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IMMORTAL BRANCHING MARKOV PROCESSES: AVERAGING
PROPERTIES AND PCR APPLICATIONS

BY DIDIER PIAU

Université Lyon-I

The immortal branching Markov process (iBMP) is a modification
of the usual branching model, in which each particle of generation n is
counted, in addition to its offspring, as a member of generation n + 1, its
state being unchanged. When the number of offspring is Bernoulli, iBMP
accounts, for instance, for the variability of the biological sequences that
are produced by polymerase chain reactions (PCRs). This variability is due
to the mutations and to the incomplete replications that affect the PCR.
Estimators of PCR mutation rate and efficiency have been proposed that
are based, in particular, on the mean empirical law ηn of the mutations
of a sequence. Unfortunately, ηn is not analytically tractable. However, the
infinite-population limit η∗

n of ηn is easily characterized in the two following,
biologically relevant, cases. The Markovian kernel describes a homogeneous
random walk, either on the integers or on some finite Cartesian product
of a finite set. In the PCR context, this corresponds to infinite or finite
targets, respectively. In this paper, we provide bounds of the discrepancy
between ηn and η∗

n in these two cases. As a consequence, iBMP exhibits a
strong averaging effect, even for surprisingly small starting populations. The
bounds are explicit functions of the offspring law, the Markovian kernel, the
number of steps n, the size of the initial population and, in the finite-target
case, the size of the target. They concern every moment and, what might
be less expected, the histogram itself. In the finite-target case, some of the
bounds undergo a phase transition at an explicit value of the mutation rate
per site and per cycle. We use precise estimates of the harmonic means of
classical nondecreasing branching processes, whose proofs are included in
the Appendix.

1. Introduction.

1.1. iBMP. We consider the following random process. At time n, there exists
a finite number of particles x. The state of particle x is s(x). Each particle x

gives birth to a random number Zx of offspring y by the usual i.i.d. procedure
of branching processes. Hence, each state s(y) depends on s(x) along Markovian
transitions. The population at time n + 1 is made of these offspring y and of the
population of particles x at time n. We call this an immortal branching Markov
process (iBMP), since a particle lives and gives birth at every epoch posterior to its
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creation. This paper is devoted to the study of this new type of process. The iBMP
model has proved useful for the study of a biochemical reaction called PCR, see
Section 1.3, and we believe it will do so for other types of studies as well.

The overall population Sn at time n of the iBMP performs a classical branching
process of reproducing mechanism Lx := Zx + 1 ≥ 1. Thus, (Sn)n≥0 is a
nondecreasing supercritical branching process, except in the trivial case Zx = 0
a.s., which we exclude. Thus, iBMP may be viewed as a branching Markov process
(BMP), in which, for each particle, the state of one offspring does not behave like
those of the others. We call independent BMP the model where the states of all the
offspring of x are i.i.d. conditional on s(x).

We study the mean empirical law ηn of an iBMP at time n. If the states s(x) are
nonnegative real numbers, the (Laplace) transform of ηn is, for |u| ≤ 1,

Ln(u) := E

(
S−1

n

Sn∑
x=1

us(x)

)
.

Here, the sum from x = 1 to Sn is a shorthand for the sum along all the particles of
the population at time n. For independent BMP, the description of Ln is trivial.
To see this in a simple case, assume that the random variables s(y) − s(x),
for x → y, are i.i.d. copies of ξ . Denote by g(u) := E(uξ ) the transform of ξ ,
and by � the expectation of the reproducing law. Then

�−n g(u)−n
Sn∑

x=1

us(x)

is a well-known martingale, which is a basic tool for the study of the limit
of Sn/�n; see, for instance, Biggins (1977) or Lyons (1997). Hence, the
expectation of this martingale at time n is entirely determined by the initial
population and states. Joffe (1993) introduced the modification

S−1
n g(u)−n

Sn∑
x=1

us(x),

and he showed that this is also a martingale. Thus, for independent BMP,

Ln(u) = g(u)n S−1
0

S0∑
x=1

us(x).

In other words, the states of the particles and the size of the population are
uncorrelated. For iBMP, the first martingale above is still available, but not the
variant by Joffe.



AVERAGING OF IMMORTAL BRANCHING PROCESSES 339

1.2. Mean field limits. The S0 → ∞ limit η∗
n of the mean empirical law ηn of

an iBMP is easy to describe when the population at time 0 is homogeneous, that
is, when s(x) = s0 for all x at time 0.

DEFINITION 1. Let σk denote the result of k steps of the Markovian kernel
that describes the evolution of the states, starting from σ0 := s0. The type t (x) of
a particle x is t (x) := k if x is obtained through exactly k offspring steps. Let
Sn(k) denote the number of particles at time n of type k.

