THE SUPPORT OF MEASURE-VALUED BRANCHING PROCESSES IN A RANDOM ENVIRONMENT By D. Dawson, 1 Y. Li² and C. Mueller³ Carleton University, University of Rochester and University of Rochester We consider the one-dimensional catalytic branching process introduced by Dawson and Fleischmann, which is a modification of the super-Brownian motion. The catalysts are given by a nonnegative infinitely divisible random measure with independent increments. We give sufficient conditions for the global support of the process to be compact, and sufficient conditions for noncompact global support. Since the catalytic process is related to the heat equation, compact support may be surprising. On the other hand, the super-Brownian motion has compact global support. We find that all nonnegative stable random measures lead to compact global support, and we give an example of a very rarified Lévy process which leads to noncompact global support. ## 1. Introduction and statement of main results. 1.1. Motivation. Let Y(t,dx) be the measure-valued branching process sometimes called the super-Brownian motion. This process is described in the recent surveys of Dawson (1993) and Dynkin (1994). The properties of the support of Y have aroused considerable interest. For example, in two or more dimensions, the support has fractional Hausdorff dimension. Also, as shown by Iscoe (1988), if Y(0,dx) has compact support, then Y(t,dx) has compact support for all t>0. This property is unexpected, since at least heuristically Y can be related to the heat equation with a noise term. To be specific, if we assume (perhaps falsely) that $Y(t,dx)=y(t,x)\,dx$ for some random function y(t,x), then y would formally satisfy $$y_t = rac{1}{2}\Delta y + (2\gamma y)^{1/2}\dot{W},$$ $y(0,x) = rac{Y(0,dx)}{dx},$ where $\gamma > 0$ and $\dot{W} = \dot{W}(t,x)$ is space—time white noise. Of course, we do not expect the heat equation to have solutions of compact support. While most probabilists have focused on the spatially homogeneous measure-valued branching processes, Dawson and Fleischmann (1991) have Received May 1993; revised December 1994. ¹Supported by NSERC. ²Supported by NSF grant. ³Supported by NSF, NSA and MSI grants. AMS 1991 subject classifications. Primary 60H15; secondary 35R60. Key words and phrases. Stochastic partial differential equations, branching processes, Lévy processes, support. introduced a measure-valued branching model X(t,dx) in which birth and death occur only at certain points. This model is called the *catalytic branching* process or super-Brownian motion in a catalytic medium, because one can imagine that catalysts are located at the points where branching occurs. Catalytic branching processes can have very different properties than ordinary measure-valued branching processes. For example, in Dawson and Fleischmann (1995) it is shown that for certain kinds of catalysts the random measure X(t,dx) has a density even in higher dimensions. On the other hand, the usual measure-valued branching process has a density only in one dimension. In this paper, we examine the question of compact support for the branching catalytic process. We consider catalysts given by an infinitely divisible random measure with independent increments. We focus on the one-dimensional case, so that such a random measure may be considered as the derivative of a nondecreasing Lévy process. While our choice is not guided by specific applications, we believe that our model gives some idea of the range of phenomena which can occur. Our methods depend on estimating solutions of elliptic equations with random coefficients, and we were unable to extend our method to higher dimensions. Allowing the catalysts to move would have involved the study of random parabolic equations, which were even further beyond our reach. Nonlinear parabolic and elliptic equations are a familiar tool in the field, and Iscoe's (1988) work on the support of measure-valued branching processes depended on the study of a nonlinear elliptic equation. 1.2. Super-Brownian motion in a catalytic medium. The purpose of this section is to describe the basic process. We begin by giving the rigorous definition of the random catalytic medium. Let $\mathscr B$ denote the Borel subsets of $\mathbb R$ and $\mathscr B_+$ the nonnegative Borel measurable functions. Let $\mathscr E_+$ denote the space of nonnegative continuous functions ψ on $\mathbb R$ and $\mathscr E^2$ the space of twice continuously differentiable functions. Let L denote an infinitely divisible random measure with independent increments on $\mathbb R$ with Laplace functional $$(1.1) \qquad -\log E \left\{ \exp \left(-\int_{\mathbb{R}} f(x) L(dx) \right) \right\} \\ = \int_{\mathbb{R}} \int_{0}^{\infty} \left(1 - \exp(-\lambda f(x)) \right) \nu(d\lambda) \, dx, \qquad f \in \mathscr{B}_{+},$$ where ν is a measure on $(0,\infty)$ which satisfies $\int_0^\infty \min(\lambda,1)\nu(d\lambda) < \infty$. Under this condition L is almost surely a locally finite random measure which we subsequently refer to as the compound Poisson random measure with associated Lévy measure ν and denote its probability law by Q_{ν} . The stable random measure of index $\alpha \in (0,1)$ has Lévy measure (1.2) $$\nu_{\alpha}(d\lambda) = \frac{c_{\alpha}d\lambda}{\lambda^{1+\alpha}} \mathbb{1}(\lambda > 0)$$ and some normalizing constant c_{α} . Compound Poisson random measures are almost surely pure atomic. If the associated Lévy measure is finite, then the atoms are isolated. [Refer to Kallenberg (1983) for characterization and basic properties of infinitely divisible random measures.] Also note that, for any $a \in \mathbb{R}$, $\{L([a,a+t)): t \geq 0\}$ is a nondecreasing process with independent increments. Before turning to the construction of the catalytic branching process, let us briefly recall the characterization of ordinary super-Brownian motion. Let $\mathscr{M}_F(\mathbb{R})$ denote the finite Borel measures on \mathbb{R} with the topology of weak convergence. Super-Brownian motion is a continuous $\mathscr{M}_F(\mathbb{R})$ -valued Markov process with transition Laplace functional $$(1.3) E_{Y(0)}\left\{\exp\left[-\int_{-\infty}^{\infty}\varphi(x)Y(t,dx)\right]\right\} = \exp\left[-\int_{-\infty}^{\infty}u(t,x)Y(0,dx)\right],$$ where u(t, x) satisfies $$u_t = \frac{1}{2}u_{xx} - \gamma u^2,$$ $u(0,x) = \varphi(x) \in \mathscr{B}_+.$ In the above, γ is a positive constant which represents the branching rate. We next turn to the construction of the super-Brownian motion in $\mathbb R$ in which the branching rate is not constant but is determined by a fixed locally finite random measure L given by (1.1). In fact it suffices to construct the process for a typical realization of the medium. From an intuitive viewpoint X(t,dx) consists of infinitesimal Brownian particles undergoing critical branching. The branching rate is controlled by the measure L. If a particle is at a point where L is large, its branching rate is high. If L=0 on a set A, then branching does not occur there. Heuristically, if we imagine that the densities $\gamma(x)=L(dx)/dx$ and r(t,x)=X(t,dx)/dx exist (but they may not), this process would satisfy the equation $$r_t = \frac{1}{2}r_{xx} + (2r\gamma(x))^{1/2}\dot{W},$$ $r(0,x) dx = X(0,dx),$ where \dot{W} is space-time white noise. Still formally, the corresponding measure-valued branching process X(t,dx) with probability law denoted by $P^L_{X(0)}$ would be given by a Laplace transition function as in (1.3) except that the log-Laplace function u(t,x) would satisfy (1.4) $$u_t = \frac{1}{2}u_{xx} - u^2 \frac{L(dx)}{dx},$$ $$u(0, x) = \varphi(x) \in \mathcal{B}_+.