13)]. The fact that (1.14) is satisfied for any such sequence also follows from
the fact that v(B1, B2, x) is increasing in 81, 83. O

COROLLARY A. (a) Let w have support in [x1, x3]. In order that
P,I;{Gsupp(X ) is compact} = 1,
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it suffices to find, for every &€ > 0, x3 = x3(e) < x1, x4 = x4(e) > x9 and a
nonnegative solution v(x), x € (x3,x4), to (1.9) which satisfies the following:

1) SUD e[ x1,22] v(x) < g
(i1) limy_,,, v(x) = +o0;
(iii) lim,_,, v(x) = +o0.

(b) Let w(R) > 0. In order that
PILL{Gsupp(X) is compact} = 0,
it suffices to show that, for any —oo < a1 < ag < 00,

sup inf ]v(,Bl,,82,x) = +400.

B1,B2 x€laiaz

PrROOF. (a) Let v(B1,4, Ba,n, ) be defined as in the statement of Theorem A,
but with a; = x3, aa = x4. Then, for each n, v(B1,, B2, x) < v(x) by (2) and
(3). If supp(u) C [x1,x2] and m is a positive integer, then, by (1.14),

PL{Gsupp(X) ¢ [x3(27™), x4(27™)]}

X

=1- '}Lr&exp[—/ ’ U(ﬁl,n,ﬁzn,x)ﬁl«(dx)]

<1 —exp[ [ —v(xm(dx)}

<1—exp[—2""u([x1,x2])].
By the Borel-Cantelli lemma it follows that
Pﬁ{Gsupp(X) C [x3(27™), x4(27™)] for some m} = 1.
(b) This follows immediately from (1.10). O

1.4. Statement of the main results. We now turn to the case in which the
medium L is a typical realization of a compound Poisson random measure
with associated Lévy measure v. In particular, we let X (¢,dx) be a super-
Brownian motion in this random catalytic medium. As a consequence of the
basic construction, given a measure u,

€G(w) = {L: Pﬁ{Gsupp(X) is compact} = 1}

is a measurable set and in this section we will investigate @,(¢ G(w)) when
@, is the probability law of a compound Poisson random measure whose
Lévy measure v has certain properties. We first give sufficient conditions on
the Lévy measure v(dx) which imply PII; {Gsupp(X) is compact} = 1 pro-
vided that u has compact support for almost every realization of the catalytic
medium. We then find sufficient conditions for noncompact global support,
that is, PILL{Gsupp(X ) is compact} = 0. As a corollary, we can show that if
L(dx) arises from a stable random measure, then X has compact global sup-
port with probability 1. The measure L(dx) must be very rarified for X to
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have noncompact global support, but we show that this can happen even if
the atoms of L(dx) are dense in R. The intuition is as follows. If L(dx) is a
fairly uniform measure, then X (¢,dx) is similar to the usual measure-valued
branching process, which has compact support. On the other hand, if L(dx)
is rarified, then X(¢,dx) is similar to the measure-valued process with no
branching, which satisfies the heat equation. Of course, solutions to the heat
equations have noncompact global support.

Let
S(t) = sup{x > 0: v([x,00)) > %},
T(t) = inf[x > 0: v([x,00)) < _1_}
2t
and

T(t)
1(t) =/ xv(dx).
0
Of course, S(¢) = T'(¢t/2) if v has no atoms.

THEOREM 1. Let v be a measure on (0,00) such that there exist a sequence
{b,}nez and a constant ¢y > 0 satisfying the following conditions:

(1) b,/bpy1 = co for all n € Z;
(i) Y52 N 2"/b, < oo forall N > 0;
(iii) (22"/b,41)8(2"/b,2) > co for all n € Z and z € (0,1).

Then, with Q,-probability 1, Pﬁ(o)(X (-) has compact global support) = 1 for

every initial measure X (0,dx) having compact support.