The random variables Sn(k) are related by branching relations of the form

Sn+1(k + 1) = Sn(k + 1) +
Sn(k)∑
x=1

Zx.(1)

Here, the sum from x = 1 to x = Sn(k) is really the sum along the particles at
time n of type k. Furthermore,

Ln(u) =
n∑

k=0

ζn(k)E(uσk), ζn(k) := E

(
Sn(k)

Sn

)
.(2)

This indicates once again why Ln(u) is not tractable in general, since the
computation of the coefficients ζn(k) in (2), starting from (1), is not an easy task.
However, when S0 → ∞, the overall population is the sum of the independent
populations that are generated by each starting particle. By the standard law of
large numbers, Sn/S0 converges almost surely to

E1(Sn) = (1 + λ)n, λ := E(Zx),

when S0 → ∞. Here, E1 is the expectation when S0 = 1. From the same law of
large numbers, Sn(k)/S0 converges almost surely to

E1(Sn(k)) =
(

n

k

)
λk.

Thus, when S0 → ∞, Ln converges to its mean field version L∗
n, with

L∗
n(u) =

n∑
k=0

(
n

k

)
λk (1 + λ)−n

E(uσk).

In other words, the empirical law η∗
n of the mean field iBMP is the law of the

Markov chain στ , when considered at a random time τ which is independent of
the Markov chain (σk)k and whose law is binomial of parameters (n, q), with

q := λ

1 + λ
, p := 1 − q, λ := E(Z).(3)
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Let tn denote the mean empirical type of a particle at time n, and t∗n the mean field
version of tn. Let ζn and ζ ∗

n denote the laws of tn and t∗n . Thus, ζ ∗
n is the binomial

law of parameters (n, q), and

ζn(k) := P(tn = k) := E

(
Sn(k)

Sn

)
.(4)

Below, the random variables Mn and M∗
n follow the laws ηn and η∗

n. For any
bounded function F ,

E(F (Mn)) = E

(
S−1

n

Sn∑
x=1

F(s(x))

)
.

1.3. PCR randomness. The iBMP can model any reproduction process where
particles give birth at every epoch after their creation, without aging. When Zx is
Bernoulli, that is, almost surely 0 or 1, iBMP models the variability of genetic
sequences produced by polymerase chain reactions (PCRs). Recall that the PCR
is a powerful method of production of large amounts of DNA from a small
number of template molecules. Quoting from Weiss and von Haeseler (1997),
it “has revolutionized work with genetic material.” Apart from the sequencing
of DNA, its applications include cancer research, inherited disease diagnosis,
forensic medicine and ancient DNA. Like any biochemical mechanism, the PCR
is imperfect, in the sense that some replications are incomplete and that the
replicated molecules present some mutations. These errors can have noticeable
consequences; see Jacobs, Tscholl, Sek, Pfreundschuh, Daus and Trümper (1999)
for an example related to the early diagnosis of cancer.

During each PCR cycle, each molecule is replicated with probability λ ∈ (0; 1),
and if the replication is successful, some mutations occur that segregate the copy
from the original. Thus, the whole PCR can be modeled by an iBMP where
Zx follows the Bernoulli law

λδ1 + (1 − λ)δ0.

Two Markovian kernels are relevant. First, in the additive model, s(x) is the total
number of mutations that occurred on x and on its ancestors. Thus, (σn)n≥0 in
Definition 1 is a random walk on the integer line with i.i.d. nonnegative increments.
This describes well the state of x insofar as the number G of sites in the replicated
molecules is large and the mutation rate per site µ is so low that mutations rarely
occur twice at a same site. The law of the increments of σn is then approximately
Poisson of parameter

µ̃ := Gµ.

The full model, however, is a product model that takes into account the facts
that G is finite and that several mutations can occur at same site. Then, x is
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represented by an element of AG, where A is the encoding alphabet of DNA or,
more generally, a finite set of size N ≥ 2. That is, x is identified by

{	i(x); 1 ≤ i ≤ G}, 	i(x) ∈ A.

The sites evolve independently and the mutation rate from 	 to 	′ at site i is
independent of the site i and of the letters (	, 	′). We are well aware that these
two assumptions may be too simplifying in actual biological settings. When the
duplication x → y occurs, each letter 	i(x) is modified to 	i(y), independently
of the other letters, according to a Markov chain of mutation rate µ ∈ (0; 1).
That is, the letter 	 remains 	 itself with probability 1 − µ, and 	 becomes 	′ with
probability µ/(N − 1) for each letter 	′ �= 	. Assuming, without loss of generality,
that every letter of every initial sequence is 0, the state of x is the number of “false”
letters in x, that is,

s(x) :=
G∑

i=1

1{	i(x) �=0}.