$$ Of course, when L is given by (1.1), L(dx)/dx (which we sometimes will write as \dot{L}) is a singular term involving delta functions, but as in Dawson and Fleischmann (1992) we consider (1.4) as shorthand for the integral equation (1.5) $$u(t,x) = \int_{-\infty}^{\infty} p(t,x,y)\varphi(y) \, dy - \int_{0}^{t} \int_{-\infty}^{\infty} p(t-s,x,y)u^{2}(s,y)L(dy) \, ds,$$ where p(t, x, y) is the fundamental solution of the heat equation $u_t = (1/2)u_{xx}$ on \mathbb{R} . A solution of (1.5) is called a *mild solution* of (1.4). In fact, under the additional assumptions that $$\int_{-\infty}^{\infty} \exp(-cx^2) L(dx) < \infty, \qquad \forall \ c > 0,$$ and that ϕ belongs to an appropriate class of nonnegative continuous functions, existence and uniqueness of mild solutions of (1.4) which are continuous in t and x are established in Dawson and Fleischmann [(1992), Section 2] and the catalytic branching process with this log-Laplace function is obtained in Dawson and Fleischmann (1991). An alternative approach, which is employed for example in Dawson and Fleischmann (1994), is to use Dynkin's general construction [cf. Dynkin (1991, 1994)] in which the branching rate is given by an admissible Brownian additive functional. In particular, if \tilde{L} is a finite measure on \mathbb{R} and $\ell_{t,x}(w)$ denotes the local time of the Brownian motion w, then the additive functional $\kappa_{\tilde{L}}(w,t)=\int\ell_{t,x}(w)\tilde{L}(dx)$ is admissible. The existence of the corresponding measure-valued branching process X(t,dx) follows from Dynkin [(1994), Theorem 3.1]. In addition, according to Dynkin [(1994), Theorem 3.2] the process X(t,dx) almost surely has right-continuous paths. However, for our purposes it is convenient to employ some modification of these constructions. Although technically our construction is not contained in the previously mentioned references, it involves only ideas and methods which appear in them, and for this reason we will simply give an outline of the construction of the modified process we consider. The main idea is to construct the basic process as the a.s. limit of an increasing sequence of $\mathscr{M}_F(\mathbb{R})$ -valued processes defined on a common probability space. In order to do so, we first
construct, for each $K \in \mathbb{N}$, an $\mathscr{M}(E_K)$ -valued process $\tilde{X}_K(t)$, where $E_K := \bigcup_{n=1}^K \{n\} \times (-n,n)$. We consider the Markov process w_K in E_K which, starting at $(n,x), x \in (-n,n)$, is defined by $w_K(t) = (\{n\}, w(t)), \ 0 \le t < \tau_n, \ w_K(\tau_n) = (\{n+1\}, w(\tau_n)), \ \text{where} \ \tau_n := \inf\{t: w(t) = \pm n\} \ \text{and} \ w \ \text{is a standard Brownian motion starting at} \ x.$ Finally, the process w_K dies at time τ_K . Consider the random measure on E_K defined by $L_K(\{n\} \times (a,b)) = L((-n,n) \cap (a,b)), \ n \le K$, and the admissible additive functional $\kappa_{L_K}(w_K,t) := \int \ell_{t,y}(w_K) L_K(dy)$. The resulting superprocess is denoted by $\tilde{X}_K(t)$. Given a measure $\mu \in \mathscr{M}_F(\mathbb{R})$, we take as the initial measure for \tilde{X}_K , for $$n \geq 1$$, $\tilde{X}_K(0, \{n\} \times B) := \mu(B \cap [n-1, n) \cup (\neg n, -n+1])$. Note that if K'>K, then the law of $\tilde{X}_{K'}$ restricted to E_K is identical to the law of \tilde{X}_K . Thus the laws $P_{X(0)}^{L,K}$ of \tilde{X}_K form a consistent family whose projective limit yields the probability law of an $\mathscr{M}(E_\infty)$ -valued process \tilde{X}_∞ , where $E_\infty:=\bigcup_{n=1}^\infty \{n\}\times (-n,n)$. We then define the increasing sequence of $\mathscr{M}_F((-K,K))$ -valued processes: $X_K(t,B) := \sum_{n=1}^K \tilde{X}_\infty(t,\{n\} \times B)$. It can be verified that the log-Laplace function for the process $X_K(t)$ $$\begin{aligned} u_K(t,x) &= \int_{-K}^K p_K(t,x,y) \varphi(y) \, dy \\ &- \int_0^t \int_{-K}^K p_K(t-s,x,y) u_K^2(s,y) L(dy) \, ds \end{aligned}$$ and $$E(X_K(t,B)) = \int_{-K}^K \int_B p_K(t,x,y) \mu(dx) \, dy,$$ where $p_K(t, x, y)$ denotes the fundamental solution of the heat equation with Dirichlet boundary conditions on (-K, K). Moreover, a modification of the arguments of Dawson and Fleischmann (1992) imply that, when ϕ is continuous with support in [-K, K], this equation has a unique solution which is jointly continuous in t and x and measurable in L. Finally, a standard argument shows that $E(X_K(t,B)) = \int_B \int_{-K}^K p_K(t,x,y) \mu(dx) dy$. We then define the $\mathscr{M}_F(\mathbb{R})$ -valued process with initial measure μ by $$X(t,dx) := \lim_{K \to \infty} X_K(t,dx).$$ The process X(t, dx) is the super-Brownian motion in the catalytic medium L. We extend $p_K(t,\cdot,\cdot)$ to $\mathbb{R} \times \mathbb{R}$ by setting $p_K(t,x,y) = 0$ if x or $y \notin (-K,K)$. Then $p_K(t,\cdot,\cdot) \uparrow p(t,\cdot,\cdot)$ and, by the monotone convergence theorem, $$E(X(t,B)) = \int_{-\infty}^{\infty} \int_{B} p(t,x,y)\mu(dx) \, dy.$$ Since the sequence $X_K(t,\cdot)$ is increasing in K, so is the associated sequence of log-Laplace functions $u_K(t,\cdot)$. By the monotone convergence theorem the log-Laplace function of X(t) is given by $u(t,x) := \lim_{K\to\infty} u_K(t,x)$. Finally applying the monotone convergence theorem again we obtain $$\begin{split} u(t,x) &= \lim_{K \to \infty} u_K(t,x) \\ &= \lim_{K \to \infty} \int_{-K}^K p_K(t,x,y) \varphi(y) \, dy \\ &- \lim_{K \to \infty} \int_0^t \int_{-K}^K p_K(t-s,x,y) u_K^2(s,y) L(dy) \, ds \\ &= \int_{-\infty}^\infty p(t,x,y) \varphi(y) \, dy - \int_0^t \int_{-\infty}^\infty p(t-s,x,y) u^2(s,y) L(dy) \, ds. \end{split}$$ Note that this constuction only requires the local finiteness of L, but that we do not obtain (nor do we require) the uniqueness of the solution to (1.5) nor the right continuity of X(t). The weighted occupation time process for super-Brownian motion was introduced by Iscoe (1988). Since the process X_K introduced above is right continuous and X is the increasing limit of the X_K , they are measurable and the occupation time processes $\int_0^t X_K(s,\cdot)\,ds$ and $\int_0^t X(s,\cdot)\,ds$ are well defined. Let $X(0)\in \mathscr{M}_F(\mathbb{R})$ have support in (-K,K), let $\psi\in\mathscr{C}_+$ have support in (-K,K) and let $\theta>0$. Following the arguments in the proof of Theorem 3.1 in Iscoe (1986), one can check that the corresponding Laplace functional is (1.6) $$\begin{split} E_{X(0)}^L \bigg\{ & \exp \bigg[-\theta \int_0^t \int_{-\infty}^\infty \psi(x) X_K(s,dx) \, ds \bigg] \bigg\} \\ & = \exp \bigg[-\int_{-\infty}^\infty v_K(\theta \psi;t,x) X(0,dx) \bigg], \end{split}$$ where $v_K(\theta \psi; t, x)$ is the solution of $$u(t,x) = 0 \quad [\text{for } x \in (-K,K)^c]$$ $$= \theta \int_0^t \int_{-K}^K p_K(t-s,x,y)\psi(y) \, dy \, ds$$ $$- \int_0^t \int_{-K}^K p_K(t-s,x,y)u^2(s,y)L(dy) \, ds \quad [\text{for } x \in (-K,K)].$$ Let 0 < x < K. Letting $X(0) = \delta_x$ in (1.6), it follows that $v_K(\theta\psi,t,x)$ is nonnegative and monotone increasing in both t and ψ . Note that $v_K(\theta\psi,t,x) \le \sup_{t,x} \int_0^t \int_{-K}^K p_K(t-s,x,y) \theta\psi(y) \, dy \, ds < \infty$. 