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LARGE DEVIATIONS FOR STOCHASTIC REACTION–DIFFUSION
SYSTEMS WITH MULTIPLICATIVE NOISE AND

NON-LIPSCHITZ REACTION TERM1

BY SANDRA CERRAI AND MICHAEL RÖCKNER

Università di Firenze and Universität Bielefeld

Following classical work by Freidlin [Trans. Amer. Math. Soc. (1988)
305 665–657] and subsequent works by Sowers [Ann. Probab. (1992) 20
504–537] and Peszat [Probab. Theory Related Fields (1994) 98 113–136],
we prove large deviation estimates for the small noise limit of systems of sto-
chastic reaction–diffusion equations with globally Lipschitz but unbounded
diffusion coefficients, however, assuming the reaction terms to be only lo-
cally Lipschitz with polynomial growth. This generalizes results of the above
mentioned authors. Our results apply, in particular, to systems of stochastic
Ginzburg–Landau equations with multiplicative noise.

1. Introduction. In his pioneering paper Freidlin [10] studied large de-
viations for the small noise limit of stochastic reaction–diffusion equations.
Moreover, he described an entire program to obtain the desired estimates for such
stochastic equations for various levels of generality of assumptions on the coef-
ficient functions. Subsequently, several authors have taken up the challenge of
realizing this program under less and less restrictive conditions (see [16, 18] and,
more recently, [5, 12] or in case of particularly interesting special cases [2]). Our
contribution, which is specially motivated by the study of the works of Peszat [16]
and Sowers [18], goes in the direction of taking systems with reaction term having
polynomial growth (and in particular not globally Lipschitz-continuous) and noise
of multiplicative type, without any assumptions of boundedness. As we will see in
what follows, these two things together create some difficulties, even in the proof
of existence of solutions.

There are two approaches to stochastic partial differential equations such as
the ones in the focus of this paper: first, the martingale approach initiated by
Walsh [19], which is pursued in [18] and also, for example, in [5]; second, the
semigroup approach presented in [7], which is taken in [16]. Because of our
background in infinite dimensional stochastic analysis, in this paper we are taking
the latter approach, which has a more infinite dimensional–analytic flavor.

The precise type of stochastic reaction–diffusion equations we are interested in
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are systems of the following type:

∂ui

∂t
(t, ξ) = Ai ui(t, ξ) + fi

(
t, ξ, u1(t, ξ), . . . , ur(t, ξ)

)

+ ε

r∑
j=1

gij

(
t, ξ, u1(t, ξ), . . . , ur(t, ξ)

)
Bj

∂wj

∂t
(t, ξ),(1.1)

t ≥ 0, ξ ∈ O,

ui(0, ξ) = xi(ξ), ξ ∈ O, Biui(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O.

Here O is a bounded open set of R
d , with d ≥ 1, having smooth boundary. For

each i = 1, . . . , r , we have

Ai (ξ,D) =
d∑

h,k=1

ai
hk(ξ)

∂2

∂ξh ∂ξk

+
d∑

h=1

bi
h(ξ)

∂

∂ξh

, ξ ∈ O.

The coefficients ai
hk are taken in C1(O) and the coefficients bi

h are taken in
C(O) and for any ξ ∈ O the matrix [ai

hk(ξ)] is nonnegative and symmetric and
fulfills a uniform ellipticity condition. The operator Bi acts on the boundary of O
and is assumed to be either of Dirichlet or of conormal type. Below, for each
ε > 0 we denote by ux

ε = (ux
ε,1, . . . , u

x
ε,r ) the solution of (1.1) in the space E of

continuous functions on O, with some boundary conditions related to the boundary
operators Bi (see Section 2 for precise definitions).

Under Hypotheses 1–4 on the coefficients which are specified in Section 2 (see
Theorems 6.2 and 6.3 for the precise estimates), we shall prove the following large
deviations result (cf., e.g., [10] for the Freidlin–Wentzell formulation):

1. For any x ∈ E, z ∈ C([0, T ];E) and δ, γ > 0, there exists ε0 > 0 such that, for
any ε ∈ (0, ε0),

P
(|ux

ε − z|C([0,T ];E) ≤ δ
) ≥ exp

(
−Ix,T (z) + γ

ε2

)
.

2. For any x ∈ E, r ≥ 0 and δ, γ > 0, there exists ε0 > 0 such that, for any
ε ∈ (0, ε0),

P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ
) ≤ exp

(
−r − γ

ε2

)
.

Note that we also prove that estimate 1 is uniform with respect to |x|E ≤ R and
z ∈ Kx,T (r), for all r,R > 0, and estimate 2 is uniform with respect to |x|E ≤ R,
for all R > 0.

Here, the action functional is given by

Ix,T (z) := 1
2 inf

{|ϕ|2
L2(0,T ;H)

; z = zx(ϕ)
}
,
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where zx(ϕ) is the solution of the skeleton equation corresponding to (1.1)
[cf. (4.1) and Section 4], with the usual convention that inf ∅ := +∞. Furthermore,

Kx,T (r) := {Ix,T ≤ r}.
Let us list some special characteristics of this result in comparison with some of
the above mentioned earlier papers.

1. Unlike in [5, 16, 18], where global Lipschitz assumptions were imposed, here
the functions fi in (1.1) are only locally Lipschitz and of polynomial growth
(see Hypothesis 4 and Remark 2.1). The most relevant consequence of this fact
is that we cannot work with mild solutions and contractions theorems, so our
work becomes much more delicate.

2. g = [gij ] in (1.1) is not assumed to be globally bounded (as, e.g., done in [2,
16, 18]) and just assumed to be globally Lipschitz [see Hypothesis 3, but also
Hypothesis 4(iii)]. Moreover, unlike in [18], g may be degenerate. This means
that we can consider, for example, gij (u) = λijuj , with λij ∈ R.

3. We consider systems of r coupled stochastic reaction–diffusion equations,
ruling out maximum principle and hence comparison techniques commonly
used in the case r = 1.

4. We provide large deviations for paths in the space of continuous functions
C(O;R

r) and we can allow O to be a bounded open subset of R
d for arbitrary

d ≥ 1 (which does not seem to be possible, e.g., under the conditions imposed
in [16]).

Though we can still follow the classical approach in [16] (which is based on
fundamental ideas from [1, 17] as well as [13]), to get the above results, various
severe technical difficulties have to be overcome. In particular, we cannot work
on L2(O;R

r), but have to work on C(O;R
d). Otherwise, the necessary trace

conditions on the semigroup etA, t ≥ 0, generated by (Ai)1≤i≤r do not allow
d ≥ 2 and in contrast to our case, for example, polynomials for fi would not be
included. So, we have to leave the Hilbert space framework of [16] and have to use
heat kernel estimates, that is, precise estimates for the density function of etA, for
t > 0.

As we have already said, the motivation for investing so much effort into
achieving large deviation estimates in the above general situations is mainly to be
able to include polynomial reaction terms and, in addition, having a multiplicative,
but unbounded, noise. In particular, stochastic Ginzburg–Landau equations are
included.

Finally, we point out some specifics of our proof, in particular, in comparison
with [16] to which we are mostly indebted, and subsequently give an overview of
the single sections of this paper:

1. As in the additive noise case, subtracting the noise part and working “ω by ω,”
we use the dissipativity conditions (see Hypothesis 4) to get the desired
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estimates. A careful analysis of the noise part, which is technically delicate
under our general conditions and does not work pathwise, but only in the
mean, makes it possible to return to the initial system and to get the necessary
estimates.

2. The exponential estimates for the noise part are more difficult since we need
them for the sup-norm rather than the L2-norm. So, we have to work out the
intermediate estimates for every ξ ∈ O.

The organization of this paper is as follows. In Section 2, we describe our
framework precisely, introduce notation and discuss some preliminaries. Section 3
is devoted to exponential-type estimates for the noise part and for the solution of
system (1.1). In Section 4, we analyze the solution to the corresponding skeleton
equation; in Section 5 compactness of the level sets of the action functional is
proven. Section 6 contains the proofs for the upper and lower bounds.

2. Notation and preliminaries. Let O be a bounded open subset of R
d ,

d ≥ 1, having a regular boundary. In what follows we denote by H the separable
Hilbert space L2(O;R

r), with r ≥ 1, endowed with the usual scalar product
〈·, ·〉H and the corresponding norm | · |H . For any p ≥ 1, p �= 2, the usual norm
in Lp(O;R

r) is denoted by | · |p . If ε > 0, we denote by | · |ε,p the norm in
Wε,p(O;R

r).
We are concerned here with the following class of stochastic reaction–diffusion

systems:

∂ui

∂t
(t, ξ) = Aiui(t, ξ) + fi

(
t, ξ, u1(t, ξ), . . . , ur(t, ξ)

)

+
r∑

j=1

gij

(
t, ξ, u1(t, ξ), . . . , ur(t, ξ)

)
Bj

∂wj

∂t
(t, ξ),(2.1)

t ≥ 0, ξ ∈ O,

ui(0, ξ) = xi(ξ), ξ ∈ O, Biui(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O.

For each i = 1, . . . , r , we have

Ai (ξ,D) =
d∑

h,k=1

ai
hk(ξ)

∂2

∂ξh ∂ξk

+
d∑

h=1

bi
h(ξ)

∂

∂ξh

, ξ ∈ O.

The coefficients ai
hk are taken in C1(O) and the coefficients bi

h are taken in C(O).
For any ξ ∈ O the matrix [ai

hk(ξ)] is nonnegative and symmetric and fulfills a
uniform ellipticity condition. The operator Bi acts on the boundary of O and is
assumed either of Dirichlet or of conormal type.

In what follows we shall denote by A the realization in H of the differ-
ential operator A = (A1, . . . ,Ar) endowed with the boundary condition B =
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(B1, . . . ,Br ). As is well known (see [8, 14] for all details), A generates an an-
alytic semigroup etA in H , which can be extended in a consistent way to all spaces
Lp(O;R

r), for 1 ≤ p ≤ ∞, and to the space C(O;R
r).

Notice that as shown in [3], Chapter 6, and [4], Sections 4.1 and 6.1, it will not
be restrictive to assume that A generates a semigroup of contractions etA in each
Lp(O;R

r), with 1 ≤ p ≤ ∞, which are self-adjoint on H . Actually, if this is not
the case, due to the regularity of coefficients, A can be decomposed as C + G,
where C is a second-order operator which fulfills the desired properties and G is a
lower order operator which can be treated as a “good” perturbation of C.

In what follows we shall set

E := D(A)
C(O;Rr ) = D(A1)

C(O;R) × · · · × D(Ar)
C(O;R)

.

Each set D(Ai)
C(O;R)

coincides with C(O;R) or C0(O;R), if, respectively, Bi is
a conormal or Dirichlet boundary condition. In any case, with this definition of the
space E, endowed with the sup-norm | · |E and the duality 〈·, ·〉E := E	〈·, ·〉E , it
turns out that the part of etA in E (which we will still denote by etA) is strongly
continuous.

For any t, ε > 0 and p ≥ 1 we have that etA maps Lp(O;R
r) into Wε,p(O;R

r)

and

|etAx|ε,p ≤ c(t ∧ 1)−ε/2|x|p, x ∈ Lp(O;R
r),(2.2)

for some constant c independent of p. Due to the Sobolev embedding theorem and
to the Riesz–Thorin theorem, this implies

|etAx|p ≤ c(t ∧ 1)−d(p−q)/(2pq)|x|q, x ∈ Lq(O;R
r).

In particular,

|etAx|E ≤ c(t ∧ 1)−d/4|x|H .(2.3)

Moreover, as proved, for example, in [8], Lemma 2.1.2, this also implies that
etA admits an integral kernel K : (0,+∞) × O × O → R

r , that is,

etAx(ξ) =
(∫

O
K1(t, ξ, η)x1(η) dη, . . . ,

∫
O

Kr(t, ξ, η)xr(η) dη

)
, t > 0,

for any x ∈ L1(O;R
r) and ξ ∈ O. Concerning the kernels, there exist two positive

constants c1 and c2 such that, for each i = 1, . . . , r ,

0 ≤ Ki(t, ξ, η) ≤ c1t
−d/2 exp

(
−c2

|ξ − η|2
t

)

(see [8], Corollary 3.2.8 and Theorem 3.2.9). Moreover, as the kernel functions
are continuous on (0,+∞) × O × O (for a proof see, e.g., [8], Theorem 2.1.4) it
follows that the mapping

(0,+∞) → L(E), t 
→ etA,
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is continuous.
Furthermore, etA is compact on Lp(O;R

r) for all 1 ≤ p ≤ ∞ and t > 0. The
spectrum {−αk}k∈N of A is independent of p and etA is analytic on Lp(O;R

r),
for all 1 ≤ p ≤ ∞. In the sequel we shall assume the following condition on the
eigenfunctions of A.