1.4. Mean field PCR. Sun (1995) and Weiss and von Haeseler (1995), building
on earlier works that include Krawczak, Reiss, Schmidtke and Rosler (1989),
Reiss, Krawczak, Schlösser, Wagner and Cooper (1990), Hayashi (1990) and
Maruyama (1990), use the Poisson additive model to study statistical properties of
PCR sequences. Their approach is adapted to the product model by Wang, Zhao,
Cheng and Sun (2000). In practice, these authors solve the mean field cases, as
explained in Section 1.2, and they propose estimators of the parameters λ and µ̃

or µ. In particular, Sun (1995) bases an estimator of µ̃ on ηn and he proves that
the estimator is unbiased in the mean field case. Similar results are obtained for
the mean empirical law of the Hamming distance between two sequences.

In Piau (2001), we provide explicit bounds of the discrepancy between
ηn and η∗

n, as regards the mean and the histogram, for the Poisson additive
model. The same program is realized for the product model in Piau (2002),
as regards every moment and the histogram. Consequences of these results
are, first, that Sun’s estimator systematically underestimates µ̃ when the initial
population is finite, a fact that seems to have been overlooked; see, for instance,
Brunnert, Müller and Urfer (2000) and Wang, Zhao, Cheng and Sun (2000).
More important, the mean field approximation is excellent, even for relatively
small initial populations S0. For instance, a condition mentioned by Sun (1995),
namely that

S0 	 (1 + λ)2n,

is simply not relevant. This validates, in a way, the whole approach since, as
mentioned by Sun himself after Saiki et al. (1988), the efficiency λ can only be
considered as constant when S0 is moderate, that is, in the so-called exponential
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region. For greater S0 values, λ progressively decreases to 0. For more on PCR,
on the biological relevance of the model, on the values of the parameters, on
error-prone PCR and on the relevance of the additive Poisson model versus the
product model, we refer to the above-mentioned papers and to the references
in Piau (2001, 2002).

1.5. Results. We concentrate below on the accuracy of the approximation
of ηn by η∗

n. In contrast with asymptotic mathematical results, the main task here
is to obtain rigorous nonasymptotic bounds, which are often the only relevant ones
for practical purposes. For instance, the considered objects have quite simple limits
when n → ∞.

We study the additive model and the product model. Basically, we prove that a
strong averaging effect occurs, as regards the difference of the moments and the
distance in total variation. To get tractable bounds of the various discrepancies
between ηn and η∗

n, our main strategy is to look for exact recursion relations
between ηn and ηn+1, such that η∗

n solves the main term of the recursion and
such that the error terms can be explicitly bounded. Sun (1995) computes various
distributions related to the most recent common ancestor of two particles in the
mean field case. Weiss and von Haeseler (1995) use Sun’s results; Weiss and von
Haeseler (1997) model the genealogy of PCR samples by a modified coalescent
process. Thus, our method is entirely different.

In the additive model, we prove approximations of the mean and variance of Mn

of order 1/S0, the mean field values being of order n. This result generalizes to
every offspring law and every law of the increments of s(x) the bound on the
mean of Mn that was obtained in Piau (2001) for Bernoulli offspring and Poisson
increments, as well as the fact, already noted in Piau (2001), that the mean field
expectation of M∗

n overestimates the expectation of Mn. One could mimic our
methods to get similar approximations of the higher moments of Mn.

In the product model, we generalize the bounds of Piau (2002) to every offspring
law. Namely, we prove an approximation of every factorial moment of Mn of
order k, at the order Gkαn/S0, for any µ ∈ (0;β ′), where β ′ ∈ (0; 1) and α ∈ (0; 1)

are explicit. For higher values of µ, this bound has to be replaced by Gk α̂n
k /S0,

where the explicit value of α̂k depends on k and µ.
In both models, ηn and η∗

n are within 1/S0 distance in total variation, for any
mutation rate. The bound on the histogram of the additive model in Piau (2001) is
only in 1/

√
S0 and is restricted to small values of the mutation rate. The bound on

the histogram of the additive model in Piau (2002) is only in 1/
√

S0.
A surprising (to us) feature of all these results is that the bounds are uniform

in n. Thus, ηn does not diverge from η∗
n, when n → ∞. Finally, we mention that

one can apply the same methods to study the mean empirical law of a uniform
sample of size greater than 1 from the population at time n. For instance, if
Hn denotes the empirical Hamming distance between two sequences in the additive
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model and H ∗
n the mean field limit, one can show that

E(Hn) = E(H ∗
n ) + O(1)/S0, E(H ∗

n ) = 2qE(ξ)n.