1.3. The global support of X. Given $\mu \in \mathscr{M}_F(\mathbb{R})$, let $\operatorname{supp}(\mu)$ denote the closed support of μ . The global support of a measure-valued process $X(\cdot)$, Gsupp(X), is defined to be the closure of $\bigcup_{t\geq 0} \operatorname{supp}[X(t,dx)]$. Let L be a fixed locally finite measure on \mathbb{R} . In this section we relate the question of compact global support for the super-Brownian motion in the catalytic medium L to a nonlinear singular elliptic boundary value problem. In the next section (Section 1.4) these results will be applied to the case in which L is a typical realization of a random catalytic medium. Before stating the next result, let us recall some basic facts from the theory of distributions which can be found, for example, in Schwartz [(1966), Chapter 2, Section 4]. A distribution on \mathbb{R} (or any open interval) whose second derivative (in the sense of distributions) is a locally finite measure (either signed or nonnegative) is a continuous function of bounded variation on every finite interval. Moreover, if its second derivative is a nonnegative measure, then (i) it is a continuous, convex function and (ii) its first derivative exists in the usual sense except possibly at a countable set of points, and it is an increasing function having left and right limits at every point. A solution to the boundary value problem (1.8) $$\frac{1}{2}v_{xx} = v^{2}(x)\frac{L(dx)}{dx} \quad \text{for } x \in (a_{1}, a_{2}),$$ $$v(a_{1}) = \beta_{1}, \qquad v(a_{2}) = \beta_{2},$$ is a continuous convex function v, defined on $[a_1, a_2]$, which has the required boundary values and such that, for every $a_1 \le x_0 \le x_0 + x \le a_2$, $$(1.9) v(x_0+x)=v(x_0)+v'(x_0+)x+2\int_{x_0}^{x_0+x}ds\int_{x_0}^s v^2(t)L(dt).$$ THEOREM A. Assume that $supp(X(0)) \subset [a_1, a_2] \subset (-K, K)$. - (a) There exist positive sequences $\beta_{1,n} \uparrow \infty$, $\beta_{2,n} \uparrow \infty$, such that for each n the boundary value problem (1.8) has a unique solution $v(\beta_{1,n}, \beta_{2,n}, x)$ with $\beta_1 = \beta_{1,n}$ and $\beta_2 = \beta_{2,n}$. - (b) Given any sequence of functions $v(\beta_{1,n}, \beta_{2,n}, x)$ satisfying the conditions of (a), $$(1.10) \begin{array}{l} P^L_{X(0)}\{\mathrm{Gsupp}[\,X\,]\subset [\,a_1,a_2\,]\} \\ &= P^L_{X(0)}\{\mathrm{supp}[\,X(t,dx)\,]\cap [\,a_1,a_2\,]^c = \varnothing \ for \ all \ t\geq 0\} \\ &= \lim_{n\to\infty} \exp\biggl[-\int_{a_1}^{a_2} v(\beta_{1,n},\beta_{2,n},x) X(0,dx)\biggr]. \end{array}$$ PROOF. Letting $\psi_n \in \mathscr{C}_+ \uparrow 1_{(-K,K)} \cdot 1_{[a_1,a_2]^c}$ and then $t \to \infty$ in (1.6), we obtain $$(1.11) \hspace{3cm} E_{X(0)}^{L} \bigg\{ \exp \bigg[-\theta \int_{0}^{\infty} X_{K}(s, [a_{1}, a_{2}]^{c}) \, ds \bigg] \bigg\}$$ $$= \exp \bigg[-\int_{-\infty}^{\infty} v_{K, a_{1}, a_{2}}(\theta, x) X(0, dx) \bigg],$$ where $$egin{aligned} v_{K,a_1,a_2}(heta,x) &= \lim_{t o\infty} v_{K,a_1,a_2}(heta,t,x), \ v_{K,a_1,a_2}(heta,t,x) &= \lim_{t o\infty} v_K(heta\psi_n,t,x). \end{aligned}$$ Note that the function $v_{K,a_1,a_2}(\theta,t,x)$ satisfies (1.7) with $\psi=1_{[a_1,a_2]^c}$ (by the monotone convergence theorem). We will show that the second distribution derivative v_{xx} of $v_{K,a_1,a_2}(\theta,x)$ is a signed measure and it satisfies the equation (1.12) $$\frac{1}{2}v_{xx} = v^2(x)\frac{L(dx)}{dx} - \theta \mathbb{1}_{[a_1,a_2]^c}(x).$$ This implies that $v_{K,a_1,a_2}(\theta,x)$ is continuous (cf. remarks made immediately before the statement of Theorem A). To obtain (1.12), let $\phi \in \mathscr{C}$ have support in (-K, K). We will show that, uniformly for small h > 0, $$\lim_{t\to\infty}\frac{1}{h}\bigg[\int v_{K,a_1,a_2}(\theta,t+h,x)\phi(x)\,dx-\int v_{K,a_1,a_2}(\theta,t,x)\phi(x)\,dx\bigg]=0.$$ Because $v_{K,a_1,a_2}(\theta,t+h,x)-v_{K,a_1,a_2}(\theta,t,x)\geq 0$, it suffices to prove this for $\phi\geq 0$. Then using the latter fact and (1.7) with the roles of s and t-s interchanged, we obtain $$\begin{split} 0 & \leq \lim_{t \to \infty} \frac{1}{h} \bigg[\int v_{K,a_1,a_2}(\theta,t+h,x) \phi(x) \, dx - \int v_{K,a_1,a_2}(\theta,t,x) \phi(x) \, dx \bigg] \\ & \leq \lim_{t \to \infty} \frac{1}{h} \bigg\{ \int_t^{t+h} \int \bigg[\int p_K(s,x,y) \theta \mathbf{1}_{[a_1,a_2]^c}(y) \, dy \\ & - \int p_K(s,x,y) v_{K,a_1,a_2}^2(t+h-s,y) L(dy) \bigg] \phi(x) \, dx \, ds \\ & + \int_0^t \int \int p_K(s,x,y) \Big[v_{K,a_1,a_2}^2(t-s,y) \\ & - v_{K,a_1,a_2}^2(t+h-s,y) \Big] \phi(x) \, dx \, L(dy) \, ds \bigg\} \\ & \leq \lim_{t \to \infty} 2K\theta \sup_x \bigg[\phi(x) \int p_K(t,x,y) \, dy \bigg] \\ & = 0. \end{split}$$ On the other hand, if $\phi \in \mathscr{E}^2$, then $$\begin{split} \lim_{t \to \infty} \frac{1}{h} \int & \left[v_{K,a_1,a_2}(\theta,t+h,x)\phi(x) \, dx - \int v_{K,a_1,a_2}(\theta,t,x)\phi(x) \, dx \right] \\ &= \lim_{t \to \infty} \left\{ \int \frac{T_h^K \phi(x) - \phi(x)}{h} v_{K,a_1,a_2}(\theta,t,x) \, dx \\ &\quad + \frac{1}{h} \int_0^h \int \left[\int p_K(h-s,x,y)\theta
\mathbf{1}_{[a_1,a_2]^c}(y) \, dy \\ &\quad - \int p_K(h-s,x,y) v_{K,a_1,a_2}^2(\theta,t+s,y) L(dy) \right] \phi(x) \, dx \, ds \right\} \\ &= \int \frac{T_h^K \phi(x) - \phi(x)}{h} v_{K,a_1,a_2}(\theta,x) \, dx \\ &\quad + \frac{1}{h} \left\{ \int_0^h ds \int dx \, \phi(x) \left[\int p_K(h-s,x,y)\theta \mathbf{1}_{[a_1,a_2]^c}(y) \, dy \right. \\ &\quad - \int p_K(h-s,x,y) v_{K,a_1,a_2}^2(\theta,y) L(dy) \right] \right\}, \end{split}$$ where $\{T_h^K\colon h\geq 0\}$ denotes the semigroup of the killed Brownian motion. The first identity follows from (1.7), and the last limit follows by the monotone convergence theorem. Take $\phi \in \mathcal{C}^2$ with support in (-K, K). Then letting $h \downarrow 0$, it follows that $$\int \frac{1}{2} \phi_{xx}(x) v_{K,a_1,a_2}(\theta,x) \, dx + \theta \int 1_{[a_1,a_2]^c}(x) \phi(x) \, dx$$ $$- \int v_{K,a_1,a_2}(\theta,x)^2 \phi(x) L(dx) = 0.$$ However, this implies that the second distribution derivative of v_{K,a_1,a_2} is a (possibly signed) measure and that the left and right limits of the first derivative of $v(x) = v_{K,a_1,a_2}(\theta,x)$ satisfy $$(1.13) \qquad \frac{dv}{dx}(x\pm) = 2\int_{x_0}^{x\pm} v^2(y) L(dy) - 2\theta \int_{x_0}^{x\pm} 1_{[a_1,a_2]^c}(y) \, dy + \text{const},$$ for $x \in (-K,K)$ [because any two primitives of a distribution differ by a constant; cf. Schwartz (1966), Chapter 2, Section 4]. Integrating again (i.e., taking the second primitive) we obtain (1.9). Note that $\lim_{\theta\to\infty}v_{K,a_1,a_2}(\theta,t,a_i)=\infty$ since, for example, $P^L_{\delta_{a_1}}(\int_0^t X_K(s,(a_1-1,a_1))\,ds>0)=1$ for any t>0. [The latter is verified by calculating the first two moments of $\int_0^t X_K(s,(a_1-1,a_1))\,ds$, Chebyshev's inequality and a Borel–Cantelli argument.] This 'implies that $\lim_{\theta\to\infty}v_{K,a_1,a_2}(\theta,a_i)=\infty$. Since $t \to X_K(t)$ is right continuous and the map $\mu \to \operatorname{supp}(\mu)$ is lower semicontinuous [cf. Dawson (1993), Theorem 9.3.1.2], the event $\operatorname{supp}(X_K(t)) \cap [a_1,a_2]^c = \mathcal{O}$ ($\forall \ t \geq 0$) is measurable. However, the set $\operatorname{supp}(X(t)) \cap [a_1,a_2]^c = \mathcal{O}$ ($\forall \ t \geq 0$) and hence is also measurable and $$\begin{split} P^L_{X(0)} \big\{ & \mathrm{supp}[\,X(t,dx)\,] \cap [\,a_1,a_2\,]^c = \varnothing \; \mathrm{for \; all} \; t \geq 0 \big\} \\ &= \lim_{K \to \infty} P^L_{X(0)} \big\{ & \mathrm{supp}[\,X_K(t,dx)\,] \cap [\,a_1,a_2\,]^c = \varnothing \; \mathrm{for \; all} \; t \geq 0 \big\} \\ &= \lim_{K \to \infty} P^L_{X(0)} \Big\{ \int_0^\infty X_K(s,[\,a_1,a_2\,]^c) \, ds = 0 \Big\} \quad (\mathrm{by \; right \; continuity}) \\ &= \lim_{K \to \infty} \lim_{\theta \to \infty} \exp \bigg[- \int_{-\infty}^\infty v_{K,a_1,a_2}(\theta,x) X(0,dx) \bigg] \quad [\mathrm{by \; (1.11)}] \\ &= \lim_{n \to \infty} \exp \bigg[- \int_{a_1}^{a_2} v(\beta_{1,n},\beta_{2,n},x) X(0,dx) \bigg], \end{split}$$ where $\beta_{1,n} = v_{K,a_1,a_2}(\theta_n,a_1)$ and $\beta_{2,n} = v_{K,a_1,a_2}(\theta_n,a_2)$ with $\theta_n \uparrow \infty$. The fact that $\beta_{1,n} \uparrow \infty$, $\beta_{2,n} \uparrow \infty$ follows from the fact that $v(\beta_1,\beta_2,x)$ is increasing in β_1,β_2 (which will be established in Lemma 2.2) and the fact that $\lim_{\theta\to\infty} v_{K,a_1,a_2}(\theta,a_i) = \infty$ [which was explained in the comments following (1.13)]. The fact that (1.14) is satisfied for any such sequence also follows from the fact that $v(\beta_1,\beta_2,x)$ is increasing in β_1,β_2 . \square COROLLARY A. (a) Let $$\mu$$ have support in $[x_1, x_2]$. In order that $P^L_{\mu}\{\operatorname{Gsupp}(X) \text{ is compact}\} = 1,$ it suffices to find, for every $\varepsilon > 0$, $x_3 = x_3(\varepsilon) < x_1$, $x_4 = x_4(\varepsilon) > x_2$ and a nonnegative solution v(x), $x \in (x_3, x_4)$, to (1.9) which satisfies the following: - (i) $\sup_{x \in [x_1, x_2]} v(x) \le \varepsilon$; (ii) $\lim_{x \to x_3} v(x) = +\infty$; - (iii) $\lim_{x\to x_4} v(x) = +\infty$. - (b) Let $\mu(\mathbb{R}) > 0$. In order that $$P_{\mu}^{L}\{\operatorname{Gsupp}(X) \text{ is } compact\}=0,$$ it suffices to show that, for any $-\infty < a_1 < a_2 < \infty$, $$\sup_{\beta_1,\beta_2} \inf_{x \in [a_1,a_2]} v(\beta_1,\beta_2,x) = +\infty.$$ PROOF. (a) Let $v(\beta_{1,n}, \beta_{2,n}, \cdot)$ be defined as in the statement of Theorem A, but with $a_1 = x_3$, $a_2 = x_4$. Then, for each n, $v(\beta_{1,n}, \beta_{2,n}, x) \leq v(x)$ by (2) and (3). If $supp(\mu) \subset [x_1, x_2]$ and m is a positive integer, then, by (1.14), $$egin{aligned} P^L_{\mu}ig\{G \operatorname{supp}(X) ot\subset ig[x_3(2^{-m}),x_4(2^{-m})ig]ig\} \ &= 1 - \lim_{n o \infty} \expigg[-\int_{x_1}^{x_2} v(eta_{1,n},eta_{2,n},x)\mu(dx)igg] \ &\leq 1 - \expigg[\int_{x_1}^{x_2} -v(x)\mu(dx)igg] \ &\leq 1 - \expigg[-2^{-m}\mu(ig[x_1,x_2ig])igg]. \end{aligned}$$ By the Borel-Cantelli lemma it follows that $$P^L_{\mu}igl\{\mathrm{Gsupp}(X)\subset [x_3(2^{-m}),x_4(2^{-m})] \ ext{for some} \ migr\}=1.$$ - (b) This follows immediately from (1.10). \Box - 1.4. Statement of the main results. We now turn to the case in which the medium L is a typical realization of a compound Poisson random measure with associated Lévy measure ν . In particular, we let X(t,dx) be a super-Brownian motion in this random catalytic medium. As a consequence of the basic construction, given a measure μ , $$\mathscr{C}G(\mu) := \{L: P_{\mu}^{L}\{\operatorname{Gsupp}(X) \text{ is compact}\} = 1\}$$ is a measurable set and in this section we will investigate $Q_{\nu}(\mathscr{E}G(\mu))$ when Q_{ν} is the probability law of a compound Poisson random measure whose Lévy measure ν has certain properties. We first give sufficient conditions on the Lévy measure $\nu(dx)$ which imply $P^L_{\mu}\{\operatorname{Gsupp}(X) \text{ is compact}\}=1$ provided that μ has compact support for almost every realization of the catalytic medium. We then find sufficient conditions for noncompact global support, that is, $P_{\mu}^{L}\{Gsupp(X) \text{ is compact}\} = 0$. As a corollary, we can show that if L(dx) arises from a stable random measure, then X has compact global support with probability 1. The measure L(dx) must be very rarified for X to have noncompact global support, but we show that this can happen even if the atoms of L(dx) are dense in \mathbb{R} . The intuition is as follows. If L(dx) is a fairly uniform measure, then X(t, dx) is similar to the usual measure-valued branching process, which has compact support. On the other hand, if L(dx)is rarified, then X(t, dx) is similar to the measure-valued process with no branching, which satisfies the heat equation. Of course, solutions to the heat equations have noncompact global support. Let $$S(t) = \sup \left\{ x > 0 \colon \nu([x, \infty)) \ge \frac{1}{t} \right\},$$ $$T(t) = \inf \left\{ x > 0 \colon \nu([x, \infty)) < \frac{1}{2t} \right\}$$ and $$I(t) = \int_0^{T(t)} x \nu(dx).$$ Of course, S(t) = T(t/2) if ν has no atoms. THEOREM 1. Let ν be a measure on $(0,\infty)$ such that there exist a sequence $\{b_n\}_{n\in\mathbb{Z}}$ and a constant $c_0>0$ satisfying the following conditions: - $\begin{array}{ll} \text{(i)} \ \ b_n/b_{n+1} \geq c_0 \ \text{for all} \ \ n \in \mathbb{Z}; \\ \text{(ii)} \ \ \sum_{n=-N}^{\infty} 2^n/b_n < \infty \ \text{for all} \ \ N > 0; \\ \text{(iii)} \ \ (2^{2n}/b_{n+1})S(2^n/b_n z) > c_0 \ \text{for all} \ \ n \in \mathbb{Z} \ \text{and} \ \ z \in (0,1). \end{array}$ Then, with Q_{ν} -probability 1, $P_{X(0)}^{L}(X(\cdot))$ has compact global support i=1 for every initial measure X(0, dx) having compact support. To state the next theorem, we need to define functions $H_n(z)$, which will be the basis for a discrete dynamical system. Let $$H_n(z) = rac{b_n}{b_{n+1}}z + rac{2^{2n+4}}{b_{n+1}}Iigg(rac{2^{n+1}}{b_nz}igg).$$ Assume that there exist positive constants N_0 and K such that if $n > N_0$ and z > K, then $$(1.15) H_n(z) \le \frac{z}{2}.$$ THEOREM 2. Let ν be a measure on $(0,\infty)$ such that there exists a strictly positive sequence b_1, b_2, \ldots satisfying $b_n/b_{n+1} < 1/2$, for large n, and $\sum_{n=1}^{\infty} 2^n/b_n = \infty$ and such that the functions $H_n(z)$ satisfy (1.15). Then, with Q_{ν} -probability 1, $P_{X(0)}^{L}(global \ support \ of \ X(\cdot) \ is \ compact) = 0$ for every initial measure satisfying $X(0,\mathbb{R}) > 0$. In view of Corollary A, the proofs of Theorems 1 and 2 will be reduced to establishing certain analytical properties of the solutions v to (1.8) for a typical realization of the catalytic medium. Here is a thumbnail sketch of this analysis of (1.8): We pretend that both v and v' are constant on intervals $(x_n, x_{n+1}]$ on which v approximately doubles. Also, we pretend that $L((x_n, x_{n+1}])$ is approximately equal to its "average value." With these ansatzes, (v(x), v'(x)) becomes a dynamical system whose behavior we can analyze. In fact, S(t) and T(t) are involved in the definition of the "average value" of $L((x_n, x_{n+1}])$. Of course, $L((x_n, x_{n+1}])$ may not have an expectation. The numbers b_n arise from scaling the dyamical system. We will show that $v'(x_n)/b_n$ approaches a limit, or at least is bounded in the appropriate direction. From this fact, we can decide whether $\lim_{n\to\infty} x_n = \infty$. If $\lim_{n\to\infty} x_n = \infty$, then v(x) does not reach ∞ for finite values of x, and if $\lim_{n\to\infty} x_n < \infty$, then $v(x) = \infty$ for some $x < \infty$. The following corollaries are immediate consequences of Theorems 1 and 2. COROLLARY 1. Let L be a stable random measure of index $\alpha \in (0,1)$. Then, with $Q_{\nu_{\alpha}}$ -probability 1, $P_{X(0)}^{L}(X(\cdot))$ has compact global support (0,1) = 1 for every initial measure (0,1) having compact support. PROOF. By the conditions on L, the Lévy measure ν_{α} is given by (1.2). Then