To state the next theorem, we need to define functions H,(z), which will
be the basis for a discrete dynamical system. Let

2n+4 n+1
H,(z)= bn z+2 1(2 )

b1 bnt1 bnz

Assume that there exist positive constants Ny and K such that if n > Ny
and z > K, then

(1.15) H,(2) < g

THEOREM 2. Let v be a measure on (0,00) such that there exists a
strictly positive sequence bi,bs,... satisfying b,/b,+1 < 1/2, for large n,
and Y52 12" /b, = oo and such that the functions H,(z) satisfy (1.15). Then,
with Q,-probability 1, Pﬁ(o)(global support of X(-) is compact) = 0 for every
initial measure satisfying X (0,R) > 0.
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In view of Corollary A, the proofs of Theorems 1 and 2 will be reduced to es-
tablishing certain analytical properties of the solutions v to (1.8) for a typical
realization of the catalytic medium. Here is a thumbnail sketch of this analy-
sis of (1.8): We pretend that both v and v’ are constant on intervals (%5, Xn41]
on which v approximately doubles. Also, we pretend that L((x,,x,+1]) is ap-
proximately equal to its “average value.” With these ansatzes, (v(x),v'(x))
becomes a dynamical system whose behavior we can analyze. In fact, S(%)
and T'(¢) are involved in the definition of the “average value” of L((x,, Xp+11).
Of course, L((x,,X,+1]) may not have an expectation. The numbers b, arise
from scaling the dyamical system. We will show that v'(x,)/b, approaches a
limit, or at least is bounded in the appropriate direction. From this fact, we
can decide whether lim,_, ., x, = oco. If lim,_, o X, = oo, then v(x) does not
reach oo for finite values of x, and if lim,,_,., x, < oo, then v(x) = oo for some
x < oo,

The following corollaries are immediate consequences of Theorems 1 and 2.

COROLLARY 1. Let L be a stable random measure of index a € (0,1). Then,
with @, -probability 1, Pg'{(o)(X (-) has compact global support) = 1 for every
initial measure X(0) having compact support.

PROOF. By the conditions on L, the Lévy measure v, is given by (1.2).
Then

S(t) = ctt/e.
If we let
_ 03
a+1’
bn — 2n(1+8),

then the conditions of Theorem 1 are satisfied. O

COROLLARY 2. Suppose that L has Lévy measure v(dx) = (1/x)1 (0 <
x < 1) or that v(dx) is a finite measure. Then, with Q,-probability 1,
Pﬁ(o)( global support of X(-) is compact) = 0 for every initial measure satis-
fying X(0,R) > 0.

PrOOF. If v(dx) is a finite measure, then the atoms of L(dx) form a dis-
crete set and one directly verifies the statement of Lemma 2.8 below, namely,
that solutions of (1.9) are finite for all x € R.

Now consider the case v(dx) = (1/x)1 (x < 1). We compute that

T(t) = exp(—%)

and
I(t) = T(¢).
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If we let
b, = n2",
then
M Z g _z_logln+1)
H,(z) = 12+2 exp|: (log2 1 - .

Since

3 _E_log(n—i—l) 1 z

2 exp[n(log2 — < 212

for large z, the assumptions of Theorem 2 are satisfied. O
2. Proofs of the theorems.

PROOF OF THEOREM 1. First we prove Theorem 1, the case of compact sup-
port. As mentioned in the Introduction, the proofs of the theorems are reduced
to verifying the hypotheses of Corollary A for a typical realization of L. In turn,
this involves the study of solutions of the boundary value problem (1.8). We
aim to construct positive convex solutions solutions v(x) = v,(x) which are
oo outside of some compact set and such that lim, . v,(x) = 0 uniformly on
a given compact interval. We can then apply Corollary A.

Our analysis of (1.8) on a bounded interval takes advantage of the fact that
we are working in one dimension. We may regard x as a time variable and
build up v(x) starting from v(0) and v’(0+). Moreover, since we are interested
in convex positive solutions, we can construct such a solution starting from a
point at which it assumes its minimum value. At such a point either the first
derivative v'(0) exists and is O [if L(0) = 0] or v/(0—) < 0 and v/(0+) > O [if
L(0) > 0]. Without loss of generality we can assume that this point is 0 and
restrict our attention to the half-line x > 0. We divide the half-line into small
intervals, on which v(x) does not increase very much. For each interval, then,
the term vz(x)L(x) from (1.8) is almost equal to ch(x), for some constant
c. If we replace the former term by the latter, (1.8) is no longer a nonlinear
equation and it is much easier to analyze.