1.6. Summary of notation. Our results, stated in the next section, use notation
that can be summarized as follows. Let Zx denote the number of particles that are
duplicated from x. In both models, we assume that Z is square integrable when
necessary. We say pk := P(Z = k) for k ≥ 0, q0 := 1 − p0, σ 2 := var(Z), and

λ := E(Z), p := 1/(1 + λ), q := 1 − p.

For any duplication x → y, let ξy := s(y)−s(x). In the additive model, the random
variables ξy are i.i.d. copies of ξ , which is integrable enough. Let µ := E(ξ)

(instead of µ̃ in previous sections) and assume, for the sake of simplicity,
that µ ≥ 0. In the product model, recall that N is the size of the encoding alphabet
of the sequences, G is the number of sites of the sequences and µ is the probability
that the letter at a given site of an offspring y of x is different in y and in x.
Introduce the parameters

β := 1 − 1/N, µ′ := 1 − µ/β, β ′ := β min{1, q0/q},
and, for any k ≥ 0,

αk := p + q(µ′)k.(5)

Thus, α := α1 = 1 − q µ/β and q0 β ≤ β ′ ≤ β .

1.7. Mathematical statements.

THEOREM 1 (Moments of the additive model).

(i) There exist �+ and �− in (0;+∞), which depend only on the offspring
law, such that, for any n ≥ 1,

E(M∗
n) − µ�+/S0 ≤ E(Mn) ≤ E(M∗

n) − µ�−/(S0 + 1).

If p1 �= 0, this holds with

�+ := 2σ 2/(p3
0q0), �− := p0p1p

3.

If p1 = 0 but pk �= 0, this holds with the same value of �+ and with

�− := kp0pkp
3.

(ii) There exists � in (0;+∞), independent of n and S0, such that, for
any n ≥ 0,

|var(Mn) − var(M∗
n)| ≤ �/S0.
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(iii) The mean field values are

E(M∗
n) = nµq,

var(M∗
n) = n

(
var(ξ)q + µ2pq

)
.

In contrast to the additive model, in the product model, M∗
n cannot be the

sum of n copies of a given random variable, simply because Mn is always
in {0,1, . . . ,G}. For k ≤ G, let ek(t) := t (t − 1) · · · (t − k + 1) denote the factorial

polynomial of degree k. We prove that there exist m
(k)
n and m∗

k,n independent of G,
such that

E(ek(Mn)) =: ek(G)m(k)
n , E(ek(M

∗
n)) =: ek(G)m∗

k,n.

THEOREM 2 (Moments of the product model). For any µ ∈ (0;β ′) and k ≥ 1,
there exists ϒk in (0;+∞), independent of n, such that∣∣m(k)

n − m∗
k,n

∣∣ ≤ ϒk

αn

S0
.

The cases k = 1 and k = 2 read as follows. Set mn := m
(1)
n and m∗

n := m∗
1,n.

THEOREM 3 (First moment of the product model). The mean field value is

m∗
n = β(1 − αn).

There exists κ in (0;+∞), which depends only on the offspring law, such that, for
any µ ∈ (0;β ′),

|mn − m∗
n| ≤ κ

β2µ

(β ′ − µ)2

αn

S0
.

For smaller values of µ, more explicit bounds are obtained. If µ < β q0/(4q)

(the condition µ < 1
4 q0 β is enough to ensure this), one has

|mn − m∗
n| ≤

4σ 2

q0p
3
0

µ
αn

S0
.

THEOREM 4 (Variance of the product model). For µ ∈ (0;β ′),
var(Mn) = Gβ(1 − 2β)(1 − αn) + Gβ2(1 − αn

2 )

+ G2β2(αn
2 − α2n) + G2O

(
αn

S0

)
.

By convention, O(·) is uniform, except with respect to β and to the laws of
Z and ξ , and it can be explicitly bounded. Canceling the O(·) term, one gets the
mean field value var(M∗

n).
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REMARK 2. As was expected, var (Mn) → Gβ (1 − β) when n → ∞.
However, for finite n, two phase transitions occur. First, the error term dominates
the α2n term when S0 � α−n. Second, the error term dominates the α2n and αn

2
terms when S0 � (α/α2)

n. Recall that (α/α2)
n � α−n.

REMARK 3. Some terms are missing in the expression of var(M∗
n) that one

would deduce from Theorem 2 of Wang, Zhao, Cheng and Sun (2000), if one
replaces the assertion “the lim sup is at most” in item (ii) of this theorem by
“the limit is equal to.” The missing terms being (−Gm∗

2,n), that is, negative,
the assertion “the lim sup is at most” in this theorem holds as it is stated, and it
can be strengthened to “the limit is −∞.” [The notation of the papers is mostly
compatible, except that e−µ in Wang, Zhao, Cheng and Sun (2000) is our 1 − µ,
and their a is our 1 − 4

3µ = 1 − µ/β .] The problem might come from the fact that
these authors, “for simplicity, approximate the distribution of the number of base
changes. . . by a Poisson random variable. . . .”