$$S(t) = ct^{1/\alpha}$$. If we let $$\delta = \frac{\alpha}{\alpha + 1},$$ $b_n = 2^{n(1+\delta)},$ then the conditions of Theorem 1 are satisfied. COROLLARY 2. Suppose that L has Lévy measure $\nu(dx)=(1/x)1$ ($0 < x \le 1$) or that $\nu(dx)$ is a finite measure. Then, with Q_{ν} -probability 1, $P_{X(0)}^{L}(global\ support\ of\ X(\cdot)\ is\ compact)=0$ for every initial measure satisfying $X(0,\mathbb{R})>0$. PROOF. If $\nu(dx)$ is a finite measure, then the atoms of L(dx) form a discrete set and one directly verifies the statement of Lemma 2.8 below, namely, that solutions of (1.9) are finite for all $x \in \mathbb{R}$. Now consider the case $\nu(dx) = (1/x)1$ ($x \le 1$). We compute that $$T(t) = \exp\!\left(-\frac{1}{2t}\right)$$ and $$I(t) = T(t).$$ If we let $$b_n = n2^n$$ then $$H_n(z) = \frac{n}{n+1}\frac{z}{2} + 2^3 \exp\biggl[n\biggl(\log 2 - \frac{z}{4} - \frac{\log(n+1)}{n}\biggr)\biggr].$$ Since $$2^3 \exp \biggl[n \biggl(\log 2 - \frac{z}{4} - \frac{\log(n+1)}{n} \biggr) \biggr] \leq \frac{1}{n+1} \frac{z}{2}$$ for large z, the assumptions of Theorem 2 are satisfied. \Box ## 2. Proofs of the theorems. PROOF OF THEOREM 1. First we prove Theorem 1, the case of compact support. As mentioned in the Introduction, the proofs of the theorems are reduced to verifying the hypotheses of Corollary A for a typical realization of L. In turn, this involves the study of solutions of the boundary value problem (1.8). We aim to construct positive convex solutions solutions $v(x) = v_n(x)$ which are ∞ outside of some compact set and such that $\lim_{n\to\infty} v_n(x) = 0$ uniformly on a given compact interval. We can then apply Corollary A. Our analysis of (1.8) on a bounded interval takes advantage of the fact that we are working in one dimension. We may regard x as a time variable and build up v(x) starting from v(0) and v'(0+). Moreover, since we are interested in convex positive solutions, we can construct such a solution starting from a point at which it assumes its minimum value. At such a point either the first derivative v'(0) exists and is 0 [if L(0) = 0] or $v'(0-) \le 0$ and $v'(0+) \ge 0$ [if L(0) > 0]. Without loss of generality we can assume that this point is 0 and restrict our attention to the half-line x > 0. We divide the half-line into small intervals, on which v(x) does not increase very much. For each interval, then, the term $v^2(x)\dot{L}(x)$ from (1.8) is almost equal to $c^2\dot{L}(x)$, for some constant c. If we replace the former term by the latter, (1.8) is no longer a nonlinear equation and it is much easier to analyze. Our first task is to prove existence and uniqueness for (1.8), on the region where the solution is finite. We consider (1.8) for $x \ge 0$ with the following initial conditions [the same argument would apply to $x \le 0$ with $v'(0-) = \alpha \le 0$]: (2.1) $$v(0) = \beta > 0, \\ v'(0+) = \alpha > 0.$$ We will show, even for small $\beta > 0$, that $v(x) = \infty$ for large values of |x|. We suppose that the random measure L is fixed and set up the notation $$\frac{L(dx)}{dx} = \sum_{i=1}^{\infty} c_i \delta(x - s_i).$$ Note that each $c_i > 0$ and that L(dx) is a locally finite measure. Starting with (1.9) and using the initial conditions (2.1), we obtain (2.2) $$v(x) = \beta + \alpha x + 2 \int_0^x ds \int_0^s v^2(t) L(dt)$$ or (2.3) $$v(x) = \beta + \alpha x + 2 \sum_{i=1}^{\infty} (x - s_i)^+ c_i v^2(s_i),$$ where $(x)^+ = \max\{x, 0\}.$ Since $v \to v^2$ is locally Lipschitz, using a standard argument we obtain existence and uniqueness of local solutions of (2.3). It is clear that if v(x) is a continuous solution of (2.3) for $0 \le x \le \bar{x}$, then v(x) is nondecreasing, and hence $$(2.4) \beta + \alpha x + \beta^2 \rho(x) < v(x) < \beta + \alpha x + v(x)^2 \rho(x),$$ where $$\rho(x) = 2\sum_{i=1}^{\infty} (x - s_i)^+ c_i.$$ Note that $\rho(x)$ is Lipschitz continuous, nondecreasing and satisfies $\rho(0) = 0$ and $\rho(x) \le 2c_0x$ for $x \in [0, K]$ and for some $c_0 = c_0(K) > 0$. If $\rho(x) > 0$, then the upper inequality in (2.4) yields that either $$v(x) \le \frac{2(\beta + \alpha x)}{1 + \sqrt{1 - 4\rho(x)(\beta + \alpha x)}} = \frac{1 - \sqrt{1 - 4\rho(x)(\beta + \alpha x)}}{2\rho(x)}$$ or $$v(x) \ge \frac{1 + \sqrt{1 - 4\rho(x)(\beta + \alpha x)}}{2\rho(x)}.$$ However, the second of these two possible inequalities is inconsistent with the initial condition and, therefore, we conclude that the solution v(x) satisfies the first one. Now, for each α , β in (2.1), let $x_0 > 0$ be the largest value of x such that $1 - 4\rho(x)(\beta + \alpha x) \ge 1/4$. We thus have the following lemma. LEMMA 2.1. For any $\alpha \geq 0$, $\beta > 0$, (1.8) with initial conditions (2.1) has a continuous solution in $[0, x_0]$, for some $x_0 = x_0(\alpha, \beta) > 0$, and $$\beta + \alpha x \le v(x) \le \frac{2(\beta + \alpha x)}{1 + \sqrt{1 - 4\rho(x)(\beta + \alpha x)}}, \qquad x \in [0, x_0].$$ LEMMA 2.2. (a) Let u(x) and v(x), $0 \le x \le x_0$, be two solutions of (1.8) with the same initial values α, β . Let $\beta \le u, v \le M$ for some M > 0. Then $u \equiv v$ on $[0, x_0]$. (b) A nonnegative solution $v(\beta_1, \beta_2, x)$ to the two-point boundary value problem (1.8) (if it exists) is unique and, for fixed x, $v(\beta_1, \beta_2, x)$ is an increasing function of β_1 and β_2 . PROOF. (a) Let $\|\cdot\|_A$ denote the supremum norm on the set A. Since u and v satisfy (1.8) with the same initial conditions α, β , we have $$||u - v||_{[0,t_0]} = 2 \left\| \sum_{i=1}^{\infty} (x - s_i)^+ c_i (u(s_i) + v(s_i)) (u(s_i) - v(s_i)) \right\|_{[0,t_0]} < 2M \rho(t_0) ||u - v||_{[0,t_0]}.$$ Now, let $t_0 = (1/8Mc_0)$. We conclude first that $||u - v||_{[0,t_0]} \le (1/2)||u - v||_{[0,t_0]}$ and, therefore, $u \equiv v$ on $[0,t_0]$. Next, suppose that $$(2.5) u \equiv v on [0, kt_0], k \ge 1.$$ Then, by (2.5), $$\begin{split} \|u - v\|_{[kt_0,(k+1)t_0]} &= 2 \left\| \sum_{i=1}^{\infty} (x - s_i)^+ c_i (u^2(s_i) - v^2(s_i)) \right\|_{[kt_0,(k+1)t_0]} \\ &= 2 \left\| \sum_{i: \ s_i > kt_0} (x - s_i)^+ c_i (u^2(s_i) - v^2(s_i)) \right\|_{[kt_0,(k+1)t_0]} \\ &\leq 4M \left(\sum_{i: \ s_i > kt_0} (x - s_i)^+ c_i \right) \|u - v\|_{[kt_0,(k+1)t_0]} \\ &\leq 4M t_0 c_0 \|u - v\|_{[kt_0,(k+1)t_0]} \end{split}$$ and thus $u \equiv v$ on $[kt_0, (k+1)t_0]$. Therefore, $u \equiv v$ on $[0, x_0]$. (b) First observe that if $v_i(x_0 + x) \ge 0$, i = 1, 2, satisfy $$v_i(x + x_0) = \beta + \alpha_i x + 2 \int_{x_0}^x ds \int_{x_0}^s v_i^2(t) L(dt),$$ for $0 \le x \le x_1$ with $\alpha_1 > \alpha_2$, then $v_1(x_0 + x) > v_2(x_0 + x)$ for $0 < x \le x_1$. Indeed, let $D(x) = v_1(x) - v_2(x)$. Then D(x) satisfies $$D(x+x_0) = (\alpha_1 - \alpha_2)x + 2\int_{x_0}^x ds \int_{x_0}^s D(t)(v_1(t) + v_2(t))L(dt).$$ First we claim that $D(x + x_0) > 0$ for $0 < x < \delta$, for some δ small enough. Indeed $(\alpha_1 - \alpha_2)x$ increases linearly in x, while $$\left|\int_{x_0}^x ds \int_{x_0}^s D(t)(v_1(t)+v_2(t)) L(dt)\right|$$ is o(x) for small x. Now we deal with large values of x. Note that D(x) is continuous. Suppose that $D(x_0+x)>0$, for $0< x<\bar x$, but that $D(x_0+\bar x)\leq 0$. Setting $x=\bar x$ in the above integral equation, we would obtain a contradiction. This proves the observation. Now assume that we have two solutions $v(\beta_{1,i},\beta_{2,i},x)$, i=1,2, to (1.8) with $\beta_{1,1}>\beta_{1,2}$ and $\beta_{2,1}\geq\beta_{2,2}$ (the argument if $\beta_{1,1}\geq\beta_{1,2}$ and $\beta_{2,1}>\beta_{2,2}$ is similar). We claim that $v(\beta_{1,1},\beta_{2,1},x)>v(\beta_{1,2},\beta_{2,2},x)\ \forall\ x\in(a_1,a_2)$. Otherwise, by continuity there exists a point x' at which $v(\beta_{1,1}, \beta_{2,1}, x') = v(\beta_{1,2}, \beta_{2,2}, x')$ and $v'(\beta_{1,1}, \beta_{2,1}, x'-) \le v'(\beta_{1,2}, \beta_{2,2}, x'-)$. However, from (1.9), $$v'(\beta_{1,1},\beta_{2,1},x'+)-v'(\beta_{1,1},\beta_{2,1},x'-)=v'(\beta_{1,2},\beta_{2,2},x'+)-v'(\beta_{1,2},\beta_{2,2},x'-),$$ so that $$v'(\beta_{1,1}, \beta_{2,1}, x'+) \le v'(\beta_{1,2}, \beta_{2,2}, x'+).