HYPOTHESIS 1. The complete orthonormal system of H which diagonal-
izes A is equibounded in the sup-norm, that is,

sup
k∈N

|ek|E < ∞.(2.4)

Next, we define B = (B1, . . . ,Br) :H → H . In the sequel we shall assume that
B fulfills the following conditions.

HYPOTHESIS 2. The operator B belongs to L(H), is nonnegative and diag-
onal with respect to the complete orthonormal system {ek} which diagonalizes A,
with eigenvalues {λk}. Moreover, if d ≥ 2,

∃� ∈
(

2,
2d

d − 2

)
such that ‖B‖� :=

( ∞∑
k=1

λ
�
k

)1/�

< ∞,(2.5)

where 2d/(d − 2) := +∞, if d = 2.

For consistency, in what follows we shall set � := ∞ when d = 1 and in this
case ‖B‖� = ‖B‖L(H) .

The uniform bound on the sup-norms of the eigenfunctions ek is satisfied, for
example, by the Laplace operator with Dirichlet boundary conditions on the cube.
However, there are several important cases in which it is not satisfied and it is only
possible to say that

|ek|∞ ≤ ckα,

for some α ≥ 0. In this more general situation what one has to do is “coloring”
the noise a bit more. More precisely, one has to assume that the summability
condition (2.5) imposed on the eigenvalues of B is satisfied for some constant �′
less than the constant � introduced in Hypothesis 2.

Concerning the diffusion coefficient g, we assume the following conditions.

HYPOTHESIS 3. The mapping g : [0,∞) × O × R
r → L(Rr) is continuous

and the mapping g(t, ξ, ·) : Rr → L(Rr ) is Lipschitz-continuous, uniformly with
respect to ξ ∈ O and t in bounded sets of [0,∞), that is,

sup
ξ∈O

sup
σ,ρ∈R

r

σ �=ρ

|g(t, ξ, σ ) − g(t, ξ, ρ)|
|σ − ρ| ≤ �(t), t ≥ 0,

for some � ∈ L∞
loc[0,∞).
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Now, we specify the conditions on f = (f1, . . . , fr). To this end we define for
any t ≥ 0 the composition operator F(t, ·) by setting, for any x :O → R

r ,

F(t, x)(ξ) := f
(
t, ξ, x(ξ)

)
, ξ ∈ O.

HYPOTHESIS 4. (i) The mapping F(t) :E → E is locally Lipschitz-conti-
nuous, locally uniformly for t ≥ 0, and there exist m ≥ 1 and � ∈ L∞

loc[0,∞) such
that

|F(t, x)|E ≤ �(t)(1 + |x|mE), x ∈ E, t ≥ 0.(2.6)

(ii) There exists � ∈ L∞
loc[0,∞) such that, for each x,h ∈ E and t ≥ 0,

〈F(t, x + h) − F(t, x), δh〉E ≤ �(t)(1 + |h|E + |x|E),

for some δh ∈ ∂|h|E = {h	 ∈ E	; |h	|E	 = 1, 〈h	,h〉E = |h|E}.
(iii) One of the following two conditions holds:

(a) either

sup
ξ∈O

|g(t, ξ, σ )|L(Rr ) ≤ β1(t)(1 + |σ |1/m), σ ∈ R
r , t ≥ 0,

where m ≥ 1 is as in (2.6) and β1 ∈ L∞
loc[0,∞);

(b) or there exist some a > 0, m ≥ 1 and β2 ∈ L∞
loc[0,∞) such that, for

each x,h ∈ E,

〈F(t, x + h) − F(t, x), δh〉E ≤ −a|h|mE + β2(t)(1 + |x|mE), t ≥ 0,(2.7)

for some δh ∈ ∂|h|E .

REMARK 2.1. For each i = 1, . . . , r and (t, ξ, σ1, . . . , σr) ∈ [0,∞)× O × R
r

assume

fi(t, ξ, σ1, . . . , σr) = ki(t, ξ, σi) + hi(t, ξ, σ1, . . . , σr),

with ki(t, ·, ·) :O × R → R and hi(t, ·, ·) :O × R
r → R continuous for almost all

t ≥ 0 and where the following holds.

1. The function hi(t, ξ, ·) : Rr → R is locally Lipschitz-continuous with linear
growth, uniformly with respect to ξ ∈ O and t in bounded sets of [0,∞).

2. There exist m ≥ 1 and � ∈ L∞
loc [0,∞) such that

sup
ξ∈O

|ki(t, ξ, σi)| ≤ �(t)(1 + |σi |m), σi ∈ R, t ≥ 0.

3. For any ξ ∈ O, σi, ρi ∈ R and t ≥ 0,

ki(t, ξ, σi) − ki(t, ξ, ρi) = λi(t, ξ, σi, ρi)(σi − ρi),
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for some locally bounded measurable function λi : [0,∞) × O × R
2 → R such

that

sup
ξ∈O

σi ,ρi∈R, t≥0

λi(t, ξ, σi, ρi) < ∞.

Then, as shown, for example, in [4] (see also [3], Chapter 6) the corresponding
composition operator F satisfies conditions (i) and (ii) in Hypothesis 4. If in
addition we assume that, for any ξ ∈ O, σi, h ∈ R and t ≥ 0, the functions ki

satisfy the condition(
ki(t, ξ, σi + h) − ki(t, ξ, σi)

)
h ≤ −a|h|m+1 + β(t)(1 + |σi |m+1),

for some a > 0 and β ∈ L∞
loc[0,∞), then Hypothesis 4(iii)(a) is also satisfied.

An example of such functions ki is given by

ki(t, ξ, σi) = −ci(t, ξ)σ 2n+1
i +

2n∑
j=0

cij (t, ξ)σ
j
i ,

where ci, cij : [0,∞) × O → R are continuous functions and there exists a > 0
such that ci(t, ξ) ≥ a, for each t ≥ 0, ξ ∈ O and i = 1, . . . , r .

Finally, we denote by {∂wi/∂t} a sequence of r independent space–time white
noises defined on the stochastic basis (�,F ,Ft ,P). This means that we can write

w(t, ξ) = (w1, . . . ,wr)(t, ξ) =
∞∑

k=1

ek(ξ)βk(t),

where {ek} is a complete orthonormal basis in H and {βk(t)} is a sequence
of independent standard Brownian motions. As well known the series above
converges in L2(�) with values in any Hilbert space U containing H , with
Hilbert–Schmidt embedding (see, e.g., [7]). Defining, for x, y ∈ E and t ≥ 0,

G(t, x)y(ξ) := g
(
t, ξ, x(ξ)

)
y(ξ), ξ ∈ O,

system (2.1) can be rewritten in the following abstract form:

du(t) = [
Au(t) + F

(
t, u(t)

)]
dt + G

(
t, u(t)

)
B dw(t), u(0) = x.(2.8)

In [4] it is shown that under Hypotheses 1–4 for any x ∈ E and for any p ≥ 1 and
T > 0 such a problem admits a unique mild solution in Lp(�;C([0, T ];E)), the
Banach space of all adapted processes u in C([0, T ];E), such that

|u|pLT,p
:= E sup

t∈[0,T ]
|u(t)|pE < ∞.

This means that there exists a unique process ux ∈ Lp(�;C([0, T ];E)) such that

ux(t) = etAx +
∫ t

0
e(t−s)AF

(
s, ux(s)

)
ds +

∫ t

0
e(t−s)AG

(
s, ux(s)

)
B dw(s).
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More precisely, we have the following existence and uniqueness result (see [4],
Theorems 5.3 and 5.5).

THEOREM 2.2. Assume Hypotheses 1–4. Then for any initial datum x ∈ E

there exists a unique mild solution ux in Lp(�;C([0, T ];E)), with p ≥ 1 and
T > 0. Furthermore,

|ux |LT,p
≤ cp(T )(1 + |x|E), x ∈ E.(2.9)

One of the key points in the proof of the theorem above is the study of the
system

dv(t) = Av(t) dt + G
(
t, v(t)

)
B dw(t), v(0) = 0.(2.10)

For this purpose, in [4] for any u ∈ Lp(�;C([0, T ];E)) the H -valued continuous
process

γ (u)(t) :=
∫ t

0
e(t−s)AG

(
s, u(s)

)
B dw(s), t ∈ [0, T ],(2.11)

is defined and the following crucial fact is proved.

THEOREM 2.3. Under Hypotheses 1–3 there exists p	 ≥ 1 such that γ maps
Lp(�;C([0, T ];E)) into itself for any p ≥ p	 and

|γ (u) − γ (v)|LT,p
≤ cp(T )|u − v|LT,p

,(2.12)

for some continuous increasing function cp : [0,∞) → [0,∞) vanishing at
t = 0. In particular, there exists some T0 > 0 such that γ is a contraction
on Lp(�;C([0, T0];E)). Furthermore, there exists a unique mild solution for
problem (2.10) which belongs to Lp(�;C([0, T ];E)), for any p ≥ 1.

Notice that, as explained in [4], Remark 4.3, if we assume that

sup
ξ∈O

|g(t, ξ, σ )|L(Rr ) ≤ �(t)(1 + |σ |α), σ ∈ R
r , t ≥ 0,(2.13)

for some α ∈ [0,1] and � ∈ L∞
loc[0,∞), then, for any p ≥ p	,

|γ (u)|pLT,p
≤ cp(T )

(
1 + E sup

t∈[0,T ]
|u(t)|αp

E

)
.(2.14)

In particular, if g is bounded (i.e., α = 0) the norm of γ (u) in Lp(�;C([0, T ];E))

is uniformly bounded with respect to u.
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3. Exponential estimates for the solution. In this section we extend some
exponential estimates proved in [6, 15] for the stochastic convolution γ (u) and
for u itself. Chow and Menaldi and Peszat are concerned with the case of space
dimension d = 1. Here, we obtain their results in the case of higher space
dimension. This allows us to prove an exponential estimate for the solution of
problem (2.10) and hence for the solution of problem (2.1).

In [6] the following result is proved.

THEOREM 3.1. Let H and V be two Hilbert spaces and let ζ be an L(H ;V )-
valued predictable process such that∫ T

0
‖ζ(s)‖2

HS ds ≤ η P-a.s.

for some constant η > 0. Then, for any δ > 0,

P

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
ζ(s) dw(s)

∣∣∣∣
V

≥ δ

)
≤ 3 exp

(
− δ2

6η

)
.(3.1)

As shown, for example, in [15], Proposition 2.1, this implies that

E exp
(

1

9η
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
ζ(s) dw(s)

∣∣∣∣
2

V

)
≤ 7.(3.2)

We apply this result to the proof of the following result.

THEOREM 3.2. Let ht be a C(O;L(Rr))-valued predictable process such
that

sup
(t,ξ )∈[0,T ]×O

|ht(ξ)|L(Rr ) ∈ L∞(�)

and for any t ∈ [0, T ] let H(t) be the operator on E defined by(
H(t)x

)
(ξ) = ht (ξ)x(ξ), ξ ∈ O, x ∈ E.

Then, under Hypotheses 1 and 2 there exist c1, c2, λ > 0 independent of A, ht

and B such that, for any t0 ∈ [0, T ) and δ > 0,

P

(
sup

t∈[t0,T ]

∣∣∣∣
∫ t

t0

e(t−s)AH(s)B dw(s)

∣∣∣∣
E

≥ δ

)
≤ c1 exp

(
− δ2

c2(T − t0)
λη

)
,(3.3)

where

η := sup
ω∈�

(
sup

(t,ξ )∈[t0,T ]×O

|ht (ω)(ξ)|2L(Rr )

)
‖B‖2

�.
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PROOF. Here for any 0 ≤ r ≤ t ≤ T we denote

υr(t) =
∫ t

r
e(t−s)AH(s)B dw(s).