REMARK 4. Theorems 2–4 can be extended to every value of the parameters
as follows. For any k ≥ 1, there exist ϒk in (0;+∞), independent of n, and
α̂k ∈ (0; 1), such that ∣∣m(k)

n − m∗
k,n

∣∣ ≤ ϒk

α̂n
k

S0
.

For k = 1, this holds with

α̂1 := max{p0,p,α}.
For k ≥ 2, this holds with α̂k := α̂2, where

α̂2 := max{p0,p,α,α2}.
Thus, α̂1 is as follows. If q0 < q (i.e., if β ′ < β), α̂1 = α for µ ∈ (0;β ′), and
α̂1 = p0 for µ ∈ (β ′; 1). If q0 ≥ q (i.e., if β ′ = β), α̂1 = α for µ ∈ (0;β), and
α̂1 = p for µ ∈ (β; 1). The values of α̂2 are as follows. If µ ∈ (0;β), α̂2 = α̂1.
If µ ∈ (β; 1), α̂2 = max{p0, α2} = max{p0,p + q(µ′)2}.

We omit the proofs, which are similar to the proofs of Theorems 2–4.
Furthermore, for instance, for k = 1, if µ > β ′, α̂n

1 	 αn, although mn converges
to its n → ∞ limit at rate αn. In our opinion, this makes the cases that our
Theorems 2–4 leave out somewhat less interesting.

As regards the distance in total variation, recall that one sets, for instance,

‖ζn − ζ ∗
n ‖TV := 1

2

∑
k≥0

|ζn(k) − ζ ∗
n (k)|.

Furthermore, the type tn coincides with the number of mutations in the additive
model with ξ ≡ 1. Part (i) of Theorem 5 below asserts that this case implies the
general case.
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THEOREM 5 (Histograms of both models). (i) In both models,

‖ηn − η∗
n‖TV ≤ ‖ζn − ζ ∗

n ‖TV.

(ii) There exists � in (0;+∞), which depends only on the offspring law,
such that

‖ζn − ζ ∗
n ‖TV ≤ �/S0.

This holds with

� := 2σ 2/(p3
0q0).

(iii) The mean field law ζ ∗
n dominates ζn stochastically.

REMARK 5. We mention, see Piau (2002) for the proof, that, in part (ii) of
Theorem 5, the upper bound �/S0 can be replaced by �′/

√
S0, with

�′ := 2σp/q0.

For small values of S0, this bound can be a sharper alternative.

REMARK 6. Part (iii) of Theorem 5 implies that, in the additive model of
Theorem 1, E(M∗

n) is indeed greater than E(Mn) when E(ξ) is positive.

1.8. Organization. As Sun already observed for the additive model, ηn can be
decomposed along the law of the types. This is explained in Section 2 in more
detail than in Section 1.2. Section 3 provides a description of the mean field
limit η∗

n. Section 4 collects some partly new estimates of branching processes.
The proofs of the theorems are deferred to Sections 5–8. The Appendix, which can
be read separately from the rest of the paper, states and proves precise estimates of
the harmonic means of branching processes used in the proofs.

2. Decomposition by types. The law of the mean empirical type tn deter-
mines the law of Mn. Recall that the type t (x) of a sequence x is the number
of replications that produced x. In other words, if x exists before the first cycle,
t (x) := 0, and if x → y is a replication, t (y) := t (x) + 1.

In the additive model, conditionally on {t (x) = k}, s(x) is the sum σk of k

i.i.d. copies of ξ . In the product model, for any replication x → y, conditionally
on {s(x) = k}, s(y) − s(x) is the sum of G independent random variables. Among
them, k follow the law η−, which indicates the possible replacement of a false
letter by the correct letter 0, and the (G − k) others follow the law η+, which
indicates the possible creation of a new false letter. Then

η− := (
1 − µ/(N − 1)

)
δ0 + (

µ/(N − 1)
)
δ−1,

η+ := (1 − µ)δ0 + µδ1.
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If t (x) = n, s(x) is the result of the mutations that occurred during n replications.
Introduce a Markov chain (ρn)n≥0 on {0,1}, of transition matrix

P(ρn+1 = 1|ρn = 0) = µ,

P(ρn+1 = 0|ρn = 1) = µ/(N − 1),

and starting from ρ0 = 0. The law of ρn is µnδ1 + (1 − µn)δ0, where

µn := β
(
1 − (1 − µ/β)n

)
.

Thus, µ0 = 0, µ1 = µ, µ2 = 2µ − µ2/β and µn → β when n → ∞. Finally,
conditionally on {t (x) = n}, s(x) is the sum of G i.i.d. copies of ρn. The stationary
law of ρn is

(1 − β)δ0 + βδ1.