$$ In view of the observation given at the beginning of the proof of part (b), this leads to a contradiction to $v(\beta_{1,1},\beta_{2,1},a_2) > v(\beta_{1,2},\beta_{2,2},a_2)$. To verify uniqueness, consider two solutions v_1 and v_2 to (1.8). If either $v_1'(a_1+) > v_2'(a_1+)$ or $v_1'(a_1+) < v_2'(a_1+)$, the above observation leads to a contradiction to $v_1(a_2) = v_2(a_2)$. Finally, if $v_1'(a_1+) = v_2'(a_1+)$, then uniqueness follows from part (a). \square LEMMA 2.3. If u is a solution of (1.8) with initial condition (2.1) on $[0, x_0]$ such that $\beta \leq u \leq M$, then u is Lipschitz with Lipschitz norm bounded by $\alpha + 2c_0(x_0)M^2$. PROOF. $$|u(x) - u(y)| = \left| \alpha(x - y) + 2 \sum_{i=1}^{\infty} [(x - s_i)^+ - (y - s_i)^+] c_i u^2(s_i) \right|$$ $$\leq (\alpha + 2c_0 M^2) |x - y|.$$ Lemmas 2.1, 2.2 and 2.3 imply the following theorem. THEOREM 3. For any $\alpha \geq 0$, $\beta > 0$, (1.8) and (2.1) have a unique locally Lipschitz solution. The solution can be extended until it reaches ∞ . PROOF OF THEOREM 1 (continued). Given a bounded interval $[k_1, k_2]$, in Lemma 2.7 we will exhibit a sequence of functions $v_N(x)$ satisfying (1.8), such that $v_N(x) \to 0$ uniformly on $[k_1, k_2]$ and such that $v_N(x) = \infty$ for large values of |x|. Fix N > 1 and suppose that v satisfies (1.8) with $$v_N(0) = 2^{-N},$$ $v'_N(0) = 0.$ For ease of notation, we will subsequently drop the subscript on v_N . Our first goal is to show the following lemma. LEMMA 2.4. Let v(x) be defined as above and let the assumptions of Theorem 1 be satisfied. Then, with Q_{ν} -probability 1, $v(x) = \infty$ off of a compact interval. PROOF. Since $v_N'(0) = 0$, by symmetry we can restrict our attention to $x \in [0, \infty)$. The case $x \in (-\infty, 0]$ follows from the same argument, after
replacing x by -x. Note that v(x) is nondecreasing on $[0, \infty)$. Our first task is to define several new objects. These are easier to work with than v(x) itself, and we will be able to use comparison methods to gain information about v(x). We define a function u(x) for $x \ge 0$, such that $u(x) \le v(x)$. For $n \geq -N$, $m \geq 0$, we define sequences x_n , $\bar{x}_{n,m}$, y_n , $\bar{u}_{m,n}$ and z_n by induction. To start the induction, choose x_{-N} such that $v'(x_{-N}+) > 0$. Then, let $y_{-N} = v'(x_{-N}+)$ and let $z_{-N} = y_{-N}/b_{-N}$. For the following, we need only define u(x) for $x \geq x_{-N}$. To begin, let $u(x_{-N}) = 2^{-N}$ and let $u'(x_{-N}+) = v'(x_{-N}+)$. Assume that we have defined x_n, y_n, z_n such that the following hold: - (i) $u(x_n) = 2^n \le v(x_n)$; - (ii) $y_n = u'(x_n+);$ - (iii) $z_n = y_n/b_n$; - (iv) $u(x) \le v(x)$ for $0 \le x \le x_n$; - (v) $u'(x+) \le v'(x+)$ for $0 \le x \le x_n$; - (vi) $L((x_n, x_n + 2^n/(b_n z_n))) \ge S(2^n/(b_n z_n))$ if n > -N. Here, u'(x+) denotes the right-hand derivative of u at x. For $m \ge 0$, let $$\bar{x}_{n,m} = x_n + m \frac{2^n}{u'(x_n + 1)}$$ $$= x_n + m \frac{2^n}{y_n}$$ $$= x_n + m \frac{2^n}{b_n z_n}.$$ For $m \geq 0$ and $x \in [\bar{x}_{n,m}, \bar{x}_{n,m+1})$, we define $\bar{u}_{n,m}(x)$ to be the solution of $$\bar{u}_{n,m}(\bar{x}_{n,m}) = u(x_n) = 2^n,$$ $\bar{u}'_{n,m}(x+) = u'(x_n+) = y_n.$ Of course, this means that $\bar{u}_{n,m}(x) = 2^n + (x - \bar{x}_{n,m})y_n$ for $x \in [\bar{x}_{n,m}, \bar{x}_{n,m+1})$. Finally, let M = M(n) be the first integer m > 1 such that $$(2.6) L((\bar{x}_{n,m-1},\bar{x}_{n,m}]) \geq S\left(\frac{2^n}{b_n z_n}\right).$$ Since the intervals $(\bar{x}_{n,m-1}, \bar{x}_{n,m}]$ have equal length for different values of m and since $L((\bar{x}_{n,m-1}, \bar{x}_{n,m}])$ can take arbitrarily large values with positive probability, we see that $M(n) < \infty$ with probability 1. Next, let $$x_{n+1} = \bar{x}_{n,M(n)},$$ $u(x) = \bar{u}_{n,m}(x)$ for $x_{n,m-1} < x \le x_{n,m}, \ 1 \le m \le M(n),$ $u'(x_{n+1}+) = u'(x_n+) + 2^{2n}S\left(\frac{2^n}{b_n z_n}\right).$ Note that the definitions of $y_{n+1} = u'(x_{n+1}+)$ and $z_n = y_n/b_n$ and the assumptions of Theorem 1 imply that (2.7) $$z_{n+1} = \frac{b_n}{b_{n+1}} z_n + \frac{2^{2n}}{b_{n+1}} S\left(\frac{2^n}{b_n z_n}\right)$$ $$\geq c_1 z_n + c_2 1 \quad (0 < z_n < 1)$$ $$\geq c_3.$$ LEMMA 2.5. For $x_n \le x \le x_{n+1}$, we have the following: - (i) $u(x) \leq v(x)$; - (ii) u'(x+) < v'(x+). Furthermore, $$x_{n+1}-x_n=M(n)\frac{2^n}{b_nz_n}.$$ Thus, if we show that $u(x) = \infty$ for some x, then we conclude that $v(x) = \infty$. PROOF. Here is a proof by induction. The claim about $x_{n+1}-x_n$ follows from the definitions. Since v'(x) is nondecreasing for $x \ge 0$, claim (i) of the lemma easily follows. Claim (ii) also follows easily, except at $x = x_{n+1} = \bar{x}_{n,M(n)}$. Let us show that $$u'(x_{n+1}+) \le v'(x_{n+1}+).$$ By the definition of $u'(x_{n+1}+)$ and the portions of Lemma 2.5 which we have already proved, we find $$egin{aligned} v'(x_{n+1}+) &= v'(x_n+) + \int_{(x_n,x_{n+1}]} v(x)^2 L(dx) \ &\geq y_n + \int_{(ar{x}_{n,M(n)-1},ar{x}_{n,M(n)}]} ar{u}_{n,M(n)-1}(x)^2 L(dx) \ &\geq y_n + ar{u}_{n,M(n)-1}^2 (ar{x}_{n,M(n)-1}) L((ar{x}_{n,M(n)-1},ar{x}_{n,M(n)}]) \ &\geq y_n + 2^{2n} Ligg(ar{x}_{n,M(n)-1},ar{x}_{n,M(n)-1} + rac{2^n}{b_n z_n}igg]igg) \ &\geq y_n + 2^{2n} Sigg(rac{2^n}{b_n z_n}igg) \ &= u'(x_{n+1}+). \end{aligned}$$ This proves Lemma 2.5. \Box We note the following fact. LEMMA 2.6. There exists an i.i.d. sequence of geometrically distributed random variables $\{G_n\}_{n=-N}^{\infty}$ with parameter $p=e^{-1}$, such that with probability 1, $M(n) \leq G_n$ for each $n \geq -N$. PROOF. By the strong Markov property and the independent increments property for the Lévy process U(x) = L([0, x]), it suffices to show that, for $m \ge 1$, $$(2.8) Q_{\nu} \bigg\{ L((\bar{x}_{n,m-1},\bar{x}_{n,m}]) \geq S\bigg(\frac{2^n}{b_n z_n}\bigg) \bigg\} \geq 1 - e^{-1}.$$ Recall that $\bar{x}_{n,m} - \bar{x}_{n,m-1} = 2^n/b_n z_n$. By the definition of S(t) given in the Introduction, we conclude that $$(2.9) \qquad (\bar{x}_{n,m} - \bar{x}_{n,m-1})\nu\left(S\left(\frac{2^n}{b_n z_n}\right), \infty\right) = \frac{2^n}{b_n z_n}\nu\left(S\left(\frac{2^n}{b_n z_n}\right), \infty\right) \geq 1.$$ Now we use the interpretation of L((a,b]) as a compound Poisson random variable. Relation (2.9) implies that $L((\bar{x}_{n,m-1},\bar{x}_{n,m}])$ has atoms of size greater than or equal to $S(2^n/(b_nz_n))$ with intensity at least 1. Using the Poisson probability distribution, the chance of at least one atom of this size is at least $1-e^{-1}$. This proves (2.8). \Box Now we return to the proof of Lemma 2.4. By (2.7) and Lemma 2.6, and using Lemma 2.5, we have that $$\lim_{n \to \infty} x_n = x_{-N} + \sum_{n=-N}^{\infty} [x_{n+1} - x_n]$$ $$\leq x_{-N} + \sum_{n=-N}^{\infty} M(n) \frac{2^n}{b_n z_n}$$ $$\leq x_{-N} + \sum_{n=-N}^{\infty} G_n \frac{2^{n+1}}{y_n}$$ $$\leq x_{-N} + \sum_{n=-N}^{\infty} G_n \frac{2^{n+1}}{c_0 b_n}.