If we show that there exist c1, c2, λ > 0 such that

E exp
( |υt0 |2C([t0,T ];E)

c2(T − t0)
λη

)
≤ c1,(3.4)

then, thanks to the Chebyshev inequality, we immediately obtain (3.3).
By using a factorization argument (see [7], Section 5.3, for a proof ), we have

υt0(t) = sinπβ

π

∫ t

t0

(t − s)β−1e(t−s)A�t0,β(s) ds,

where the process �t0,β is defined by

�t0,β(s) =
∫ s

t0

(s − r)−βe(s−r)AH(r)B dw(r),

and β ∈ (0,1/2). As shown in [4], Theorem 4.2, according to (2.2) and to the
Hölder inequality for any β > 1/p and ε < 2(β − 1/p) we have, for some cβ > 0,

∣∣υt0(t)
∣∣
ε,p ≤ cβ

∫ t

t0

(t − s)β−(ε/2)−1∣∣�t0,β (s)
∣∣
p ds

≤ cβ(T − t0)
λ/2∣∣�t0,β

∣∣
Lp([t0,T ]×O;Rr ),

for some constant λ > 0. Thus, if ε > d/p, that is, β > (d + 2)/2p, due to
the Sobolev embedding theorem υt0 ∈ C([t0, T ];E), P-a.s. (cf. [4], proof of
Theorem 4.2) and there exist some constants c,λ > 0 such that for all p large
enough ∣∣υt0

∣∣2
C([t0,T ];E) ≤ c(T − t0)

λ
∣∣�t0,β

∣∣2
Lp([t0,T ]×O;Rr ).

Now, if � is the constant introduced in Hypothesis 2, we can find some p	 large
enough such that, for any p ≥ p	,

d + 2

p
+ d(� − 2)

2�
< 1.

This implies that there exists some β	 ∈ (0,1/2) such that, for any p ≥ p	,

β	 >
d + 2

2p
and 2β	 + d(� − 2)

2�
< 1.

In correspondence of such β	, for any integer k ≥ k	 := [p	/2] + 1 and for any
constant c3 > 0 and c2 := cβ	c3 we have

( |υt0|2C([t0,T ];E)

c2(T − t0)
λη

)k

≤
|�t0,β	 |2k

L2k([t0,T ]×O;Rr )

(c3η)k
=

∫ T

t0

∫
O

|�t0,β	(t, ξ)|2k

(c3η)k
dξ dt.
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Moreover, since ht is bounded, by similar arguments which proved (2.14) with
α = 0, we can find ck	 > 0 such that

E

k	−1∑
k=0

1

k!
( |υt0 |2C([t0,T ];E)

c2(T − t0)λη

)k

≤ ck	.

Hence

E exp
( |υt0|2C([t0,T ];E)

c2(T − t0)
λη

)

= E

k	−1∑
k=0

1

k!
( |υt0 |2C([t0,T ];E)

c2(T − t0)λη

)k

+ E

∞∑
k=k	

1

k!
( |υt0 |2C([t0,T ];E)

c2(T − t0)λη

)k

≤ ck	 + E

∞∑
k=k	

1

k!
∫ T

t0

∫
O

|�t0,β	(t, ξ)|2k

(c3η)k
dξ dt

≤ ck	 +
∫ T

t0

∫
O

E exp
( |�t0,β	(t, ξ)|2

c3η

)
dξ dt.

Therefore, to obtain (3.4) we have to show that there exists some constant c3 > 0
such that ∫ T

t0

∫
O

E exp
( |�t0,β	(t, ξ)|2

c3η

)
dξ dt < ∞.(3.5)

To this end, we are going to approximate �t0,β	 in a certain way. So, define, for
any h ∈ N,

ζ h
t,ξ (r) := (t − r)−β	

(
λj e

(t−r)A[H(r)ej ](ξ)
)
1≤j≤h.

By the choice of β	, using the same arguments used in [4], proof of Theorem 4.2,
for any q ≥ 1 we obtain that

lim
h1,h2→+∞

∫ T

t0

∫
O

E sup
s∈[t0,t]

∣∣∣∣
∫ s

t0

〈ζ h1
t,ξ (r), dwh1(r)〉

R
h1

−
∫ s

t0

〈ζ h2
t,ξ (r), dwh2(r)〉

R
h2

∣∣∣∣
q

dξ dt = 0,

where wh(t) = (β1(t), . . . , βh(t)), t ≥ 0, and∫ T

t0

|ζ h
t,ξ (r)|2 dr ≤ c‖B‖2

� sup
(t,ξ )∈[t0,T ]×O

|ht (ξ)|2L(Rr ) ≤ cη, P-a.s.

for some constant c independent of k and (t, ξ) ∈ [t0, T ] × O. Thus, according to
Theorem 3.1 and to (3.2) if we set c3 := 9c we obtain

sup
h∈N

E exp
(
(c3η)−1 sup

s∈[t0,T ]

∣∣∣∣
∫ s

t0

〈ζ h
t,ξ (r), dwh(r)〉Rh

∣∣∣∣
2)

≤ 7.
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It is easy to check that

lim
h→∞

∫ T

t0

∫
O

E

∣∣∣∣�t0,β	(t, ξ) −
∫ t

t0

〈ζ h
t,ξ (s), dwh(s)〉Rh

∣∣∣∣
q

dξ dt = 0;

thus, from Fatou’s lemma we can conclude that

∫ T

t0

∫
O

E exp
( |�t0,β	(t, ξ)|2

c3η

)
dξ dt

≤ lim inf
h→∞

∫ T

t0

∫
O

E exp
(
(c3η)−1 sup

s∈[t0,T ]

∣∣∣∣
∫ s

t0

〈ζ h
t,ξ (r), dwk(r)〉

∣∣∣∣
2)

dξ dt ≤ cT 7,

which yields (3.5) and hence (3.4). �

From the proof above we immediately see that a stronger estimate holds.
Actually, it is possible to show that there exists some θ > 0 such that

P

(
sup

t∈[t0,T ]

∣∣∣∣
∫ t

t0

e(t−s)AH(s)B dw(s)

∣∣∣∣
Cθ (O;Rr )

≥ δ

)
≤ c1 exp

(
− δ2

c2(T − t0)
λη

)
.

Now, we can apply the result above to get for any ε ∈ (0,1] exponential
estimates for the mild solution ux

ε of the problem

du(t) = [
Au(t) + F

(
t, u(t)

)]
dt + εG

(
t, u(t)

)
B dw(t), u(0) = x,(3.6)

in the particular case G is bounded.

THEOREM 3.3. Assume that the mapping g(t, ·, ·) :O × R
r → L(Rr) is

bounded, uniformly with respect to t in bounded sets of [0,∞). Then, under
Hypotheses 1–4, for any α,R > 0 there exists δ > 0 such that

sup
|x|E≤R

P
(|ux

ε |C([0,T ];E) ≥ δ
) ≤ exp

(
− α

ε2

)
,(3.7)

for any ε ∈ (0,1].

PROOF. By setting v(t) := ux
ε (t) − γε(t), with γε defined by

γε(t) := ε

∫ t

0
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s),

we have

dv

dt
(t) = Av(t) + F

(
t, ux

ε (t)
)
, v(0) = x.
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Thanks to conditions (i) and (ii) in Hypothesis 4, there exists some δv(t) ∈ ∂|v(t)|E
such that, for any t ∈ [0, T ],

d

dt

−
|v(t)|E ≤ 〈

Av(t), δv(t)

〉
E + 〈

F
(
t, v(t) + γε(t)

) − F
(
t, γε(t)

)
, δv(t)

〉
E

+ 〈
F

(
t, γε(t)

)
, δv(t)

〉
E

≤ cT |v(t)|E + cT

(
1 + |γε|mC([0,T ];E)

)
.

Since ux
ε(t) = v(t) + γε(t), by comparison we easily obtain, for c := cT ,

|ux
ε |C([0,T ];E) ≤ ecT

(|x|E + c
(
1 + |γε|mC([0,T ];E)

))
.

This implies that, for any δ > 0,

P
(|ux

ε |C([0,T ];E) ≥ δ
) ≤ P

(
|γ ε|mC([0,T ];E) ≥ δ − ecT |x|E

cecT
− 1

)
.

Now, if we fix any δ > ecT R + cecT and if we set

δ′ :=
(

δ − ecT R

cecT
− 1

)1/m

,

as γε(t) = εγ (ux
ε )(t), with γ defined in (2.11) we get

P
(|ux

ε |C([0,T ];E) ≥ δ
) ≤ P

(
|γ (ux

ε )|C([0,T ];E) ≥ δ′

ε

)
.

According to Theorem 3.2 we can find c1, c2, λ and ηT such that, for all x ∈ E,
with |x|E ≤ R, and all ε > 0 and δ′ as above we have

P

(
|γ (ux

ε )|C([0,T ];E) ≥ δ′

ε

)
≤ c1 exp

(
− δ′2

ε2c2T ληT

)
(3.8)

= exp
(
− 1

ε2

(
δ′2

c2T ληT

− ε2 log c1

))
.

Indeed, if we set

ht (ξ) = g
(
t, ξ, u(t)(ξ)

)
, (t, ξ) ∈ [0, T ] × O,

for any u ∈ Lp(�;C([0, T ];E)) the process ht fulfills the conditions of Theo-
rem 3.2, so that there exist c1, c2, λ > 0 such that, for any t0 ∈ [0, T ) and δ > 0,

P

(
sup

t∈[t0,T ]

∣∣∣∣
∫ t

t0

e(t−s)AG
(
s, u(s)

)
B dw(s)

∣∣∣∣
E

≥ δ

)
(3.9)

≤ c1 exp
(
− δ2

c2(T − t0)ληT

)
,



1114 S. CERRAI AND M. RÖCKNER

where

ηT := sup
ω∈�

(
sup

(ξ,σ )∈O×R
r ,t∈[0,T ]

|g(t, ξ, σ )|2L(Rr )

)
‖B‖2

�.

Hence, due to (3.8), if we take any δ > 0 such that

1

c2T ληT

(
δ − ecT R

cecT
− 1

)2/m

− log c1 ≥ α,

recalling how δ′ is defined, we can conclude that (3.7) holds. �

4. The skeleton equation. In this section we study the deterministic problem

dz

dt
(t) = Az(t) + F

(
t, z(t)

) + G
(
t, z(t)

)
Bϕ(t), z(0) = x,(4.1)

where the operators A and B and the mappings F and G are those already
introduced in Section 2 and ϕ is any function in L2(0, T ;H). Our aim is to
prove an estimate for the C([0, T ];E)-norm of the unique mild solution zx(ϕ)

of problem (4.1).
For any fixed ϕ ∈ L2(0, T ;H) and z ∈ C([0, T ];E) we define

γϕ(z)(t) :=
∫ t

0
e(t−s)AG

(
s, z(s)

)
Bϕ(s) ds, t ∈ [0, T ].

By proceeding as in the proof of Theorem 2.3 (see [4], Theorem 4.2) it is possible
to prove that the mapping γϕ is continuous from C([0, T ];E) into itself for any
ϕ ∈ L2(0, T ;H) and if g fulfills (2.13), then

|γϕ(z)|C([0,T ];E) ≤ c(T )
(
1 + |z|αC([0,T ];E)

)|ϕ|L2(0,T ;H),(4.2)

for some continuous increasing function c(t) such that c(0) = 0. Moreover,

|γϕ(z1) − γϕ(z2)|C([0,T ];E) ≤ c(T )‖B‖�|z1 − z2|C([0,T ];E)|ϕ|L2(0,T ;H),(4.3)

again with c continuous such that c(0) = 0. In particular, by a contraction argument
it is immediate to check that for any ϕ ∈ L2(0, T ;H) there exists a unique fixed
point for the mapping γϕ , which is clearly the unique mild solution of the problem

dz

dt
(t) = Az(t) + G

(
t, z(t)

)
Bϕ(t), z(0) = 0.

Now, we can go to the skeleton equation (4.1).

THEOREM 4.1. Assume Hypotheses 1–4. Then for any ϕ ∈ L2(0, T ;H) and
x ∈ E there exists a unique mild solution zx(ϕ) to problem (4.1) in C([0, T ];E)

and, for any r ≥ 0 and x ∈ E,

sup
|ϕ|

L2(0,T ;H)
≤r

|zx(ϕ)|C([0,T ];E) ≤ cr,T (1 + |x|E).(4.4)
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PROOF. Since F is locally Lipschitz-continuous, problem (4.1) has a unique
solution zx(ϕ) defined in some maximal interval [0, T ′). To prove that the solution
is global, we have to prove an a priori estimate.