Our first task is to prove existence and uniqueness for (1.8), on the region
where the solution is finite. We consider (1.8) for x > 0 with the following
initial conditions [the same argument would apply to x < 0 with v/(0—) =

a <0]:
0) = 0
@1 v(0) =8> 0,
V(0+)=a>0.

We will show, even for small 8 > 0, that v(x) = co for large values of |x|.
We suppose that the random measure L is fixed and set up the notation

L(dx) s

—ché(x
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Note that each ¢; > 0 and that L(dx) is a locally finite measure.
Starting with (1.9) and using the initial conditions (2.1), we obtain

2.2) v(x) = B+ax+2/: dsfos () L(dt)
or
(2.3) v(x) = B+ax+2i(x—sl~)+civz(sz~),

i=1
where (x)* = max{x,0}.

Since v — v? is locally Lipschitz, using a standard argument we obtain
existence and uniqueness of local solutions of (2.3). It is clear that if v(x) is
a continuous solution of (2.3) for 0 < x < x, then v(x) is nondecreasing, and
hence
(2.4) B+ ax+ B2p(x) < v(x) < B+ ax+v(x)’p(x),
where

[o¢]

p(x) =2 (x—si)Fe.

i=1
Note that p(x) is Lipschitz continuous, nondecreasing and satisfies p(0) = 0
and p(x) < 2cox for x € [0, K] and for some co = co(K) > 0. If p(x) > 0, then
the upper inequality in (2.4) yields that either

2(B + ax) _1-/1—4p(x)(B + ax)

1+/1—4p(x)(B + ax) 2p(x)

v(x) <

or

1+/1—4p(x)(B + ax)

2p(x) '
However, the second of these two possible inequalities is inconsistent with the
initial condition and, therefore, we conclude that the solution v(x) satisfies

the first one. Now, for each «, B8 in (2.1), let x¢ > 0 be the largest value of x
such that 1 — 4p(x)(B8 + ax) > 1/4. We thus have the following lemma.

v(x) >

LEMMA 2.1. For any a > 0, B > 0, (1.8) with initial conditions (2.1) has a
continuous solution in [0, xg], for some xg = xo(a, B) > 0, and
2(B + ax)

0, .
1+\/1—4p(x)([3+ax)’ x € [0,x0]

B+ax <v(x) <

LEMMA 2.2. (a) Let u(x) and v(x), 0 < x < x9, be two solutions of (1.8)
with the same initial values o, B. Let B < u,v < M for some M > 0. Then
u=von[0,x]

(b) A nonnegative solution v(B1, B2, x) to the two-point boundary value prob-
lem (1.8) (if it exists) is unique and, for fixed x, v(B1, B2, X) is an increasing
function of B1 and Bs.
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PrROOF. (a) Let || - |4 denote the supremum norm on the set A. Since u
and v satisfy (1.8) with the same initial conditions «, 8, we have

S — si) eula(s:) + vlsi))(ulsi) — o(si)

i=1

lluw — vlljoz) =2
[0,t0]

< 2Mp(to)llu — vli[o,z1-

Now, let tg = (1/8Mcg). We conclude first that |u — vlijo] < (1/2)llu — vll{o,t0]
and, therefore, u = v on [0, ¢ ]. Next, suppose that

(2.5) u=v on]l0,kty], k> 1.
Then, by (2.5),

S (x — s e (si) — v(s0))

Il — U”[kf(h(kﬂLl)tO] =2

im1 [kto,(k+1)to]
=2 3 (x—s)tei(uP(si) — v(s)
i si>kto [kto,(k+1)t0]
< 4M( > (x- si)+ci)llu — Ull{kto,(k+1)t0]
i: s;>kty

< 4Mtocollu — Vli[kto,(k+1)t0]

and thus u = v on [ktg, (k + 1)¢g]. Therefore, u = v on [0, x¢].
(b) First observe that if v;(xg + x) > 0, i = 1,2, satisfy

vi(% + x0) = B + aix + 2/ ds / o2(¢)L(dt),

for 0 < x < x7 with a; > ag, then v1(xg + x) > va(xo + x) for 0 < x < x7.
Indeed, let D(x) = v1(x) — va(x). Then D(x) satisfies

D(x + x¢) = (a1 — ag)x +2/x ds ’ D(¢)(v1(2) + va(2))L(dt).