Hence, after many replications, each letter of a sequence is, independently of the
others, false with probability β .

3. Mean field description. In the mean field limit S0 → ∞, tn converges in
law to t∗n of binomial (n,p) law, and M∗

n , conditional on t∗n , follows the law of Mn,
conditional on tn. For |u| ≤ 1, let

L∗
n(u) := E

(
uM∗

n
)
.

THEOREM 6. In the additive model,

L∗
n(u) = (

p + qE(uξ)
)n =: L∗(u)n.

THEOREM 7. In the product model,

m∗
k,n =

n∑
i=0

(
n

i

)
qipn−iµk

i

= βk
k∑

i=0

(
k

i

)
(−1)iαn

i ,

L∗
n(u) =

n∑
k=0

(
n

k

)
qkpn−k(1 − µk(1 − u)

)G
=

G∑
k=0

(
G

k

)(
1 − β(1 − u)

)G−k(
β(1 − u)

)k
αn

k .

Thus, with α := α1, one has

m∗
n := m∗

1,n = β(1 − αn), m∗
2,n = β2(1 − 2αn + αn

2 ).



348 D. PIAU

REMARK 7. The G → ∞ Poisson limit of M∗
n in the product model is

the S0 → ∞ limit M∗∗
n of Mn in the additive Poisson model. That is, assuming

that Gµ → µ̃,

E(M∗∗
n ) = nµ̃q,

var(M∗∗
n ) = n(µ̃2pq + µ̃q).

This follows directly from the fact that, in the mean field limit of the additive
model, M∗∗

n follows the law of the sum of a binomial (n, q) number of i.i.d.
Poisson random variables of parameter µ̃.

4. Branching estimates.

4.1. Lemmas. Let Fn denote the σ -algebra generated by the n first cycles, that
is, by all the replications and mutations during the n first generations of the iBMP.
Let f denote the generating function of L := Z + 1, that is, for |u| ≤ 1,

f (u) := uE(uZ) = p0u + p1u
2 + · · · .

Lemma 8 is in Joffe (1993). Lemma 10 provides estimations of the error term in
Lemma 9. Lemma 11 is a direct consequence of Proposition A.5 in the Appendix.

LEMMA 8. For any x in generation n,

E

(
1 + Zx

Sn+1

∣∣∣Fn

)
= 1

Sn

.

LEMMA 9. One has

E

(
Sn

Sn+1

∣∣∣Fn

)
= p + A(Sn),

where A(Sn) is nonnegative and defined by

A(S) :=
∫ 1

0
h(u)f ′(u)f (u)S du, h(u) := − 1

f ′(u)

(
f (u)

uf ′(u)

)′
.

LEMMA 10. If p1 �= 0, there exist h− and h+ in (0;+∞) such that, for
any u ∈ (0; 1), h− ≤ h(u) ≤ h+. One can choose

h+ := σ 2/p3
0, h− := p0p1p

3.

A consequence of Lemmas 9 and 10 is

h−/(S + 1) ≤ A(S) ≤ h+/(S + 1).(6)

We show, in the proof of Lemma 10, that (6) still holds when p1 = 0, with
a different value of h−. Corollary 12 below stems from Lemma 11 and (6).
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LEMMA 11.∑
k≥0

E
(
(Sk + 1)−1) ≤ (

1 − E
(
(1 + Z)−1))−1

S−1
0 ≤ 2/(q0 S0).

COROLLARY 12. For any n ≥ 0,

h−/(S0 + 1) ≤
n∑

k=0

E(A(Sk)) ≤ 2h+/(q0 S0).

4.2. Technicalities.

PROOF OF LEMMA 9. One writes

E

(
Sn

Sn+1

∣∣∣Fn

)
= Sn

∫ 1

0
f (u)Sn

du

u
=

∫ 1

0

(
f (u)Sn

)′( f (u)

uf ′(u)

)
du.

Integration by parts of the last expression yields p as the integrated term and the
integral of hf ′f Sn as the term to integrate. �

PROOF OF LEMMA 10. A slight rewriting of h yields h = g/k3, with

g(u) := ∑
n

(n + 1)2pnu
n+1

∑
n

pnu
n+1 −

(∑
n

(n + 1)pnu
n+1

)2

= ∑
n,n′

1
2(n − n′)2pnpn′un+n′+2,

k(u) := ∑
n

(n + 1)pnu
n+1.