We give our proof under condition (iii)(b) in Hypothesis 4; the proof under
condition (iii)(a) is simpler. If we set v = zx(ϕ) − γϕ(zx(ϕ)), we have that v is the
solution of the problem

dv

dt
(t) = Av(t) + F

(
t, v(t) + γϕ

(
zx(ϕ)

)
(t)

)
, v(0) = x.

Then, if δv(t) is the element of ∂|v(t)|E introduced in Hypothesis 4(iii)(b), due to
(2.6), (2.7) and (4.2), with α = 1, for any t ∈ [0, T ′) we have

d

dt

−
|v(t)|E ≤ 〈

Av(t), δv(t)

〉
E

+ 〈
F

(
t, v(t) + γϕ

(
zx(ϕ)

)
(t)

) − F
(
t, γϕ

(
zx(ϕ)

)
(t)

)
, δv(t)

〉
E

+ 〈
F

(
t, γϕ

(
zx(ϕ)

)
(t)

)
, δv(t)

〉
E

≤ −a|v(t)|mE + (
β2(t) + �(t)

)(
1 + |γϕ

(
zx(ϕ)

)
(t)|mE

)
≤ −a|v(t)|mE + ct

(
1 + c(t)

(|zx(ϕ)|C([0,t];E) + 1
)m|ϕ|m

L2(0,T ;H)

)
,

for some increasing continuous function c(t) such that c(0) = 0. By comparison,
if |ϕ|L2(0,T ;H) ≤ r this yields

|v(t)|E ≤ |x|E + c(t)
(|zx(ϕ)|C([0,t];E) + 1

)
r + ct ,

so that, by using (4.2) again, as zx(ϕ) = v + γϕ(zx(ϕ)), we get

|zx(ϕ)|C([0,t];E) ≤ |γϕ(zx(ϕ))|C([0,t];E) + |x|E + ct + c(t)
(|zx(ϕ)|C([0,t];E) + 1

)
r

≤ |x|E + cr,t + 2c(t)r|zx(ϕ)|C([0,t];E).

Now, since c(t) is continuous and vanishes at t = 0, there exists some t0 > 0 such
that c(t0)r ≤ 1/4, so that estimate (4.4) follows in the time interval [0, t0]. As
the same argument can be repeated in the time intervals [t0,2t0], [2t0,3t0] and so
on, we get the estimate in the whole maximal interval [0, T ′). This implies that
the solution zx(ϕ) is defined in the whole interval [0, T ] and estimate (4.4) holds
globally. �

For any x ∈ E, ϕ ∈ L2(0, T ;H), z ∈ C([0, T ];E) and s ≥ 0 we define

Rx
s (z, ϕ)(t) := e(t−s)Ax+

∫ t

s
e(t−r)AF

(
r, z(r)

)
dr +γs,ϕ(z)(t), t ≥ s,(4.5)

where

γs,ϕ(z)(t) :=
∫ t

s
e(t−r)AG

(
r, z(r)

)
Bϕ(r) dr.

If s = 0, we will set Rx
0 = Rx . The next proposition follows from Theorem 4.1

and will be useful in what follows.
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PROPOSITION 4.2. For any T,R, r > 0 there exists t0 > 0 such that

Rx
s (·, ϕ) :

{
z ∈ C([s, s + t0];E); |z|C([s,s+t0];E) ≤ 2R

} =: �R,s,t0 → �R,s,t0

is a contraction, uniformly for |x|E ≤ R, |ϕ|L2(0,T ;H) ≤ r and s ∈ [0, T − t0].

PROOF. If we go back to the proof of [4], Theorem 4.2, it is possible to check
that

|γs,ϕ(z1) − γs,ϕ(z2)|C([s,T ];E)
(4.6)

≤ c(T − s)‖B‖ρ |z1 − z2|C([s,T ];E)|ϕ|L2(0,T ;H),

for some continuous increasing function c such that c(0) = 0.
If we take z ∈ �R,s,t1 , for some t1 > 0, we obtain, for t ∈ [s, s + t1],∣∣∣∣

∫ t

s
e(t−r)AF

(
r, z(r)

)
dr

∣∣∣∣
E

≤ cT (1 + 2mRm)(t − s),

and, due to (4.6),

|γs,ϕ(z)(t)|E ≤ c̃(t − s)(1 + 2R)r.

Therefore, collecting all terms, we have

|Rx
s (z, ϕ)(t)|E ≤ R + cT (1 + 2mRm)(t − s) + c̃(t − s)(1 + 2R)r.

This implies that if we take t1 > 0 such that

cT (1 + 2mRm)t1 + c̃(t1)(1 + 2R)r ≤ R

we have that Rx
s (·, ϕ) maps �R,s,t1 into itself. Note that up to now t1 depends only

on R, r and T and not on s.
Next, in order to conclude, we have to show that Rx

s (·, ϕ) is a contraction in
�R,s,t0 , for some t0 ≤ t1. Since we are assuming F(t) to be locally Lipschitz-
continuous on E, uniformly for t ∈ [0, T ], there exists LR > 0 such that

x, y ∈ B2R(E) �⇒ |F(t, x) − F(t, y)|E ≤ LR|x − y|E, t ∈ [0, T ].
Therefore, if z1, z2 ∈ �R,s,t0 , thanks to (4.6) we obtain

|Rx
s (z1, ϕ) − Rx

s (z2, ϕ)|C([s,s+t0];E) ≤ (
LRt0 + c̃(t0)r

)|z1 − z2|C([s,s+t0];E).

Thus, we can conclude by taking t0 ≤ t1 such that LRt0 + c̃(t0)r ≤ 1/2. �
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5. The action functional. Fix x ∈ E and T > 0. For any z ∈ C([0, T ];E) we
define

Ix,T (z) := 1
2 inf

{|ϕ|2
L2(0,T ;H)

; z = zx(ϕ)
}
,

with the usual convention that inf ∅ = +∞.
Moreover, for each x ∈ E and T > 0 we introduce the level sets of the

functional Ix,T ,

Kx,T (r) := {z ∈ C([0, T ];E); Ix,T (z) ≤ r}, r ≥ 0.

As in [16] we want to prove that the laws of the solutions of the problem (3.6)
fulfill a large deviations principle with action functional Ix,T .

It is important to stress that in the case of one single equation, if we take the
space dimension d equal to 1 and assume that

inf
(ξ,σ )∈O×R

g(ξ, σ ) = g0 > 0,

then it is possible to give the following more explicit expression for Ix,T :

Ix,T (z) =




1

2

∫
[0,T ]×O

∣∣∣∣∂tz − Az − f (·, z)
g(·, z)

∣∣∣∣
2

(t, ξ) dt dξ,

if z ∈ W
1,2
2 and z(0) = x,

+∞, otherwise,

where W
1,2
2 is the closure of C∞([0, T ] × O) in the norm

‖z‖
W

1,2
2

=
(∫

[0,T ]×O
(|z|2 + |∂tz|2 + |∂ξz|2 + |∂2

ξ z|2) dt dξ

)1/2

(for more details we refer to [10, 11, 18]).

THEOREM 5.1. For each x ∈ E the level sets Kx,T (r) are compact, for
all r ≥ 0. In particular, the functional Ix,T :C([0, T ];E) → [0,∞] is lower
semicontinuous.

PROOF. Step 1. We show that for each r ≥ 0 the level set Kx,T (r) is closed,
so that in particular Ix,T is lower semicontinuous.

Let {zn} ⊂ Kx,T (r) be a sequence converging to z in C([0, T ];E). Since
zn ∈ Kx,T (r), there exists ϕn ∈ L2(0, T ;H) such that

zn = zx(ϕn) and
1

2
|ϕn|2L2(0,T ;H)

≤ r + 1

n
.

In particular the sequence {ϕn} is bounded in L2(0, T ;H), so that there exists ϕ ∈
L2(0, T ;H) and {ϕnk

} ⊆ {ϕn} such that ϕnk
⇀ ϕ weakly and |ϕ|2

L2(0,T ;H)
≤ 2r . If

we show that z = zx(ϕ), we conclude that z ∈ Kx,T (r) and we are done.
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If Rx is the mapping introduced in (4.5), with s = 0, for any fixed h ∈ H we
easily have 〈

zx
(
ϕnk

)
(t) − Rx(z,ϕ)(t), h

〉
H

=
∫ t

0

〈
e(t−s)A

[
F

(
s, zx

(
ϕnk

)
(s)

) − F
(
s, z(s)

)]
, h

〉
H ds

(5.1)
+ 〈[

γϕnk

(
zx(

ϕnk

)) − γϕnk
(z)

]
(t), h

〉
H

+
∫ t

0

〈
ϕnk

(s) − ϕ(s),BG	
(
s, z(s)

)
e(t−s)Ah

〉
H ds.

Now, if we verify that all terms on the right-hand side converge to zero, as k goes
to infinity, we have that z = Rx(z,ϕ) and then z = zx(ϕ). For each s ∈ [0, t] we
have

lim
k→∞

〈
e(t−s)A[

F
(
s, zx(

ϕnk

)
(s)

) − F
(
s, z(s)

)]
, h

〉
H = 0.

Moreover, thanks to (2.6) and (4.4),∣∣〈e(t−s)A[
F

(
s, zx(

ϕnk

)
(s)

) − F
(
s, z(s)

)]
, h

〉
H

∣∣
≤ �(t)

(
1 + ∣∣zx(

ϕnk

)
(s)

∣∣m
E + |z(s)|mE

)|h|H
≤ cT

(
cm
r,T (1 + |x|E)m + |z|mC([0,T ];E)

)|h|H ,

so that, due to the dominated convergence theorem, we can conclude that the first
term on the right-hand side of (5.1) goes to zero. Concerning the second term, due
to (4.3), if we set cT := c(T )‖B‖� we have∣∣〈[γϕnk

(
zx

(
ϕnk

))−γϕnk
(z)

]
(t), h

〉
H

∣∣ ≤ cT

∣∣zx
(
ϕnk

)−z
∣∣
C([0,T ];E)

∣∣ϕnk

∣∣
L2(0,T ;H)|h|H ,

whose right-hand side goes to zero, as zx(ϕnk
) → z in C([0, T ];E) and

|ϕnk
|2
L2(0,T ;H)

≤ 2(r + 1/nk). Finally, the last term in (5.1) goes to zero as
ϕnk

converges weakly to ϕ.
Step 2. We show that the level set Kx,T (r) is relatively compact in

C([0, T ];E). Namely, we prove that for any sequence {zx(ϕn)} ⊂ Kx,T (r) there
exists z in C([0, T ];E) and {zx(ϕnk

)} ⊂ {zx(ϕn)} such that {zx(ϕnk
)} converges

to z in C([0, T ];E).
Let x ∈ E and ϕ ∈ L2(0, T ;H) be fixed and define inductively

zx
0(ϕ)(t) = etAx, zx

j+1(ϕ) = Rx
(
zx
j (ϕ),ϕ

)
(t),

where Rx is the mapping introduced in (4.5) corresponding to s = 0. Note that if
we take R = |zx(ϕ)|C([0,T ];E) + 1, and t0 as in Proposition 4.2, we have

zx
j+1(ϕ)(t) = R

zx
j+1(ϕ)(it0)

it0

(
zx
j (ϕ),ϕ

)
(t), t ∈ [

it0, (i + 1)t0
)
.
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Due to Proposition 4.2 we have that {zx
j (ϕ)} converges to zx(ϕ), uniformly

with respect to ϕ ∈ L2(0, T ;H), with |ϕ|2
L2(0,T ;H)

≤ 2r . Actually, since zx
j (ϕ) ∈

�R,0,t0 , from Proposition 4.2 we have that zx
j (ϕ) converges to zx(ϕ) and in

particular there exists j1 ∈ N such that |zx
j (ϕ)(t0)|E ≤ R, for any j ≥ j1. Thus

zx
j (ϕ) ∈ �R,t0,t0 for any j ≥ j1 and by using Proposition 4.2 again we obtain

that zx
j (ϕ) converges to zx(ϕ) in C([t0,2t0];E). By repeating this argument

in the intervals [2t0,3t0] and so on, we obtain that zx
j (ϕ) converges to zx(ϕ)

in C([0, T ];E).
Therefore, if we show that there exists a subsequence {ϕnk

} ⊆ {ϕn} such that for
any j the sequence {zx

j (ϕnk
)} converges to some zj in C([0, T ];E) and, moreover,

there exists z such that the sequence {zj } converges to z in C([0, T ];E), then we
can conclude that {zx(ϕnk

)} converges to z in C([0, T ];E).
For this purpose we need the following preliminary result.