$$ By the assumptions of Theorem 1, we know that $$\sum_{n=0}^{\infty} \frac{2^{n+1}}{c_0 b_n} < \infty$$ and, therefore, $$E\bigg[\sum_{n=0}^{\infty}G_n\frac{2^{n+1}}{c_0b_n}\bigg]<\infty.$$ It therefore follows that $$\lim_{n \to \infty} x_n \le x_{-N} + \sum_{n=0}^{\infty} G_n \frac{2^{n+1}}{c_0 b_n}$$ $$< \infty$$ with Q_{ν} -probability 1. This proves Lemma 2.4. \square At this point, we need a further lemma about the solutions of (1.8). Let $v(\varepsilon,x)=v(x)$ satisfy (1.8) with initial conditions $v(0)=\varepsilon$, v'(0)=0. For simplicity, we will sometimes drop the dependence of $v(\varepsilon,x)$ on ε and write v(x). LEMMA 2.7. For Q_{ν} almost every L, $v(\varepsilon, x)$ tends to 0 uniformly on compact intervals in x as $\varepsilon \downarrow 0$. PROOF. Let K > 0. By (1.8), v(x) is convex in x and, since $v'(\varepsilon, 0) = 0$, we have that $$\sup_{-K \le x \le K} v(x) = \max[v(-K), v(K)].$$ To prove Lemma 2.7, it suffices to show that $$\lim_{\varepsilon \downarrow 0} v(\varepsilon,K) = 0$$ with probability 1, since the same argument would show that $$\lim_{\varepsilon\downarrow 0}v(\varepsilon,-K)=0$$ with probability 1. First, suppose that $$\frac{1}{2}\bar{v}''(x) = (\bar{v}(x) \wedge (2\varepsilon))^2 \dot{L}$$ and that $\bar{v}(0) = v(0) = \varepsilon$, $\bar{v}'(0) = 0$. Then, using the convexity of \bar{v} , we find that $$\sup_{0 \le x \le K} \bar{v}'(x) = \bar{v}'(K) \le 4\varepsilon^2 L((0, K]).$$ Then, $$ar{v}(K) \leq \varepsilon + K \cdot 4\varepsilon^2 L((0, K])$$ $\leq 2\varepsilon$ for ε sufficiently small. Thus, for $0 \le x \le K$, $\bar{v}(\varepsilon,x) \le 2\varepsilon$ for ε small enough. In this case, $\bar{v}(x) \land 2\varepsilon = \bar{v}(x)$ and thus $\bar{v}(x)$ satisfies (1.8) for $0 \le x \le K$ and for ε sufficiently small. Thus, for ε sufficiently small, we have $$v(\varepsilon, x) \leq 2\varepsilon$$. Hence, $$\begin{split} \lim_{\varepsilon \downarrow 0} & \sup_{-K \le x \le K} v(\varepsilon, x) = \lim_{\varepsilon \downarrow 0} \max [v(\varepsilon, -K), v(\varepsilon, K)] \\ & \le \lim_{\varepsilon \downarrow 0} 2\varepsilon \\ & = 0. \end{split}$$ This proves Lemma 2.7. \Box The proof of Theorem 1 now follows since Lemma 2.7 verifies the hypothesis of Corollary A. \Box PROOF OF THEOREM 2. The proof of Theorem 2 follows immediately from part (b) of Corollary A and Lemma 2.8 below. The argument follows the same lines as in the proof of Theorem 1, except that our estimates will usually go in the opposite direction. To obtain the appropriate probability estimates, we use Markov's inequality. LEMMA 2.8. Assume that ν satisfies the conditions of Theorem 2. - (a) Let v(x) satisfy (1.8) with initial conditions $v(0) = \beta > 0$, $v'(0+) = \alpha \ge 0$. Then, with Q_v -probability 1, $v(x) < \infty$ for all $x \in \mathbb{R}$. - (b) Let $v(\beta_1, \beta_2, \cdot)$ be as in Theorem A. Then for Q_{ν} -a.e. L and any $-\infty < a_1 < a_2 < \infty$, $$\sup_{\beta_1,\beta_2} \inf_{x \in [a_1,a_2]} v(\beta_1,\beta_2,x) = +\infty.$$ PROOF. To see that (b) follows from (a) assume that there exist sequences $\beta_{1,n}$, $\beta_{2,n}$ and $x_n \to x_\infty \in [a_1, a_2]$ such that $$\lim_{n\to\infty}v(\beta_{1,n},\beta_{2,n},x_n)=\sup_{\beta_1,\beta_2}\inf_{x\in[a_1,a_2]}v(\beta_1,\beta_2,x)=c<+\infty.$$ However, by (a) there exists a solution of (1.8) such that $v(x_{\infty}) > c$, but is bounded on $[a_1, a_2]$. Together with Lemma 2.2(b), this yields a contradiction. \Box Again, we prove Lemma 2.8(a) for x > 0, since the case of x < 0 follows by symmetry. The arguments below show that, given any $\alpha \ge 0$ and $\beta > 0$, the solution of (2.2) remains finite on $(0,\infty)$. In order to simplify the notation, we set $\beta = 1$ and $\alpha = 0$. Our definitions are then similar to the previous case. We define sequences x_n, y_n, z_n , this time for $n \ge 0$, and a function $u(x) \ge v(x)$, $u'(x+) \ge v'(x+)$ for $x \ge 0$. We let $y_n = u'(x_n+)$ and $z_n = y_n/b_n$. In the proof of Theorem 1 [see (2.6)], we waited until $L((\bar{x}_{n,m-1},\bar{x}_{n,m}])$ was large enough and then chose our new variable x_{n+1} . The result was a function $u(x) \leq v(x)$. For the proof of Theorem 2, we seek a function $u(x) \geq v(x)$. For this purpose, we hope that $L((x_n, x_n + 2^n/(z_n b_n)])$ is rather small. If it is small, we define x_{n+1} such that $u(x_{n+1}) = 2^{n+1}$. If $L((x_n, x_n + 2^n/(z_n b_n)])$ happens to be too large, we must let x_{n+1} be smaller than usual, such that $x_{n+1} < x_n + 2^n/(z_n b_n)$. To be precise, suppose that u(x) satisfies (1.8) for $x \ge x_n$, with initial conditions given by $u(x_n)$ and $u'(x_n+)$, and choose x_{n+1} to be the smallest number $x > x_n$ and
such that either of the following holds: 1. $$u(x) = 2^{n+1}$$; 2. $u'(x+) = b_{n+1} \max[K, H_n(z_n)]$. For such an x_{n+1} , we readjust the initial conditions on u(x) at $x = x_{n+1}$, such that $$u(x_{n+1}) = 2^{n+1},$$ $u'(x_{n+1}+) = \max[K, H_n(z_n)].$ For such a sequence x_n , we must show that with probability 1, $\lim_{n\to\infty}x_n=\infty$. Here are the details. To begin with, we seek inequalities for $x_{n+1}-x_n$ and $y_{n+1}-y_n$ similar to those used in the proof of Theorem 1. First, since u(x) is convex and thus u'(x) is nondecreasing, and by the definition of x_{n+1} , $$(x_{n+1}-x_n)u'(x_n+) \le u(x_{n+1}-)-u(x_n) \le 2^{n+1}$$ and, therefore, (2.11) $$x_{n+1} - x_n \le \frac{2^{n+1}}{u'(x_n+)} = \frac{2^{n+1}}{y_n}.$$ Let A_n be the event that $u(x_{n+1}-)=2^{n+1}$. If A_n holds, then (2.12) $$x_{n+1} - x_n \ge \frac{2^n}{u'(x_{n+1} + 1)}$$ $$= \frac{2^n}{y_{n+1}}$$ $$= \frac{2^n}{b_{n+1} z_{n+1}}.$$ Therefore, arguing as in the proof of Theorem 1, but using the opposite inequality, we find that, whether or not A_n holds, $$(2.13) \qquad u'(x_{n+1}) - u'(x_n) = \int_{(x_n, x_{n+1}]} u^2(x) L(dx)$$ $$\leq u^2(x_{n+1}) L((x_n, x_{n+1}])$$ $$\leq 2^{2(n+1)} L\left(\left(x_n, x_n + \frac{2^{n+1}}{u'(x_n)}\right)\right)$$ $$= 2^{2(n+1)} L\left(\left(x_n, x_n + \frac{2^{n+1}}{y_n}\right)\right)$$ $$= 2^{2(n+1)} L\left(\left(x_n, x_n + \frac{2^{n+1}}{b_n z_n}\right)\right).$$ Here we record a lemma about the size of L. Note that $L((x_n, x_n + t])$ and L((0, t]) are equal in distribution. LEMMA 2.9. Under the assumptions of Theorem 2, $$Q_{\nu}\{L((0,t])>s\}\leq \frac{I(t)}{s}+1-e^{-0.5},$$ for s, t > 0. PROOF. Let \hat{L} be the compound Poisson random measure obtained from L by omitting the atoms of mass greater than T(t). Note that $L((0,t])-\hat{L}((0,t])$ is a compound Poisson random variable with finite Lévy measure $t\nu(dx)1[x\geq T(t)]$. Let F be the event that $L((0,t])-\hat{L}((0,t])=0$. From the above, and by the definition of T(t), $$Q_{\nu}\{F\} = \exp(-t\nu([T(t),\infty))) \ge \exp(-0.5).$$ Now let G be the event that $\hat{L}((0,t]) \geq s$. By the definition of I(t) and by Markov's inequality, $$Q_ u\{G\} \leq rac{E(\hat{L}((0,t]))}{s}.$$ Since F and G are independent, we may put these two estimates together, to obtain $$Q_{ u}\{L((0,t])>s\}\leq Q_{ u}\{F^c\}+Q_{ u}\{G\}.$$ This proves Lemma 2.9. □ Next, note that $$\frac{u'(x_{n+1}-)}{b_n} \leq \frac{b_n}{b_{n+1}} z_n + \frac{2^{2n+2}}{b_{n+1}} L\bigg(\bigg(x_n, x_n + \frac{2^{n+1}}{b_n z_n}\bigg)\bigg).$$ Let $L_n = L((x_n, x_n + 2^{n+1}/z_n b_n])$ and let B_n be the event that $$L_n < 4I\bigg(\frac{2^{n+1}}{z_nb_n}\bigg).