First we claim that D(x + x¢) > 0 for 0 < x < 8, for some & small enough.
Indeed (a7 — ag)x increases linearly in x, while

/x ds[s D(t)(0(t) + Uz(t»L(dt)]

is o(x) for small x.

Now we deal with large values of x. Note that D(x) is continuous. Suppose
that D(xg + x) > 0, for 0 < x < %, but that D(xq + ) < 0. Setting x = X in
the above integral equation, we would obtain a contradiction. This proves the
observation.

Now assume that we have two solutions v(B1;, B2, %), i = 1,2, to (1.8)
with Bl,l > 31,2 and ﬁz,l > 32,2 (the argument if Bl,l > 31,2 and 32,1 >
B2z is similar). We claim that v(B11, B2,1,%) > v(B12,B22,%x) ¥ x € (a1,az).
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Otherwise, by continuity there exists a point x’ at which v(B11, B21,%') =
v(B12, B22,x') and v'(B1,1, Be,1, X' —) < V'(B1g, a2, x'—). However, from (1.9),

v'(B11, B2,1, x'+) — V' (B11, B2, x'—) = V'(B1,2, Baz, ¥'+) — V'(B12, Bag, x'—),
so that

V'(B11, Ba,1, x'+) < V' (B1g, Ba2, X'+).

In view of the observation given at the beginning of the proof of part (b), this
leads to a contradiction to v(B1,1, B2,1,a2) > v(B12, Ba,2,a2).

To verify uniqueness, consider two solutions v; and vy to (1.8). If either
vi(ai+) > vy(ai+) or vi(a1+) < vy(ai+), the above observation leads to a
contradiction to vi(az) = va(az). Finally, if v}(ai1+) = vy(a1+), then unique-
ness follows from part (a). O

LEMMA 2.3. If u is a solution of (1.8) with initial condition (2.1) on [0, x¢ ]
such that B < u < M, then u is Lipschitz with Lipschitz norm bounded by
o+ 200(x0)M2.

PROOF.
[u(x) —u(y) = |a(x—y) +2) [(x —s)" — (y — i) e (sy)
i=1
< (a+2coM?)|x — yl. m

Lemmas 2.1, 2.2 and 2.3 imply the following theorem.

THEOREM 3. For any a > 0, B > 0, (1.8) and (2.1) have a unique locally
Lipschitz solution. The solution can be extended until it reaches oc.

PROOF OF THEOREM 1 (continued). Given a bounded interval [k1, k2], in
Lemma 2.7 we will exhibit a sequence of functions vy(x) satisfying (1.8),
such that vy (x) — 0 uniformly on [ k1, k3] and such that vy(x) = oo for large
values of |x]|.

Fix N > 1 and suppose that v satisfies (1.8) with

UN (0) = 2_N1
vy(0) =0.
For ease of notation, we will subsequently drop the subscript on vy. Our first

goal is to show the following lemma.

LEMMA 2.4. Let v(x) be defined as above and let the assumptions of The-
orem 1 be satisfied. Then, with @,-probability 1, v(x) = oo off of a compact
interval.
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PROOF. Since vy (0) = 0, by symmetry we can restrict our attention to
x € [0,00). The case x € (—oo,0] follows from the same argument, after
replacing x by —x. Note that v(x) is nondecreasing on [0, c0).

Our first task is to define several new objects. These are easier to work
with than v(x) itself, and we will be able to use comparison methods to gain
information about v(x). We define a function u(x) for x > 0, such that u(x) <
v(x).

For n > —N, m > 0, we define sequences X, Xnm, Yn, Umn and z, by
induction. To start the induction, choose x_py such that v'(x_n+) > 0. Then,
let y_ny = v'(x_n+) and let z_y = y_n/b_n. For the following, we need only
define u(x) for x > x_p. To begin, let u(x_y) = 27 and let u'(x_n+) =
v(x_n+).

Assume that we have defined x,, y,, z, such that the following hold:

(1) u(x,) =2" <v(x,);
(i) yn =t (xnt);
(iii) 2z, = yn/bu;
@v) u(x) <v(x) for 0 < x < xp;
). u'(x+) < v'(x+) for 0 < x < xp;
(vi) L((xp, x, +2"/(brz,)]) = S(2"/(bpz,)) if n > —N.