LEMMA 5.2. The set {Rx(z,ϕ); z ∈ K, |ϕ|2
L2(0,T ;H)

≤ r} is relatively com-
pact in C([0, T ];E), for any set K relatively compact in C([0, T ];E) and for any
r > 0.

PROOF. Let {zn} ⊂ K and {ϕn} ⊂ L2(0, T ;H) such that |ϕn|2L2(0,T ;H)
≤ r .

Since K is relatively compact, there exists {znk
} ⊆ {zn} converging to some z0

in C([0, T ];E). Moreover, as proved, for example, in [7], Proposition 8.4, (see
also [16], Lemma 4.1) for any fixed z ∈ C([0, T ];E) the mapping

L2(0, T ;H) → C([0, T ];E), ϕ 
→ γϕ(z),

is compact. Thus there exist {ϕnk
} ⊆ {ϕn} and z̄ such that γϕnk

(z0) converges to z̄

in C([0, T ];E), as k → ∞.
We have

Rx(
znk

, ϕnk

)
(t) −

(
etAx +

∫ t

0
e(t−s)AF

(
s, z0(s)

)
ds + z̄(t)

)

=
∫ t

0
e(t−s)A

[
F

(
s, znk

(s)
) − F

(
s, z0(s)

)]
ds + γϕnk

(
znk

)
(t) − z̄(t).

As znk
→ z0, we have |znk

|C([0,T ];E) ≤ R, for some R > 0 and then, since F(t)

is locally Lipschitz continuous, uniformly for t ∈ [0, T ], there exists cR > 0 such
that, for any t ∈ [0, T ],∣∣∣∣

∫ t

0
e(t−s)A

[
F

(
s, znk

(s)
) − F

(
s, z0(s)

)]
ds

∣∣∣∣
E

≤ cR(T )
∣∣znk

− z0
∣∣
C([0,T ];E).

Concerning the other term, thanks to (4.3), for any t ∈ [0, T ] we have∣∣γϕnk

(
znk

)
(t) − z̄(t)

∣∣ ≤ ∣∣γϕnk

(
znk

)
(t) − γϕnk

(z0)(t)
∣∣ + ∣∣γϕnk

(z0)(t) − z̄(t)
∣∣

≤ c(T )
√

r
∣∣znk

− z0
∣∣
C([0,T ];E) + ∣∣γϕnk

(z0) − z̄
∣∣
C([0,T ];E) → 0,
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as k goes to infinity. This means that the sequence {Rx(znk
, ϕnk

)} has a limit in
C([0, T ];E) and the lemma is proved. �

From the lemma above it is possible to prove by induction that for each j ∈ N

the set

Aj := {
zx
j (ϕ); |ϕ|2

L2(0,T ;H)
≤ 2r

}
is relatively compact in C([0, T ];E). Actually, this is clearly true for the set A0.
Moreover, if we assume the set Aj to be relatively compact, since Aj+1 =
{Rx(z,ϕ); z ∈ Aj , |ϕ|2

L2(0,T ;H)
≤ 2r}, it follows that Aj+1 is relatively compact.

By a diagonal argument, this implies that there exists a subsequence {ϕnk
} ⊆

{ϕn} such that for any j ∈ N the sequence {zx
j (ϕnk

)} converges to some zj in
C([0, T ];E).

In order to conclude, we have to show that the sequence {zj } is a Cauchy
sequence in C([0, T ];E). For any i, j ∈ N we have

|zj − zi|C([0,T ];E) ≤ ∣∣zj − zx
j

(
ϕnk

)∣∣
C([0,T ];E) + ∣∣zx

j

(
ϕnk

) − zx
(
ϕnk

)∣∣
C([0,T ];E)

+ ∣∣zx
(
ϕnk

) − zx
i

(
ϕnk

)∣∣
C([0,T ];E) + ∣∣zx

i

(
ϕnk

) − zi

∣∣
C([0,T ];E).

Then we can conclude, as

lim
j→∞

∣∣zx
j

(
ϕnk

) − zx
(
ϕnk

)∣∣
C([0,T ];E) + ∣∣zx

(
ϕnk

) − zx
i

(
ϕnk

)∣∣
C([0,T ];E) = 0,

uniformly with respect to ϕnk
. �

6. The large deviations estimates. For any ε > 0 we consider the problem

du(t) = [
Au(t) + F

(
t, u(t)

)]
dt + εG

(
t, u(t)

)
B dw(t), u(0) = x.(6.1)

We denote by ux
ε its unique mild solution (see Theorem 2.2), which is a process

in Lp(�;C([0, T ];E)), for any p ≥ 1 and T > 0, fulfilling an exponential tail
estimate (see Theorem 3.3). The aim of this paper is to prove that the family of
probability measures

µx
ε,T := L(ux

ε ), ε > 0,

satisfies a large deviations principle (LDP) with rate functional given by Ix,T . In
Section 5 we have shown that the functional Ix,T is lower semicontinuous and
its level sets are compact in C([0, T ];E). Thus we only have to prove that the
Freidlin–Wentzell upper and lower exponential estimates hold true.
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6.1. The lower bounds. We start from the lower estimate. For this purpose, fix
ϕ ∈ L2(0, T ;H) and for any ε > 0 define

wε(t) := w(t) − 1

ε

∫ t

0
ϕ(s) ds.(6.2)

Due to Girsanov’s theorem, wε is a cylindrical Wiener process on the probability
space (�,F ,P

ε), where P
ε is a probability measure absolutely continuous with

respect to P, with density

dP
ε

dP
= exp

(
1

ε

∫ T

0
〈ϕ(s), dw(s)〉H − 1

2ε2
|ϕ|2

L2(0,T ;H)

)
.

In fact P and P
ε are equivalent and

dP

dPε
= exp

(
−1

ε

∫ T

0
〈ϕ(s), dwε(s)〉H − 1

2ε2
|ϕ|2

L2(0,T ;H)

)
.

Note that, due to the definition of wε, the solution ux
ε of problem (6.1) is also a

solution of the problem

du(t) = [
Au(t) + F

(
t, u(t)

)
,+G

(
t, u(t)

)
Bϕ(t)

]
dt

(6.3)
+ εG

(
t, u(t)

)
B dwε(t) u(0) = x.

As a first preliminary result, we prove that if we replace the expectation E with
respect to the probability P by the expectation E

ε with respect to the probability P
ε,

the first moment of ux
ε verifies an estimate analogous to (2.9), uniformly for ϕ in

bounded sets of L2(0, T ;H).

LEMMA 6.1. For any r > 0 and p ≥ 1 there exists a constant cr,p > 0 such
that

E
ε|ux

ε |pC([0,T ];E) ≤ cr,p(1 + |x|pE), ε ≤ 1,(6.4)

for any |ϕ|L2(0,T ;H) ≤ r .

PROOF. If we set v := ux
ε − γϕ(ux

ε ) − εγ ε(ux
ε ), with γ ε(ux

ε ) defined by

γ ε(ux
ε )(t) :=

∫ t

0
e(t−s)AG

(
s, ux

ε (s)
)
B dwε(s),(6.5)

we have that v solves the problem

dv

dt
(t) = Av(t) + F

(
t, ux

ε (t)
)
, v(0) = x.

By assuming condition (iii)(b) in Hypothesis 4 [the proof under condition (iii)(a)
is simpler], with the same arguments used in the proof of Theorem 4.1, for any
t ∈ [0, T ] we easily have

d

dt

−
|v(t)|E ≤ −a|v(t)|mE + cT

(
1 + |γϕ(ux

ε )(t)|mE + εm|γ ε(ux
ε )(t)|mE

)
.
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By comparison, for any 0 ≤ t ≤ T0 ≤ T and p ≥ 1 we obtain

|ux
ε (t)|pE ≤ cp

(|v(t)|pE + |γϕ(ux
ε )(t)|pE + εp|γ ε(ux

ε )(t)|pE
)

≤ cp

(|x|pE + cp,T0

(
1 + |γϕ(ux

ε )|pC([0,T0];E) + εp|γ ε(ux
ε )|pC([0,T0];E)

))
.

Now, according to (2.12) and (4.2), there exists p	 ≥ 1 such that for any ε ≤ 1,
p ≥ p	 and |ϕ|L2(0,T ;H) ≤ r we have

E
ε
(|γϕ(ux

ε )|pC([0,T0];E) + εp|γ ε(ux
ε )|pC([0,T0];E)

)
≤ cp(T0)(1 + rp)

(
1 + E

ε|ux
ε |pC([0,T0];E)

)
,

with cp(t) a continuous increasing function such that cp(0) = 0. Thus, by choosing
T0 small enough that cpcp,T0cp(T0)(1 + rp) ≤ 1/2, we obtain

E
ε|ux

ε (t)|pC([0,T0];E) ≤ 2cp|x|pE + 2cpcp,T0

(
1 + cp(T0)(1 + rp)

) ≤ cr,p(1 + |x|pE).

As we can repeat the same arguments in the intervals [T0,2T0], [2T0,3T0] and so
on, the global estimate (6.4) follows, for any p ≥ p	.

The case for 1 ≤ p < p	 follows then by Hölder’s inequality. �

As an immediate consequence of (6.4) we have

lim
K→∞ P

ε
(|ux

ε (t)|C([0,T ];E) > K
) = 0,(6.6)

uniformly for |x|E ≤ R, |ϕ|L2(0,T ;H) ≤ r and ε ≤ 1.

THEOREM 6.2 (LDP–lower bounds). Assume Hypotheses 1–4. Then, for each
R,T > 0, r ≥ 0 and δ, γ > 0 there exists ε0 > 0 such that, for any x ∈ E with
|x|E ≤ R and for any z ∈ Kx,T (r),

P
(|ux

ε − z|C([0,T ];E) ≤ δ
) ≥ exp

(
−Ix,T (z) + γ

ε2

)
, ε ≤ ε0.(6.7)

PROOF. Clearly, to prove (6.7) it is sufficient to prove that there exists ε0 > 0
such that for any ϕ ∈ L2(0, T ;H), with |ϕ|2

L2(0,T ;H)
≤ 2r ,

P
(|ux

ε − zx(ϕ)|C([0,T ];E) ≤ δ
) ≥ exp

(
−

|ϕ|2
L2(0,T ;H)

+ γ

2ε2

)
, ε ≤ ε0.

Fixing 0 < γ̄ < γ , we easily have

P
(|ux

ε − zx(ϕ)|C([0,T ];E) ≤ δ
) = E

ε

(
dP

dPε
; |ux

ε − zx(ϕ)|C([0,T ];E) ≤ δ

)

≥ exp
(
−

|ϕ|2
L2(0,T ;H)

+ γ

2ε2

)
exp

(
γ − γ̄

2ε2

)
P

ε(Aε),



LARGE DEVIATIONS FOR REACTION–DIFFUSION 1123

where

Aε :=
{
ε

∣∣∣∣
∫ T

0
〈ϕ(s), dwε(s)〉H

∣∣∣∣ ≤ γ̄

2
; |ux

ε − zx(ϕ)|C([0,T ];E) ≤ δ

}
.

If we show that

lim inf
ε→0

P
ε(Aε) > 0,

uniformly with respect to |x|E ≤ R and |ϕ|2
L2(0,T ;H)

≤ 2r , we are done. In fact, we
prove that such lim inf is 1.

By the Chebyshev inequality we have

P
ε

(∣∣∣∣
∫ T

0
〈ϕ(s), dwε(s)〉H

∣∣∣∣ >
γ̄

2ε

)
≤

(
2ε

γ̄

)2

E
ε

∣∣∣∣
∫ T

0
〈ϕ(s), dwε(s)〉H

∣∣∣∣
2

=
(

2ε

γ̄

)2 ∫ T

0
|ϕ(s)|2H ds ≤ 8rε2

γ̄ 2
.

Then, it follows that

P
ε(Aε) ≥ 1 − P

ε

(∣∣∣∣
∫ T

0
〈ϕ(s), dwε(s)〉H

∣∣∣∣ >
γ̄

2ε

)

− P
ε(|ux

ε − zx(ϕ)|C([0,T ];E) > δ
)

≥ 1 − 8rε2

γ̄ 2 − P
ε(|ux

ε − zx(ϕ)|C([0,T ];E) > δ
)
.