$$ If B_n occurs, then using the definition of H_n we see that $$\frac{u'(x_{n+1}-)}{b_n} < H_n(z_n).$$ Thus, if B_n occurs, condition 2 in the definition of u, u' must fail, and so condition 1 must occur and, therefore, A_n occurs. We have shown that $B_n \subset A_n$. Let $R_n = 1(B_n)$. Now let \mathscr{F}_n denote the σ -field generated by L([0,x]) for $0 \le x \le x_n$. By the independent increments property of Lévy processes, the conditional distribution of L_n given \mathscr{F}_n is the same as the distribution of $L((0,2^n/(z_nb_n)))$. Using Lemma 2.9, we have $$(2.14) Q_{\nu}\{B_n|\mathscr{F}_n\} \geq e^{-0.5} - \frac{I(2^{n+1}/b_n z_n)}{4I(2^{n+1}/b_n z_n)} > 0.1.$$ For future use, we let $\delta = 0.1$. We wish to show that, for n large enough, $$(2.15) z_{n+1} < M_0$$ for some constant M_0 not depending on n. In that case, we would have $y_{n+1} \le M_0 b_{n+1}$. To prove (2.15), we consider the discrete dynamical system obtained from the action of the H_n . Let $$\overline{H}_n(z) = \max[K, H_n(z)].$$ LEMMA 2.10. For 0 < i < j, let $H_{i,j}(z)$ denote the composition $$H_{i,j}(z) = \overline{H}_i (\overline{H}_{i+1} \cdots \overline{H}_j(z)).$$ Given $M_0 > K$ there exists a constant $N_1 > 0$ depending only on N_0 , K and z such that if $j - i > N_1$, then $$H_{i,i}(z) < M_0$$ PROOF. By the definition of \overline{H}_n , it follows that $\overline{H}_j(z) \geq K$ for all values of i. Now, requirement (1.13) on $H_n(z)$ states that if n is large enough and z > K, then $${H}_n(z) \leq rac{z}{2}.$$ Thus, if n is large enough and z > 2K, each application of \overline{H}_n decreases z by a factor of 2. Thus, if j-i is large enough, we will have $H_{i,j}(z) < 2K$. This completes the proof of Lemma 2.10. \square Now we can finish the proof of Theorem 2. First note that, by our definition, $u'(x_{n+1}+)=b_{n+1}\overline{H}_n(z_n)$ and, therefore, $z_{n+1}=\overline{H}_n(z_n)$. Now Lemma 2.10 shows that there exists a constant N>0 depending only on z_1 such that $z_n \leq M_0$ for all $n \geq N$. Second, we wish to use the lower bound (2.12), and we can do so if A_n holds. Recalling that $R_n = 1(B_n)$ and $B_n \subset A_n$, we find $$\lim_{n \to \infty} x_n = \sum_{n=0}^{\infty} (x_{n+1} - x_n) + x_0$$ $$\geq \sum_{n=1}^{\infty} R_n \frac{2^{n+1}}{b_n z_n}$$ $$\geq \sum_{n=N}^{\infty} R_n \frac{2^{n+1}}{b_n M_0}.$$ However, by the assumptions of Theorem 2, we know that (2.16) $$\sum_{n=N}^{\infty} \frac{2^{n+1}}{b_n M_0} = \infty.$$ Therefore, we need only take into account the random variables R_n . Unfortunately, these are not independent. Recall that, by (2.14), $Q_{\nu}\{B_n|\mathscr{F}_n\} \geq \delta = 0.1$. Now, by enlarging the probability space if necessary, we may choose \mathscr{F}_{n+1} -measurable events $\overline{B}_n \subset B_n$ such that $Q_{\nu}\{\overline{B}_n|\mathscr{F}_n\} = \delta$. Because $\overline{B}_1,\ldots,\overline{B}_n$ are \mathscr{F}_n -measurable, we conclude that $\{\overline{B}_n\}$ is a sequence of Q_{ν} -independent events, each with Q_{ν} -probability δ . Let $$(2.17) \overline{R}_n = 1(\overline{B}_n).$$ Our immediate goal is to show the following lemma. LEMMA 2.11. With Q_{ν} -probability 1, (2.18) $$\sum_{n=1}^{\infty} \overline{R}_n \frac{2^n}{b_n} = \infty.$$ PROOF. By the assumptions of Theorem 2, we know that $$(2.19) \qquad \qquad \sum_{n=1}^{\infty} \frac{2^n}{b_n} = \infty.$$ For ease of notation, let $$a_n = \frac{2^n}{b_n}.$$ Without loss of generality, we may assume that the terms a_n are arranged in decreasing order. Indeed, if there are infinitely many terms $a_n > \varepsilon$ for any $\varepsilon > 0$, then we immediately deduce that (2.18) holds with probability 1. Choose the nondecreasing subsequence $\{n_k\}_{k=1}^{\infty}$ such that if $n_k \leq n < n_{k+1}$, then $3^{-k} \geq a_n > 3^{-(k+1)}$. Furthermore, let k(i) be an enumeration of those indices $k \geq 1$ such that $n_{k+1} - n_k \geq 2^k$. Now, (2.16) implies that (2.20) $$\sum_{i=1}^{\infty} 3^{-k(i)} (n_{k(i)+1} - n_{k(i)}) = \infty.$$ Let m(i) be the number of indices n such that $n_{k(i)} \le n < n_{k(i)+1}$ and $\overline{R}_n = 1$. Since $n_{k(i)+1} - n_{k(i)} \ge 2^{k(i)} \ge 2^i$, by the weak law of large numbers we find $$egin{split} Q_ uiggl\{ rac{m(i)}{n_{k(i)+1}-n_{k(i)}} < rac{\delta}{2}iggr\} & \leq rac{\delta(1-\delta)}{n_{k(i)+1}-n_{k(i)}}iggr/ rac{\delta^2}{4} \ & \leq rac{4(1-\delta)}{\delta 2^i}. \end{split}$$ The Borel-Cantelli lemma now implies that, with probability 1, $$\frac{m(i)}{n_{k(i)+1} - n_{k(i)}} > \frac{\delta}{2}$$ except for a finite number of indices i. Now redefine the sequence k(i) by dropping those indices k(i) for which (2.21) fails. Using (2.20) and (2.21), we find that (2.22) $$\sum_{n=1}^{\infty} \overline{R}_n \frac{2^n}{b_n} \ge \sum_{i=1}^{\infty} m(i) 3^{-k(i)}$$ $$> \frac{\delta}{2} \sum_{i=1}^{\infty} (n_{k(i)+1} - n_{k(i)}) 3^{-k(i)}$$ $$= \infty.$$ So finally, (2.22) implies that $$\lim_{n \to \infty} x_n = \sum_{n=1}^{\infty} (x_{n+1} - x_n) + x_1$$ $$\geq c \sum_{n=1}^{\infty} \overline{R}_n \frac{2^n}{b_n} + x_1$$ $$= \infty.$$ This completes the proof of Lemma 2.11 and also Lemma 2.8(a). □ We now complete the proof of Lemma 2.8(b). Assume the contrary, namely, $\sup_{\beta_1,\beta_2}\inf_{x\in[a_1,a_2]}v(\beta_1,\beta_2,x)=\beta^*<+\infty$. Then there exist sequences $\beta_{1,n},\beta_{2,n}\uparrow\infty$ and $x_n\to x^*\in[a_1,a_2], v(\beta_{1,n},\beta_{2,n},x_n)\to\beta^*$ and $v(\beta_{1,n},\beta_{2,n},x)$ assumes its minimum at x_n . However, by Lemma 2.8(a) there exists a solution v with $v(x^*)=\beta^*+1$ and $v'(x^*)=0$ which remains bounded on $[a_1,a_2]$. However, for large n, $\beta_{1,n}>v(a_1)$ and $\beta_{2,n}>v(a_2)$, but together with $v(x^*)>\inf_{x\in[a_1,a_2]}v(\beta_{1,n},\beta_{2,n},x)$ this yields a contradiction by Lemma 2.2(b). This completes the proof of Theorem 2. \square **Acknowledgment.** We would like to thank the anonymous referee for carefully reading this paper and suggesting many improvements in the exposition. ## REFERENCES - DAWSON, D. (1993). Measure-valued Markov processes. Ecole d'Eté de Probabilités de Saint Flour XXI. Lecture Notes in Math. 1541 1–260. Springer, Berlin. - DAWSON, D. and FLEISCHMANN, K. (1991). Critical branching in a highly fluctuating random medium. *Probab. Theory Related Fields* **90** 241-274. - DAWSON, D. and FLEISCHMANN, K. (1992). Diffusion and reaction caused by point catalysts. SIAM J. Appl. Math. 52 163–180. - DAWSON, D. and FLEISCHMANN, K. (1995). Super-Brownian motions in higher dimensions with absolutely continuous measure states. J. Theoret. Probab. 8 179-206. - DYNKIN, E. B. (1991). Branching particle systems and superprocesses. Ann. Probab. 19 1157- - DYNKIN, E. B. (1994). An Introduction to Branching Measure-Valued Processes. Amer. Math. Soc., Providence, RI. - ISCOE, I. (1986). A weighted occupation time for a class of measure-valued critical branching processes. Probab. Theory Related Fields 71 85-116. - ISCOE, I. (1988). On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 16 200–221. - KALLENBERG, O. (1983). Random Measures, 3rd ed. Academic Press, New York. SCHWARTZ, L. (1966). Théorie des Distributions.
Hermann, Paris. D. DAWSON DEPARTMENT OF MATHEMATICS CARLETON UNIVERSITY OTTAWA CANADA K1S 5B6 Y. LI C. MUELLER' DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER ROCHESTER, NEW YORK 14627