Here, u/(x+) denotes the right-hand derivative of u at x.
For m > 0, let

2n

Xnm = Xn+m 2 (x0t)
2n
=X, +m—

Yn

272
=X, +m—.
nt b,z

For m > 0 and x € [&n,m, Xn,m+1), we define i, ,(x) to be the solution of

ﬁn,m(in,m) = u(xn) =2",

@y (x+) = W' (Xp+) = yn.

Of course, this means that i, ,(x) = 2" + (x — Xy,m)¥n for x € [%n,m, Xnm+1)-
Finally, let M = M (n) be the first integer m > 1 such that

(2.6) L(Enmt, Enm]) = s(bzn )
nzn

Since the intervals (X, m-1,%n,m] have equal length for different values of
m and since L((%,,m-1,%n,m]) can take arbitrarily large values with positive
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probability, we see that M(n) < co with probability 1. Next, let

Xnt1 = in,M(n)7

u(x) = ﬁn,m(x) for Xnm-1 < X =< Xpm, l1<m< M(n),

2n
u’(xn+1+) = u'(xn+) + 22”3(%)

1709

Note that the definitions of y,41 = ¢/(x,11+) and z, = y,/b, and the assump-

tions of Theorem 1 imply that

bn 22n on
Zn+1 = A 2n + S(b )

n+1 bn+1 nn

2.7) >c12,+c31l (0<z,<1)

> c3.

LEMMA 2.5. For x, < x < x,11, we have the following:
@) u(x) < v(x);
(1) w'(x+) < v'(x+).
Furthermore,
271,

xn+1_xn=M(n)b P

Thus, if we show that u(x) = oo for some x, then we conclude that v(x) = co.

PrOOF. Here is a proof by induction. The claim about x,,;—x, follows from
the definitions. Since v’(x) is nondecreasing for x > 0, claim (i) of the lemma
easily follows. Claim (ii) also follows easily, except at x = x,11 = %, m(n)- Let

us show that

U (xpi1+) < V' (xpp1+).

By the definition of »'(x,1+) and the portions of Lemma 2.5 which we have

already proved, we find

V' (xnt1+) = U/ (%n+) + v(x)?L(dx)

XnsXn+1

> Yo+ ﬁn,M(n)—l(x)zL(dx)

(En,M(n)—lyﬁn,M(n)

> Yo+ G rin)-1En i (m)-1) L, bt (n)-15 % p1(m) 1)

> Yn+ 22”L((-’zn,M(n)—1, Xn,M(n)-1 +
2n
b,z
= u,(xn+1+)-

This proves Lemma 2.5. O

n

bz,

)
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We note the following fact.

LEMMA 2.6. There exists an i.i.d. sequence of geometrically distributed ran-
dom variables { G} _ with parameter p = e~ 1, such that with probability 1,
M(n) < G, foreach n > —N.

PrOOF. By the strong Markov property and the independent increments
property for the Lévy process U(x) = L([0, x]), it suffices to show that, for
m=>1,

(2.8) QV{L«azn,m_l,scn,m}) > S(bzn )} S 1ol

nZn

Recall that %, , — X,m-1 = 2"/b,z,. By the definition of S(¢) given in the
Introduction, we conclude that

_ _ n 2n 2n
2.9 (xn,m - xn’m_l)y<s<bnzn>,oo> B bnz, V(S(bn2n>’oo>
> 1.

Now we use the interpretation of L((a,b]) as a compound Poisson random
variable. Relation (2.9) implies that L((%, m—1, ¥n,m ]) has atoms of size greater
than or equal to S(2"/(b,z,)) with intensity at least 1. Using the Poisson
probability distribution, the chance of at least one atom of this size is at least
1 — e~ L. This proves (2.8). O

Now we return to the proof of Lemma 2.4. By (2.7) and Lemma 2.6, and
using Lemma 2.5, we have that

o0
lim x, =x_n§y + Z [Xn41— %n]

n—00
n=—N

o0 271
<xn+ Y Mn);
n=—N nZn

(2.10)

By the assumptions of Theorem 1, we know that
00 2n+1

< o0
n=0 cobn

and, therefore,

0 2n+1
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It therefore follows that
. 0 2n+1
Jim x, < x_y + ,;,G"Eo_b;
< 00
with @,-probability 1. This proves Lemma 2.4. O
At this point, we need a further lemma about the solutions of (1.8). Let
v(e,x) = v(x) satisfy (1.8) with initial conditions v(0) = ¢, v'(0) = 0. For

simplicity, we will sometimes drop the dependence of v(e, x) on ¢ and write
v(x).