Due to (6.6), for any α > 0 we can fix K̄α > 0 such that

P
ε
(|ux

ε |C([0,T ];E) > K̄α

) ≤ α,

uniformly with respect to |x|E ≤ R, |ϕ|2
L2(0,T ;H)

≤ 2r and ε ≤ 1. This implies that

P
ε
(|ux

ε − zx(ϕ)|C([0,T ];E) > δ
)

≤ P
ε
(|ux

ε − zx(ϕ)|C([0,T ];E) > δ, |ux
ε |C([0,T ];E) ≤ K̄α

)
+ P

ε
(|ux

ε |C([0,T ];E) > K̄α

)
≤ P

ε(|ux
ε − zx(ϕ)|C([0,T ];E) > δ, |ux

ε |C([0,T ];E) ≤ K̄α

) + α.

For fixed K̄α , thanks to (4.4) and to the local Lipschitz-continuity of F(t), uni-
formly for t ∈ [0, T ], we can find a constant L > 0 such that if |ux

ε |C([0,T ];E) ≤ K̄α ,∣∣F (
s, ux

ε (s)
) − F

(
s, zx(ϕ)(s)

)∣∣
E ≤ L|ux

ε(s) − zx(ϕ)(s)|E, s ∈ [0, T ],
for any |x|E ≤ R and |ϕ|2

L2(0,T ;H)
≤ 2r . Therefore, since

ux
ε (t) − zx(ϕ)(t)

=
∫ t

0
e(t−s)A

[
F

(
s, ux

ε(s)
) − F

(
s, zx(ϕ)(s)

)]
ds

+ [
γϕ(ux

ε ) − γϕ

(
zx(ϕ)

)]
(t) + εγ ε(ux

ε )(t),
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by using (4.3) for any 0 < T0 ≤ T we obtain

sup
t∈[0,T0]

|ux
ε (t) − zx(ϕ)(t)|E

≤ (
LT0 + c(T0)‖B‖�

√
2r

)
sup

t∈[0,T0]
|ux

ε(t) − zx(ϕ)(t)|E

+ ε sup
t∈[0,T0]

|γ ε(ux
ε )(t)|E.

Thus, if we choose T0 such that LT0 + c(T0)‖B‖�

√
2r ≤ 1/2, we have

sup
t∈[0,T0]

|ux
ε (t) − zx(ϕ)(t)|E ≤ 2ε sup

t∈[0,T ]
|γ ε(ux

ε )(t)|E.

If we repeat the same argument in the intervals [T0,2T0], [2T0,3T0] and so on, we
obtain

|ux
ε − zx(ϕ)|C([0,T ];E) ≤ cε|γ ε(ux

ε )|C([0,T ];E).(6.8)

By using (2.12) and (6.4), this implies that

P
ε
(|ux

ε − zx(ϕ)|C([0,T ];E) > δ, |ux
ε |C([0,T ];E) ≤ K̄α

)
≤ P

ε

(
|γ ε(ux

ε )|C([0,T ];E) >
δ

cε

)

≤
(

cε

δ

)p	

E
ε|γ ε(ux

ε )|p	

C([0,T ];E)

≤
(

cε

δ

)p	

cp	(T )
(
E

ε|ux
ε |p	

C([0,T ];E) + 1
) ≤ εp	cp	,r,T ,R,

for any |x|E ≤ R, |ϕ|2
L2(0,T ;H)

≤ r and ε ≤ 1.
Therefore, collecting all terms we can conclude that

lim inf
ε→0

P
ε(Aε) ≥ 1 − α.

Due to the arbitrariness of α we can conclude that such lim inf is 1. �

6.2. The upper bounds. Now we estimate the probability that the trajectories
of ux

ε move far away from the set of small values of the action functional Ix,T . To
this purpose we introduce some notations.

For any T > 0, r ≥ 0 and n ∈ N we define the set

Cn,T (r) :=
{
u =

∫ ·

0
Pnϕ(s) ds; 1

2 |Pnϕ|2
L2(0,T ;H)

≤ r

}
,

where Pn is the projection of H onto the space generated by {e1, . . . , en}.
Clearly Cn,T (r) is the r-level set corresponding to the functional

Jn,T (u) := 1
2 inf

{
|Pnϕ|2

L2(0,T ;H)
; u =

∫ ·

0
Pnϕ(s) ds

}
.
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Note that as Pn(H) is a finite-dimensional space, Cn,T (r) is compact in
C([0, T ];H).

As an immediate consequence of the large deviations estimates for the standard
Brownian motion on R

n (for a proof see, e.g., [11], Theorem 3.2.2), the family of
probability measures {L(εPnw)}ε>0, where w is the cylindrical Wiener process
introduced above, fulfills a large deviations principle with action functional Jn,T .
In particular, for any r ≥ 0 and δ, γ > 0 there exists ε0 > 0 such that

P
(|εPnw − Cn,T (r)|C([0,T ];H) ≥ δ

) ≤ exp
(
−r − γ

2ε2

)
, ε ≤ ε0.(6.9)

In this section our aim is to prove an estimate analogous to (6.9) for the laws of
the processes ux

ε .

THEOREM 6.3 (LDP–upper bounds). Assume Hypotheses 1–4. For any
R,T > 0, r ≥ 0 and δ, γ > 0, there exists ε0 > 0 such that, for any x ∈ E with
|x|E ≤ R,

P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ
) ≤ exp

(
−r − γ

ε2

)
, ε ≤ ε0.

PROOF. We assume here that for any α, δ,R, r > 0 there exists n̄ ∈ N such
that, for any ϕ ∈ L2(0, T ;H) with |ϕ|2

L2(0,T ;H)
≤ 2r and |x|E ≤ R, there exist

βϕ, εϕ > 0 such that

P

(
|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕ(s) ds

∣∣∣∣
C([0,T ];H)

< βϕ

)
(6.10)

≤ exp
(
− α

ε2

)
,

for any ε ≤ εϕ . This crucial estimate is formulated and proved as Theorem 6.4
below.

As Cn̄,T (r) is compact in C([0, T ];H), there exist ϕ1, . . . , ϕk ∈ L2(0, T ;H),
with |Pn̄ϕi |2L2(0,T ;H)

≤ 2r , such that

Cn̄,T (r) ⊂
k⋃

i=1

{
u ∈ C([0, T ];H);

∣∣∣∣u −
∫ ·

0
Pn̄ϕi(s) ds

∣∣∣∣
C([0,T ];H)

< βϕi

}
=: B.

Moreover, there exists δ′ > 0 such that{
u ∈ C([0, T ];H); |u − Cn̄,T (r)|C([0,T ];H) < δ′} ⊂ B.

According to (6.9), this means that for any 0 < γ̄ < γ there exists ε1 > 0 such that

P(εPn̄w /∈ B) ≤ P
(|εPn̄w − Cn̄,T (r)|C([0,T ];H) ≥ δ′)

≤ exp
(
−r − γ̄

ε2

)
, ε ≤ ε1.
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Now, we have

P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ
)

≤ P(εPn̄w /∈ B) + P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ, εPn̄w ∈ B
)
,

so that for any ε ≤ ε1 we obtain

P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ
)

≤ exp
(
−r − γ̄

ε2

)

+
k∑

i=1

P

(
|ux

ε − zx(ϕi)|C([0,T ];E) ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕi(s) ds

∣∣∣∣
C([0,T ];H)

< βϕi

)
.

Thanks to (6.10), this implies that for any fixed α > 0 we can find ε0 ≤ ε1 such
that

P
(|ux

ε − Kx,T (r)|C([0,T ];E) ≥ δ
) ≤ exp

(
−r − γ̄

2ε2

)
+ k exp

(
− α

ε2

)
,

for any ε ≤ ε0. This allows us to conclude, by choosing α large enough and γ̄ small
enough. �

Therefore, to complete the proof of Theorem 6.3 we have to prove the following
result.

THEOREM 6.4. Let T > 0 be fixed. Then, under Hypotheses 1–4, for any
α, δ > 0 and R, r > 0 there exists n̄ ∈ N such that for any ϕ ∈ L2(0, T ;H), with
|ϕ|2

L2(0,T ;H)
≤ 2r , there exist ε̄, β > 0 such that

P

(
|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕ(s) ds

∣∣∣∣
C([0,T ];H)

< β

)
(6.11)

≤ exp
(
− α

ε2

)
,

for any ε ≤ ε̄ and |x|E ≤ R.

PROOF. We can assume that the mapping g(t, ·, ·) :O × R
r → L(Rr ) is

bounded, uniformly with respect to t ∈ [0, T ], so that we can use Theorems
3.2 and 3.3. Actually, if this is not the case, for any δ > 0 and x ∈ E we introduce
the stopping time

τ x
δ := inf{t ≥ 0; |ux(t) − zx(ϕ)(t)|E ≥ δ}
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and we note that if t ≤ τ x
δ , due to (4.4) we have

|ux(t)|E ≤ |ux(t) − zx(ϕ)(t)|E + |zx(ϕ)(t)|E ≤ δ + cr,T (1 + R) := K.

Now, defining the mapping

gK(t, ξ, σ ) :=
{

g(t, ξ, σ ), if |σ | ≤ K,

g(t, ξ,Kσ/|σ |), if |σ | > K,

we have that gK(t, ξ, ·) is Lipschitz-continuous and bounded, uniformly with
respect to ξ ∈ O and t ∈ [0, T ]. Moreover, if we set GK(t, x)(ξ) = gK(t, ξ, x(ξ))

and denote by ux
ε,K the solution of system (3.6) corresponding to the diffusion

term GK , we have that ux
ε,K(t) = ux

ε (t), for any t ≤ τ x
δ . This implies that, for any

δ,β > 0,

P

(
|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕ(s) ds

∣∣∣∣
C([0,T ];H)

< β

)

≤ P

(
sup
t≤τx

δ

|ux
ε (t) − zx(ϕ)(t)| ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕ(s) ds

∣∣∣∣
C([0,T ];H)

< β

)

≤ P

(
|ux

ε,K − zx(ϕ)|C([0,T ];E) ≥ δ,

∣∣∣∣εPn̄w −
∫ ·

0
Pn̄ϕ(s) ds

∣∣∣∣
C([0,T ];H)

< β

)
.

Thus, it is sufficient to prove the theorem for ux
ε,K , that is, under the assumption

that g is bounded.
For this purpose, we will need several lemmas.

LEMMA 6.5. For any α, δ > 0 there exists k0 ∈ N such that for any k ≥ k0 we
can find εk > 0 such that, for any x ∈ E and ε ≤ εk ,

P

(
sup

t∈[0,T ]
ε

∣∣∣∣
∫ t

σk(t)
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

≥ δ

)
≤ exp

(
− α

ε2

)
,(6.12)

where σk(t) = iT /k, if t ∈ Ii,k := [iT /k, (i + 1)T /k), with i = 0, . . . , k − 1.

PROOF. For any 0 ≤ r < t ≤ T and u ∈ Lp(�;C([0, T ];E)), we set

γr(u)(t) :=
∫ t

r
e(t−s)AG

(
s, u(s)

)
B dw(s).

For any δ > 0 and k ∈ N we have

P
(
ε
∣∣γσk(·)(ux

ε )
∣∣
C([0,T ];E) ≥ δ

) ≤
k−1∑
i=0

P
(
ε
∣∣γσk(·)(ux

ε )
∣∣
C(Ii,k;E) ≥ δ

)

≤ k sup
i=0,...,k−1

P
(
ε
∣∣γσk(·)(ux

ε )
∣∣
C(Ii,k;E) ≥ δ

)
.
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Note that if t ∈ Ii,k , we have σk(t) = iT /k. Then, according to (3.9), since
|Ii,k| = T/k we get

P
(
ε
∣∣γσk(·)(ux

ε )
∣∣
C(Ii,k;E) ≥ δ

) ≤ c1 exp
(
− δ2kλ

ε2c2T ληT

)
.

This implies that

P
(
ε
∣∣γσk(·)(ux

ε )|C([0,T ];E) ≥ δ
)

≤ kc1 exp
(
− δ2kλ

ε2c2T ληT

)
= exp

(
− δ2kλ

ε2c2T ληT

+ log k + log c1

)
.