For u ∈ (0; 1), g(u) ≤ g(1)u3 = σ 2u3 and k(u) ≥ p0u. On the other hand,
g(u) ≥ p0p1u

3 and k(u) ≤ k(1)u = u/p. This yields h+ and h− when p1 �= 0.
If p1 = 0, the value of h− is different. To see this, assume that pk �= 0

with k ≥ 2. Since g(u) ≥ p0pkk
2uk+2 and k(u) ≤ u/p, for any v ∈ (0; 1)

and u ∈ (v; 1), one has

h(u) ≥ q3p0pkk
2uk−1 ≥ q3p0pkk

2vk−1.

On the other hand, ∫ 1

v

(
f (u)S

)′
du = 1 − f (v)S+1

S + 1
≥ 1 − v2

S + 1
.

Thus, for any v, one can choose

h− := p3p0pkk
2(vk−1 − vk+1).

Optimization over v and simple estimates finally yield

h− := 4

3
√

3
p3p0pkk < p3p0pkk. �
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5. Moments of the additive model. Let Tn denote the sum from x = 1 to Sn

of s(x). Then

Tn+1 =
Sn∑

x=1

(
s(x)(1 + Zx) +

Zx∑
y=1

ξy

)
.

From Lemmas 8 and 9,

E(Mn+1|Fn) = E

(
Tn+1

Sn+1

∣∣∣Fn

)

= Mn + µ

Sn∑
x=1

E

(
Zx

Sn+1

∣∣∣Fn

)
= Mn + µq − µA(Sn).

An integration of this and the subsequent iteration yield

E(Mn) = nµq − µ

n−1∑
k=0

E(A(Sk))

(7)

= E(M∗
n) − µ

n−1∑
k=0

E(A(Sk)).

Thus, Corollary 12 implies the theorem with

�+ := 2h+/q0, �− := h−.

Turning to the evaluation of the second moment and following the path that leads
to (7), one gets

E(M2
n+1) = E(M2

n) + 2µqE(Mn) + E(ξ2)q
(8)

− 2µE
(
MnA(Sn)

) − E(ξ2)E(A(Sn)),

where the only additional ingredient is the fact that

E

(
Tn

Sn+1

∣∣∣Fn

)
= E

(
MnE

(
Sn

Sn+1

∣∣∣Fn

))
= pE(Mn) + E

(
MnA(Sn)

)
.

From (7) and (8),

var(Mn+1) = var(Mn) + E(ξ2)q − µ2q2 + Bn,

where the error term Bn is

Bn = 2µE(Mn)E(A(Sn)) − 2µE
(
MnA(Sn)

) − E(ξ2)E(A(Sn))
(9)

− µ2
E(A(Sn))

2 + 2µ2qE(A(Sn)).
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It remains to prove that |Bn| is summable. Since E(Mn) increases like n, and
since E(A(Sn)) decreases at least as fast as E(S−1

n ), that is, geometrically, the
only problematic term in (9) is E(MnA(Sn)). Starting from

1

S(1 + S)
=

∫ 1

0
tS(1 − t)

dt

t

and using standard manipulations, one gets

E

(
Mn+1

Sn+1 + 1

∣∣∣Fn

)
= (Mn + µ)

∫ 1

0
Snf

′(t)f (t)Sn−1(1 − t) dt

− µ

∫ 1

0
Snf (t)Sn(1 − t)

dt

t
.

We are interested only in crude estimates of the left-hand side. We use

p0(1 − t) ≤ 1 − f (t)

in the first integral of the right-hand side, we perform this integral and we cancel
the second integral of the right-hand side. This yields

E

(
Mn+1

Sn+1 + 1

∣∣∣Fn

)
≤ p−1

0
Mn + µ

Sn + 1
,

that is,

E

(
Mn+1

Sn+1 + 1

)
≤ p−1

0 E

(
Mn

Sn + 1

)
+ µp−1

0 E

(
1

Sn + 1

)
.

This, along with the estimates of the Appendix, is enough to show that |Bn| is
summable and that the sum of the series is at most a multiple of 1/S0.

6. First moment of the product model.

6.1. Exact recursions. Setting 	(x) := 	1(x), one has E(Mn) = Gmn with

mn := E

(
Tn

Sn

)
, Tn :=

Sn∑
x=1

1{	(x) �=0}.

If the duplication x → y occurs,

P
(
	(y) = 0|	(x) �= 0

) = µ/(N − 1), P
(
	(y) �= 0|	(x) = 0

) = µ.

These two relations can be written as

P
(
	(y) �= 0|	(x)

) = µ + µ′1{	(x) �=0}, µ′ := 1 − µ/β.