LEMMA 2.7. For @, almost every L, v(e, x) tends to 0 uniformly on compact
intervals in x as € | 0.

Proor. Let K > 0. By (1.8), v(x) is convex in x and, since v'(¢,0) = 0, we
have that

sup v(x) =max[v(—K),v(K)].
—K=<x<K

To prove Lemma 2.7, it suffices to show that

limv(e,K)=0
el0

with probability 1, since the same argument would show that
limuv(e,—K)=0
£l0
with probability 1.
First, suppose that
15"(x) = (5(x) A (2¢))°L

and that 9(0) = v(0) = &, ¥'(0) = 0. Then, using the convexity of o, we find
that

sup ¥'(x) =0 (K) < 46*L((0, K]).
0<x<K

Then,
9(K)<e+ K-462L((0,K])
< 2¢

for ¢ sufficiently small. Thus, for 0 < x < K, 0(e,x) < 2¢ for & small enough.
In this case, 0(x) A 2e = 0(x) and thus 0(x) satisfies (1.8) for 0 < x < K and
for ¢ sufficiently small. Thus, for ¢ sufficiently small, we have

v(e, x) < 2e.
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Hence,
lim sup v(e,x)=Ilimmax[v(e,—K),v(e, K)]
el0 _K<x<K el0
< lim2¢
el0
=0.

This proves Lemma 2.7. O

The proof of Theorem 1 now follows since Lemma 2.7 verifies the hypothesis
of Corollary A. O

PROOF OF THEOREM 2. The proof of Theorem 2 follows immediately from
part (b) of Corollary A and Lemma 2.8 below. The argument follows the same
lines as in the proof of Theorem 1, except that our estimates will usually go
in the opposite direction. To obtain the appropriate probability estimates, we
use Markov’s inequality.

LEMMA 2.8. Assume that v satisfies the conditions of Theorem 2.

(a) Let v(x) satisfy (1.8) with initial conditions v(0) = B> 0, v'(0+) = a >
0. Then, with Q,-probability 1, v(x) < oo for all x € R.
(b) Let v(B1, Bs,-) be as in Theorem A. Then for Q,-a.e. L and any —oo <
a; < ag <00,
sup inf v(Bi,B2,x) = +oo.

B1,Bz *€lan,a]

PROOF. To see that (b) follows from (a) assume that there exist sequences
Bin, Ban and x, — xo € [a1,as] such that
lim v(B1,n, Bons Xn) = sup inf v(B1, B2, x) = ¢ < +o0.
n— 00 B1,B: *€laiaz]
However, by (a) there exists a solution of (1.8) such that v(x,) > ¢, but is

bounded on [aj,as]. Together with Lemma 2.2(b), this yields a contradic-
tion. O

Again, we prove Lemma 2.8(a) for x > 0, since the case of x < 0 follows by
symmetry. The arguments below show that, given any « > 0 and B8 > 0, the
solution of (2.2) remains finite on (0, c0). In order to simplify the notation, we
set B =1 and @ = 0. Our definitions are then similar to the previous case. We
define sequences x,, y,, 25, this time for n > 0, and a function u(x) > v(x),
u(x+) > v'(x+) for x > 0. We let v, = u/(x,+) and z, = y,/b,.

In the proof of Theorem 1 [see (2.6)], we waited until L((Xn m—1, %n,m]) Was
large enough and then chose our new variable x,1. The result was a function
u(x) < v(x). For the proof of Theorem 2, we seek a function u(x) > v(x).
For this purpose, we hope that L((x,,x, + 2"/(z,b,)]) is rather small. If it
is small, we define x,,; such that u(x,;1) = 2" If L((x,, X, + 2"/(2,6,)])
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happens to be too large, we must let x,,1 be smaller than usual, such that
Xnp1 < Xp + 2"/(2,b,). To be precise, suppose that u(x) satisfies (1.8) for
x > x,, with initial conditions given by u(x,) and u'(x,+), and choose x,.1
to be the smallest number x > x, and such that either of the following holds:
1. u(x) =27+l

2. u'(x+) = bpr1max[ K, Hy(z,)].