Now, if we fix k0 ∈ N such that, for any k ≥ k0,

δ2kλ

c2T
ληT

≥ 2α,

and in correspondence to each k ≥ k0 we set

εk :=
(

α

log k + log c1

)1/2

,

we obtain (6.12). �

LEMMA 6.6. For any α, δ,R > 0 there exists k0 ∈ N such that for any k ≥ k0
we can find εk > 0 such that, for any |x|E ≤ R and ε ≤ εk ,

P
(|ux

ε − ux
ε,k|C([0,T ];E) ≥ δ

) ≤ exp
(
− α

ε2

)
,(6.13)

where

ux
ε,k(t) := e(t−σk(t))Aux

ε

(
σk(t)

)
.

PROOF. Clearly we have

ux
ε (t) = ux

ε,k(t) +
∫ t

σk(t)
e(t−s)AF

(
s, ux

ε (s)
)
ds

+ ε

∫ t

σk(t)
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s).

Thus, according to the growth condition on F , as |t − σk(t)| ≤ T/k for any
t ∈ [0, T ], by (2.6) we obtain

|ux
ε(t) − ux

ε,k(t)|E ≤ cT

∫ t

σk(t)

(
1 + |ux

ε (s)|mE
)
ds + ε

∣∣γσk(t)(u
x
ε )(t)

∣∣
E

≤ cT T

k

(
1 + |ux

ε |mC([0,T ];E)

) + ε
∣∣γσk(·)(ux

ε )
∣∣
C([0,T ];E)

:= Jk,1(ε) + Jk,2(ε).
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This means that

P
(|ux

ε − ux
ε,k|C([0,T ];E) ≥ δ

) ≤ P
(
Jk,1(ε) ≥ δ/2

) + P
(
Jk,2(ε) ≥ δ/2

)
.

Concerning the first term we have

P

(
Jk,1(ε) ≥ δ

2

)
= P

(
|ux

ε |mC([0,T ];E) ≥ kδ

2cT T
− 1

)

and then, if k is large enough we obtain

P

(
Jk,1(ε) ≥ δ

2

)
= P

(
|ux

ε |C([0,T ];E) ≥
(

kδ

2cT T
− 1

)1/m)
.

Due to (3.7) this means that once we fix α′ > α we can find k1 ∈ N such that

P

(
Jk,1(ε) ≥ δ

2

)
≤ exp

(
−α′

ε2

)
,

for any k ≥ k1, ε ≤ 1 and |x|E ≤ R.
Concerning the second term, due to (6.12) we can find k2 ∈ N such that for any

k ≥ k2 there exists εk > 0 such that

P

(
Jk,2(ε) ≥ δ

2

)
≤ exp

(
−α′

ε2

)
,

for any k ≥ k2, ε ≤ εk and |x|E ≤ R. Thus, if we take k0 := k1 ∨ k2 and α′ :=
α + log 2 we obtain (6.13). �

LEMMA 6.7. For any α, δ,R > 0 there exists k0 ∈ N such that for any k ≥ k0
we can find some εk > 0 such that, for any ε ≤ εk , |x|E ≤ R and 0 ≤ t1 < t2 ≤ T ,

P
(
ε
∣∣γt1(u

x
ε )(t2) − γt1(u

x
ε,k)(t2)

∣∣
E ≥ δ

) ≤ exp
(
− α

ε2

)
.(6.14)

PROOF. If we define

τ x
ε,k(ϑ) := inf

{
t ≥ 0 : |ux

ε(t) − ux
ε,k(t)|E ≥ ϑ

}
,

we have

P
(
ε|γt1(u

x
ε )(t2) − γt1(u

x
ε,k)(t2)|E ≥ δ

)
≤ P

(
τ x
ε,k(ϑ) ≤ T

) + P
(
ε|γt1(u

x
ε )(t2) − γt1(u

x
ε,k)(t2)|E ≥ δ, τ x

ε,k(ϑ) > T
)
.

If τ x
ε,k(ϑ)(ω) > T , as g is Lipschitz-continuous in the third variable, uniformly for

(s, ξ) ∈ [0, T ] × O, there exists L > 0 such that

sup
(s,ξ )∈[0,T ]×O

∣∣g(
s, ξ, ux

ε(s, ξ)(ω)
) − g

(
s, ξ, ux

ε,k(s, ξ)(ω)
)∣∣

E ≤ Lϑ.
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Then, according to Theorem 3.2 applied to

hs := g
(
s, ·, ux

ε (s)
) − g

(
s, ·, ux

ε,k(s)
) ∧ Lϑ ∨ (−Lϑ),

if we fix α′ > α and if we take ϑ̄ small enough for any k ∈ N we have

P
(
ε
∣∣γt1(u

x
ε )(t2) − γt1(u

x
ε,k)(t2)

∣∣
E ≥ δ, τ x

ε,k(ϑ̄) > T
)

≤ c1 exp
(
− δ2

ε2c2(t2 − t1)
λL2ϑ̄2‖B‖2

�

)
≤ exp

(
−α′

ε2

)
.

Concerning the other term, thanks to (6.13) in correspondence to such ϑ̄ there
exists k0 ∈ N such that for any k ≥ k0 there exists εk > 0 such that

P
(
τ x
ε,k(ϑ̄) ≤ T

) ≤ P
(|ux

ε − ux
ε,k|C([0,T ];E) ≥ ϑ̄

) ≤ exp
(
−α′

ε2

)
,

for any ε ≤ εk and |x|E ≤ R. By taking α′ = α + log 2 we get (6.14). �

LEMMA 6.8. For any α, δ,R > 0 and 0 ≤ t1 < t2 ≤ T there exist n̄ ∈ N and
β, ε̄ > 0 such that

P
(
ε
∣∣γt1

(
e(·−t1)Aux

ε (t1)
)
(t2)

∣∣
E ≥ δ, ε|Pn̄w|C([t1,t2];H) ≤ β

) ≤ exp
(
− α

ε2

)
,(6.15)

for any ε ≤ ε̄ and |x|E ≤ R.

PROOF. We fix α′ > α. By using Theorem 3.2 we can find t1 < t ′1 < t ′2 < t2
such that, for any x ∈ E and ε ≤ 1,

P

(
ε

∣∣∣∣
∫ t2

t1

e(t2−s)AG
(
s, e(s−t1)Aux

ε (t1)
)
B dw(s)

(6.16)

−
∫ t ′2

t ′1
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)
B dw(s)

∣∣∣∣
E

≥ δ

4

)
≤ exp

(
−α′

ε2

)
.

Since by (2.2) and the Sobolev embedding theorem there exists θ > 0 such that,
for any s ∈ [t ′1, t ′2],∣∣e(s−t1)Aux

ε (t1)
∣∣
Cθ(O;Rr ) ≤ c(s − t1)

−θ/2|ux
ε(t1)|E ≤ c(t ′1 − t1)

−θ/2|ux
ε |C([0,T ];E),

due to (3.7) there exists K > 0 such that by setting

K := {
u ∈ C

([t ′1, t ′2];Cθ(O;R
r)

); |u|C([t ′1,t ′2];Cθ (O;Rr )) ≤ K
}
,

for any |x|E ≤ R and ε ≤ 1,

P
(
e(·−t1)Aux

ε (t1) /∈ K
) = P

(∣∣e(·−t1)Aux
ε (t1)

∣∣
C([t ′1,t ′2];Cθ(O;Rr )) > K

)

≤ P

(
|ux

ε |C([0,T ];E) >
K

c
(t ′1 − t1)

θ/2
)

≤ exp
(
−α′

ε2

)
.
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Now, since the set K is compact in C([t ′1, t ′2];E), for any fixed ρ > 0 there exist
z1, . . . , zi0 ∈ C([t ′1, t ′2];E) such that K can be covered by the union of balls in
C([t ′1, t ′2];E) of radius ρ and center zi . This implies that, for any n ∈ N,

P

(
ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)
(I − Pn)B dw(s)

∣∣∣∣
E

≥ δ

4

)

≤ exp
(
−α′

ε2

)

+
i0∑

i=1

P

(∣∣e(·−t1)Aux
ε (t1) − zi

∣∣
C([t ′1,t ′2];E) ≤ ρ,

ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)
(I − Pn)B dw(s)

∣∣∣∣
E

≥ δ

4

)

=: exp
(
−α′

ε2

)
+

i0∑
i=1

Ii,n.

For any i = 1, . . . , i0 we have, for Bn := PnB ,

Ii,n ≤ P

(∣∣e(·−t1)Aux
ε (t1) − zi

∣∣
C([t ′1,t ′2];E) ≤ ρ,

ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)A[

G
(
s, e(s−t1)Aux

ε (t1)
) − G

(
s, zi(s)

)]
B dw(s)

∣∣∣∣
E

≥ δ

12

)

+P

(∣∣e(·−t1)Aux
ε (t1) − zi

∣∣
C([t ′1,t ′2];E) ≤ ρ,

ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)A

[
G

(
s, e(s−t1)Aux

ε (t1)
) − G

(
s, zi(s)

)]
Bn dw(s)

∣∣∣∣
E

≥ δ

12

)

+P

(
ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)AG

(
s, zi(s)

)
(I − Pn)B dw(s)

∣∣∣∣
E

≥ δ

12

)

=: J 1
i + J 2

i,n + J 3
i,n.

If |e(s−t1)Aux
ε (t1) − zi(s)|E ≤ ρ, for any s ∈ [t ′1, t ′2], as g(s, ξ, ·) is Lipschitz-

continuous, uniformly with respect to s ∈ [0, T ] and ξ ∈ O, we can apply
Theorem 3.2 to the function hs(ξ) := g(s, ξ, e(s−t1)Aux

ε (t1, ξ)) − g(s, ξ, zi(s, ξ))

and we can find some constants c1, c2 > 0 such that

J 1
i + J 2

i,n ≤ 2c1 exp
(
− δ2

ε2c2ρ(t ′2 − t ′1)λ
)
,
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for any n ∈ N. Then, if ρ is sufficiently small we have

J 1
i + J 2

i,n ≤ exp
(
−α′

ε2

)
,

for any ε ≤ 1. Concerning J 3
i,n, with the notation introduced in the proof of

Theorem 3.2 we have∫ t ′2

t ′1
e(t2−s)AG

(
s, zi(s)

)
(I − Pn)B dw(s)

= cβ	

∫ t ′2

t ′1
(t ′2 − s)β	−1e(t ′2−s)Aρt ′1,β	

(s) ds,

where

ρt1,β	(s, ξ) =
∞∑

k=n+1

λk

∫ s

t ′1
(s − σ)−β	e(s−σ)A

[
e(t2−t ′2)AG

(
σ, zi(σ )

)
ek

]
(ξ) dβk(σ ).

As in the proof of [4], Theorem 4.2, it follows that, for all i = 1, . . . , i0,

sup
(s,ξ )∈[t ′1,t ′2]×O

∞∑
k=n+1

λ2
k

∫ s

t ′1
(s − σ)−2β	

× ∣∣e(s−σ)A
[
e(t2−t ′2)AG

(
σ, zi(σ )

)
ek

]
(ξ)

∣∣2 ds ≤ ηn,

for some ηn which goes to zero, as n goes to infinity. Hence, by using the same
arguments as in the proof of [4], Theorem 4.2, and that of Theorem 3.2 we can find
some constants c1, c2 > 0 such that

J 3
i,n ≤ c1 exp

(
− δ2

ε2c2ηn(t2 − t1)

)
.

This means that for some n̄ sufficiently large

J 3
i,n̄ ≤ exp

(
−α′

ε2

)
.

Therefore, collecting all terms, in correspondence to n̄ we have

P

(
ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)
(I − Pn̄)B dw(s)

∣∣∣∣
E

≥ δ

4

)
(6.17)

≤ (3i0 + 1) exp
(
−α′

ε2

)
.

According to (3.7) there exists δ′ > 0 such that, for any |x|E ≤ R and ε ≤ 1,

P
(|ux

ε(t1)|E ≥ δ′) ≤ exp
(
−α′

ε2

)
.(6.18)
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Next, we fix any partition π = {σ0 = t ′1 < σ1 < · · · < σk = t ′2} of the interval [t ′1, t ′2]
and we set π(s) = σi , if s ∈ [σi, σi+1). We have

{∣∣∣∣
∫ t ′2

t ′1

[
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)

− e(t2−π(s))AG
(
π(s), e(π(s)−t1)Aux

ε (t1)
)]

Bn̄ dw(s)

∣∣∣∣
E

≥ δ

4ε

}

⊆
{

sup
t∈[t ′1,t ′2]

∣∣∣∣
∫ t

t ′1
e(t−s)AH(s)Bn̄ dw(s)

∣∣∣∣
E

≥ δ

4ε

}
,

where

H(s) = e(t2−t ′2)AG
(
s, e(s−t1)Aux

ε (t1)
)

− e(t2−t ′2)Ae(s−π(s))AG
(
π(s), e(π(s)−t1)Aux

ε (t1)
)
.