For such an x,,1, we readjust the initial conditions on u(x) at x = x,.1, such
that

u(xn41) = 2",
u'(2n11+) = max[ K, Hy(2n)].
For such a sequence x,, we must show that with probability 1, lim,,_, . x, = co.
Here are the details. To begin with, we seek inequalities for x,.; — x, and

Yn+1l — Yn similar to those used in the proof of Theorem 1. First, since u(x) is
convex and thus u/(x) is nondecreasing, and by the definition of x,1,

(g1 — %)W (Xp+) < w(xnp1—) — u(x,) < 27+

and, therefore,
2n+1

u'(xp+)
2n+1

Xn+l — Xn =

(2.11)

2

Let A, be the event that u(x,.1—) = 2"+1. If A, holds, then
2n

u/(xn+1+)

2.12) _2
Yn+1

2n

bri12n41

Xntl — Xn =

Therefore, arguing as in the proof of Theorem 1, but using the opposite
inequality, we find that, whether or not A, holds,

W (xns1—) — U (nt) = / u?(x)L(dx)

(%n,%n41]
=< uz(xn+1)L((xm Xni1])
2(n+1) 2n+!
2 nt ——
2.13) = L ((xx - u'(xn+)]>

2n+1
= 22("+1)L<<xn,xn + :D
Yn

2n+1
= 22("+1)L<<xn, Xy + ————])
b,z,
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Here we record a lemma about the size of L. Note that L((x,,x, +¢]) and
L((0,t]) are equal in distribution.

LEMMA 2.9. Under the assumptions of Theorem 2,
I(2)

QV{L((O’ t]) > S} = T + 1- 9_0.5,

for s, t > 0.

PROOF. Let L be the compound Poisson random measure obtained from L
by omitting the atoms of mass greater than 7'(¢). Note that L((0, t])—ﬁ( (0,¢])
is a compound Poisson random variable with finite Lévy measure tv(dx)1[x >
T(t)]. Let F be the event that L((0,¢]) — l:((O, t]) = 0. From the above, and
by the definition of T'(¢),

Q{F} = exp(~v([T(t),00))) = exp(~0.5).

Now let G be the event that l:((O,t]) > s. By the definition of I(¢) and by
Markov’s inequality,

auia) < B0

Since F and G are independent, we may put these two estimates together, to
obtain

Q.{L((0,¢]) > s} < Q,{F°} + Q,{G}.

This proves Lemma 2.9. O

Next, note that

u’(x,,+1—) bn 92n+2 << on+1 ])
< zZn + L((xn, %, +—1).
by, bni1 " bns1 m bnzn

Let L, = L((xn, x, +2""1/2,b,]) and let B, be the event that

n+1
L, <4I<2 3 )

2n0n

If B, occurs, then using the definition of H, we see that

u/(xn+1_)
by
Thus, if B, occurs, condition 2 in the definition of w,u’ must fail, and so

condition 1 must occur and, therefore, A, occurs. We have shown that B, C
A,.Let R, = 1(B,).

< Hy(2n).
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Now let %, denote the o-field generated by L([0,x]) for 0 < x < x,. By
the independent increments property of Lévy processes, the conditional dis-
tribution of L, given %, is the same as the distribution of L((0,2"/(2,b,)]).
Using Lemma 2.9, we have

-05 _ I(2n+1/bnzn)
(2.14) Qv{Bn|=7n} >e _41(2n+1/bnzn)

>0.1.

For future use, we let 6 = 0.1.
We wish to show that, for n large enough,

(215) Zn+1 < Mo
for some constant My not depending on n. In that case, we would have y,; <
MObn+1

To prove (2.15), we consider the discrete dynamical system obtalned from
the action of the H,. Let

H,(z) =max[K, H,(2)].
LEMMA 2.10. For 0 < i < j, let H; j(z) denote the composition

lj(z) ( i+l ﬁj(z))

Given My > K there exists a constant N1 > 0 depending only on Ny, K and
z such that if j—i > N1, then

Hi,j(z) < Mo.

PROOF. By the definition of H,, it follows that H j(2) = K for all values
of i. Now, requirement (1.13) on H,(z) states that if n is large enough and
z > K, then

z
H,(z) < 9

Thus, if n is large enough and z > 2K, each application of H, decreases z by
a factor of 2. Thus, if j — i is large enough, we will have H; ;(z) < 2K. This
completes the proof of Lemma 2.10. O

Now we can finish the proof of Theorem 2. First note that, by our definition,
u'(xpi1+) = byp1Hy(2,) and, therefore, z,.1 = H,(z,). Now Lemma 2.10
shows that there exists a constant N > 0 depending only on z; such that
2n < My for all n > N. Second, we wish to use the lower bound (2.12), and we
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can do so if A, holds. Recalling that R, = 1(B,) and B, C A,, we find

0
lim x, = Z(xn+1 — X,) + Xo
n—oo =
2n+1
>>» R,
Z "bnzn nZn

Z R 2n+1
= nb MO

However, by the assumptions of Theorem 2, we know that
00 2n+1

—N bnMO

(2.16) = oo.
Therefore, we need only take into account the random variables R,. Unfortu-
nately, these are not independent.

Recall that, by (2.14), @,{B,|%»} > 6 = 0.1. Now, by enlarging the probabil-
ity space if necessary, we may choose Fy.1- -measurable events B, C B,, such
that @,{B,|%»} = 6. Because Bj,.. , B, are %,-measurable, we conclude that
{B,} is a sequence of Q,,-mdependent events, each with @,-probability é. Let

(2.17) R, = 1(B,).

Our immediate goal is to show the following lemma.

LEMMA 2.11. With Q,-probability 1,

(2.18) ZEW

PROOF. By the assumptions of Theorem 2, we know that

(2.19) Z?Z

For ease of notation, let

Without loss of generality, we may assume that the terms a, are arranged
in decreasing order. Indeed, if there are infinitely many terms a, > & for
any & > 0, then we immediately deduce that (2.18) holds with probability 1.
Choose the nondecreasing subsequence {n;}3>, such that if ny < n < ngy,
then 3% > a, > 3~(*+1) Furthermore, let k(i) be an enumeration of those
indices £ > 1 such that nz,1 — ng > 2% Now, (2.16) implies that

o0
(2.20) 387D (np(iye1 — nagiy) = 00
izl
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Let m (i) be the number of indices n such that nr;) < n < ng;)41 and R,=1.
Since npi)41 — nruy = 289 > 27, by the weak law of large numbers we find

{ m(i) 8} 8(1-96) /82
Qi———— << ——m—— [ —
rGiyrl — NeGy 2 Nri)+1 — Ny [ 4

L4-9
- o2
The Borel-Cantelli lemma now implies that, with probability 1,
] 0
(2.21) _ m > =
Nk(i)+1 — NkG) 2

except for a finite number of indices i. Now redefine the sequence k(i) by
dropping those indices k(i) for which (2.21) fails. Using (2.20) and (2.21), we
find that

Z R,— > Z m(i)3
=1 On i3
(2.22) o & —a(i
>3 D (hg)+1 — na))37H
i=1
= oo.

So finally, (2.22) implies that

o0
lim x, = ) (Xp41— 25) + 21
n—oo

n=1
© __ 9n
=>cC Z Rnb— + x1
n=1 n
= Q.

This completes the proof of Lemma 2.11 and also Lemma 2.8(a). O

We now complete the proof of Lemma 2.8(b). Assume the contrary, namely,
supg, g, infrea; 0,1 V(B1, B2, ) = B* < +oo. Then there exist sequences
Bin, Ban * o0 and x, — x* € [ay,a2], U(Bl,m B2,n, xn) — B* and v(B1,n, Ba2,n, x)
assumes its minimum at x,. However, by Lemma 2.8(a) there exists a solution
v with v(x*) = B*+ 1 and v'(x*) = 0 which remains bounded on [ay,as].
However, for large n, B1, > v(a1) and Ba, > v(ag), but together with
v(x*) > inf (4,4, V(B1n,s Baon, x) this yields a contradiction by Lemma 2.2(b).

This completes the proof of Theorem 2. O
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