We remark that, since the mapping (0, T ] → L(E), s 
→ esA, is continuous and
the mapping g fulfills Hypothesis 3, if |ux

ε (t1)|E ≤ δ′, we have

sup
s∈[t ′1,t ′2]

∣∣e(t2−t ′2)AG
(
s, e(s−t1)Aux

ε (t1)
)

− e(t2−t ′2)Ae(s−π(s))AG
(
π(s), e(π(s)−t1)Aux

ε (t1)
)∣∣

E

≤ sup
s∈[t ′1,t ′2]

∣∣G(
s, e(s−t1)Aux

ε (t1)
) − e(s−π(s))AG

(
π(s), e(π(s)−t1)Aux

ε (t1)
)∣∣

E

≤ cπ,δ′,

for some constant cπ,δ′ going to zero, as |π | = max{σi+1 − σi} goes to zero. By
using once again Theorem 3.2 this implies that there exists some partition π0

sufficiently small such that for any x ∈ E and ε ≤ 1

P

(
|ux

ε (t1)|E ≤ δ′,

ε

∣∣∣∣
∫ t ′2

t ′1

[
e(t2−s)AG

(
s, e(s−t1)Aux

ε (t1)
)

(6.19)

− e(t2−π0(s))AG
(
π0(s), e

(π0(s)−t1)Aux
ε (t1)

)]
Bn̄ dw(s)

∣∣∣∣
E

≥ δ

4

)

≤ exp
(
−α′

ε2

)
.

Therefore, combining all together the estimates (6.16)–(6.19), for any β > 0 we
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obtain

P
(
ε
∣∣γt1

(
e(·−t1)Aux

ε (t1)
)
(t2)

∣∣
E ≥ δ, ε|Pn̄w|C([0,T ];H) ≤ β

)
≤ (4 + 3i0) exp

(
−α′

ε2

)

+ P

(
ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−π0(s))AG

(
π0(s), e

(π0(s)−t1)Aux
ε (t1)

)
Bn̄ dw(s)

∣∣∣∣
E

≥ δ

4
,

ε|Pn̄w|C([0,T ];H) ≤ β

)
.

If we determine β > 0 such that the last term above is zero, by taking ε small
enough, we have

(4 + 3i0) exp
(
−α′

ε2

)
≤ exp

(
− α

ε2

)
,

so that (6.15) follows.
If |Pn̄w|C([0,T ];H) ≤ β/ε and if π0 = {t ′1 = σ0 < · · · < σk0 = t ′2} is the partition

which realizes (6.19), we have∣∣∣∣
∫ t ′2

t ′1
e(t2−π0(s))AG

(
π0(s), e

(π0(s)−t1)Aux
ε (t1)

)
Bn̄ dw(s)

∣∣∣∣
E

≤
k0−1∑
i=0

∣∣e(t2−σi )AG
(
σi, e

(σi−t1)Aux
ε (t1)

)
B

(
Pn̄w(σi+1) − Pn̄w(σi)

)∣∣
E

≤ 2|Pn̄w|C([t ′1,t ′2];H)

k0−1∑
i=0

∣∣e(t2−σi)AG
(
σi, e

(σi−t1)Aux
ε (t1)

)
B

∣∣
L(H,E).

Now, due to (2.3), for any x ∈ H we have

|etAx|E ≤ c(t ∧ 1)−d/4|x|H , t > 0,

and then, as t2 − σi ≥ t2 − t ′1 > 0 and σi − t1 ≥ t ′1 − t1, for any σi ∈ π0, we have

ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−π0(s))AG

(
π0(s), e

(π0(s)−t1)Aux
ε (t1)

)
Bn̄ dw(s)

∣∣∣∣
E

≤ 2ε|Pn̄w|C([t1,t2];H)cπ0 ≤ c̃π0β.

Hence, we can find β small enough such that

P

(
ε

∣∣∣∣
∫ t ′2

t ′1
e(t2−π0(s))AG

(
π0(s), e

(π0(s)−t1)Aux
ε (t1)

)
B dw(s)

∣∣∣∣
E

≥ δ

4
,

ε|Pn̄w|C([0,T ];H) ≤ β

)
= 0. �
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LEMMA 6.9. For any α, δ,R > 0 there exist n̄ ∈ N and β, ε̄ > 0 such that

P
(
ε|γ (ux

ε )|C([0,T ];E) ≥ δ, ε|Pn̄w|C([0,T ];H) ≤ β
) ≤ exp

(
− α

ε2

)
,

for any ε ≤ ε̄ and |x|E ≤ R.

PROOF. Let α′ > α. Due to (6.12) there exists k0 ∈ N such that, for any k ≥ k0,

P
(
ε|γ (ux

ε )|C([0,T ];E) ≥ δ, ε
∣∣Pn̄w|C([0,T ];H) ≤ β

)
≤ exp

(
−α′

ε2

)

+ P

(
ε sup

t∈[0,T ]

∣∣∣∣
∫ σk(t)

0
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

≥ δ

2
,

ε|Pn̄w|C([0,T ];H) ≤ β

)
.

Now, if we set tki = iT /k, for any t ∈ [0, T ] we have

∣∣∣∣
∫ σk(t)

0
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

=
∣∣∣∣
∫ σk(t)

0
e(t−σk(t))Ae(σk(t)−s)AG

(
s, ux

ε(s)
)
B dw(s)

∣∣∣∣
E

≤ sup
i=0,...,k−1

∣∣∣∣
∫ tki

0
e(tki −s)AG

(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

≤
k−1∑
i=0

∣∣∣∣
∫ tki+1

tki

e(tki+1−s)AG
(
s, ux

ε(s)
)
B dw(s)

∣∣∣∣
E

.

This implies that

P

(
ε sup

t∈[0,T ]

∣∣∣∣
∫ σk(t)

0
e(t−s)AG

(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

≥ δ

2
,

ε|Pn̄w|C([0,T ];H) ≤ β

)

≤
k−1∑
i=0

P

(
ε

∣∣∣∣
∫ tki+1

tki

e(tki+1−s)AG
(
s, ux

ε(s)
)
B dw(s)

∣∣∣∣
E

≥ δ

2k
,

ε|Pn̄w|C([tki ,tki+1];H) ≤ β

)
.
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According to Lemma 6.7, for large enough k there exists εk > 0 such that for any
ε ≤ εk

P

(
ε

∣∣∣∣
∫ tki+1

tki

e(tki+1−s)AG
(
s, ux

ε (s)
)
B dw(s)

∣∣∣∣
E

≥ δ

2k
, ε|Pn̄w|C([tki ,tki+1];H) ≤ β

)

≤ P

(
ε

∣∣∣∣
∫ tki+1

tki

e(tki+1−s)AG
(
s, ux

ε,k(s)
)
B dw(s)

∣∣∣∣
E

≥ δ

4k
,

ε|Pn̄w|C([tki ,tki+1];H) ≤ β

)
+ exp

(
−α′

ε2

)
.

Therefore, since∫ tki+1

tki

e(tki+1−s)AG
(
s, ux

ε,k(s)
)
B dw(s) = γtki

(
e(·−tki )Aux

ε (t
k
i )

)
(tki+1),

we conclude by applying Lemma 6.8. �

Conclusion of the proof of Theorem 6.4. Now we can prove (6.11). If wε is the
Wiener process on the space (�,F ,P

ε) introduced in (6.2), we have to show that
if we define

Aε := {|ux
ε − zx(ϕ)|C([0,T ];E) ≥ δ; ε|Pn̄w

ε|C([0,T ];H) < β
}
,

for some positive constants β and ε̄ we have that

P(Aε) ≤ exp
(
− α

ε2

)
,

for any ε ≤ ε̄. If we set

ξε := exp
(
−1

ε

∫ T

0
〈ϕ(s), dw(s)〉H

)
,

for any λ > 0 we have

P(Aε) ≤ P

(
Aε ∩

{
ξε ≤ exp

(
λ

ε2

)})
+ P

(
ξε > exp

(
λ

ε2

))
.

Due to (3.1) we have

P

(
ξε > exp

(
λ

ε2

))
≤ P

(∣∣∣∣
∫ T

0
〈ϕ(s), dw(s)〉H

∣∣∣∣ >
λ

ε

)

≤ 3 exp
(
− λ2

6ε2|ϕ|2
L2(0,T ;H)

)
≤ 3 exp

(
− λ2

12ε2r

)
.

Hence, we can find λ̄ large enough such that, for any ε ≤ 1,

P

(
ξε > exp

(
λ̄

ε2

))
≤ 1

2
exp

(
− α

ε2

)
.(6.20)
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In correspondence to such λ̄ we have

P

(
Aε ∩

{
ξε ≤ exp

(
λ̄

ε2

)})
= E

ε

(
dP

dPε
; Aε ∩

{
ξε ≤ exp

(
λ̄

ε2

)})

≤ exp
(

λ̄

ε2 −
|ϕ|2

L2(0,T ;H)

2ε2

)
P

ε(Aε)

≤ exp
(

λ̄

ε2

)
P

ε(Aε).

Thus, to conclude, we have to show that there exists ε̄ > 0 such that

P
ε(Aε) ≤ 1

2
exp

(
− λ̄

ε2

)
exp

(
− α

ε2

)
, ε ≤ ε̄.(6.21)

For any K > 0 we have

P
ε(Aε) ≤ P

ε(|ux
ε |C([0,T ];E) > K

)
+ P

ε
(|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ,

|ux
ε |C([0,T ];E) ≤ K,ε|Pn̄w

ε|C([0,T ];H) < β
)
.

In the proof of the lower estimates we have seen that ux
ε solves problem (6.3).

Then, if we set v := ux
ε − γϕ(ux

ε )− εγ ε(ux
ε ), with γ ε defined in (6.5), we have that

v solves the problem

dv

dt
(t) = Av(t) + F

(
t, ux

ε (t)
)
, v(0) = x.

By using the same arguments as in the proof of Theorem 3.3, we have

|ux
ε |C([0,T ];E) ≤ ecT

(|x|E + cT

(
1 + |γϕ(ux

ε )|mC([0,T ];E) + εm|γ ε(ux
ε )|mC([0,T ];E)

))
.

Note that as we are assuming g to be bounded, due to (4.2) we get

|γϕ(ux
ε )|C([0,T ];E) ≤ c(T )|ϕ|L2(0,T ;H) ≤ cT

√
2r

and hence

|ux
ε |C([0,T ];E) ≤ ecT

(|x|E + c(T )
(
1 + (2r)m/2 + εm|γ ε(ux

ε )|mC([0,T ];E)

))
.

This allows us to repeat the arguments used in the proof of Theorem 3.3 and to
conclude that for any α > 0 and R > 0 there exists K > 0 such that, for any ε ≤ 1
and |x|E ≤ R,

P
ε
(|ux

ε |C([0,T ];E) > K
) ≤ exp

(
− α

ε2

)
.

Therefore, if we fix α′ = λ̄ + α + log 4, we can find K̄ such that

P
ε
(|ux

ε |C([0,T ];E) > K̄
) ≤ exp

(
−α′

ε2

)
= 1

4
exp

(
− λ̄

ε2

)
exp

(
− α

ε2

)
.(6.22)
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If we fix K̄ , due to (6.8) we can find some constant c > 0 such that

P
ε
(|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ, |ux
ε |C([0,T ];E) ≤ K̄, ε|Pn̄w

ε|C([0,T ];H) < β
)

≤ P
ε

(
ε|γ ε(ux

ε )|C([0,T ];E) ≥ δ

c
, ε|Pn̄w

ε|C([0,T ];H) < β

)
,

and then, due to Lemma 6.9 applied to wε and P
ε instead of w and P, we can

conclude that there exist ε̄, β > 0 such that

P
ε
(|ux

ε − zx(ϕ)|C([0,T ];E) ≥ δ, |ux
ε |C([0,T ];E) ≤ K̄, ε|Pn̄w

ε|C([0,T ];H) < β
)

(6.23)
≤ 1

4
exp

(
− λ̄

ε2

)
exp

(
− α

ε2

)
.

By (6.20), (6.22) and (6.23) we obtain (6.21). �
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