Using Lemma 8, and

Tn+1 =
Sn∑

x=1

(
1{	(x) �=0} +

Zx∑
y=1

1{	(y) �=0}
)
,
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one gets

yn := E

(
Tn+1

Sn+1

∣∣∣Fn

)

=
Sn∑

x=1

1{	(x) �=0}E
(

1 + µ′Zx

Sn+1

∣∣∣Fn

)
+ µE

(
Zx

Sn+1

∣∣∣Fn

)

= α
Tn

Sn

+ β(1 − α) + µA(Sn)

(
Tn

βSn

− 1
)
,

where α = α1 ∈ (0; 1) is defined by (5). Iterating this recursion and using
mn+1 = E(yn), one gets

mn = β(1 − αn) + µCn,

where

Cn :=
n−1∑
k=0

αn−1−kck, ck := E

(
A(Sk)

(
Tk

βSk

− 1
))

.

6.2. Estimations of the error terms. It seems difficult to obtain further exact
expressions of mn. Turning to approximations of Cn, we first note that

|ck| ≤ E(A(Sk)),

because 0 ≤ Tk ≤ Sk almost surely. From Lemma 10 and Proposition A.2,

|ck| ≤ h+
E

(
(1 + Sk)

−1) ≤ h+κk∗rk/S0,

where r := max{p0,p}. Since α = 1 − qµ/β , the condition α > r is equivalent to

µ < β ′ := β min{1, q0/q}.
Assuming this, one gets by summation

|Cn| ≤ h+καβ2q−2(β ′ − µ)−2αn/S0,

if n∗ = n + 1 in Proposition A.2, and, in the other case,

|Cn| ≤ h+κβq−1(β ′ − µ)−1αn/S0.

Further simplifications lead, for µ ∈ (0;β ′), to

|mn − m∗
n| ≤ h+κq−2 β2µ

(β ′ − µ)2

αn

S0
.(10)

REMARK 13. The upper bound is small in two respects. First, S0 is usually
large. Second, the ratio

β2µ

(β ′ − µ)2
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is comparable to µ as long as µ is not too close to β ′. In the PCR context,
the mutation rate µ per cycle and per site is often quite small. We refer to the
discussion in Piau (2001) for the values of µ in actual PCR.

REMARK 14. For smaller values of µ, Proposition A.5 allows to cancel the
unspecified factor κ . If µ < βq0/(2q) =: β ′′, the right-hand side of (10) can be
replaced by

h+q−1 βµ

β ′′ − µ

αn

S0
.

If µ < β ′′/2, (10) holds with the simpler (4h+/q0)µαn/S0.

7. Higher moments of the product model. The method of Section 6 yields
every moment of Mn. Recall that Mn is {0,1, . . . ,G} valued. For any k ≤ G,

E(ek(Mn)) = ek(G)m(k)
n , m(k)

n := E

(
T

(k)
n

Sn

)
,

where ek(t) := t (t − 1) · · · (t − k + 1) denotes the factorial polynomial of degree k

and where T
(k)
n is an analogue of Tn, defined by

T (k)
n :=

Sn∑
x=1

Uk(x), Uk(x) :=
k∏

i=1

1{	i(x) �=0}.

Conditionally on Fn,

E
(
T

(k)
n+1

∣∣Fn

) =
Sn∑

x=1

(
Uk(x) +

Zx∑
y=1

E
(
Uk(y)|(	i(x))1≤i≤k

))
.

Since each letter evolves independently of the others, the conditioning is

E
(
Uk(y)|(	i(x))1≤i≤k

) =
k∏

i=1

(
µ + µ′1{	i(x) �=0}

) =: Vk(x).

This makes possible our intermediate step, which is to compute

y(k)
n := E

(
T

(k)
n+1

Sn+1

∣∣∣Fn

)
.

With the notation of Section 6, one finds

y(k)
n = T

(k)
n

Sn

Dn +
k∑

i=0

(
k

i

)
µk−i(µ′)i T

(i)
n

Sn

D′
n,

where, for any member x of generation n,

Dn := E

(
Sn

Sn+1

∣∣∣Fn

)
, D′

n := E

(
ZxSn

Sn+1

∣∣∣Fn

)
.
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From Lemmas 8 and 9,

Dn = p + A(Sn), D′
n = q − A(Sn).

From now on, we assume, for simplicity, that k = 2:

y(2)
n = α2

T
(2)
n

Sn

+ q

(
µ2 + 2µµ′Tn

Sn

)
+ some terms in A(Sn).

This means that m
(2)
n satisfies the recursion

m
(2)
n+1 = α2m

(2)
n + α2,1mn + α2,0 + c(2)

n ,

where α2, α2,1 and α2,0 are constant and c
(2)
n is an error term. More precisely, α2 is

defined by (5), and

α2,1 := 2µµ′q,

α2,0 := µ2q,

c(2)
n := E

(
A(Sn)

((
1 − (µ′)2)T (2)

n

Sn

− 2µµ′Tn

Sn

− µ2
))

.

The term in the inner parentheses in c
(2)
n is O(1), A(Sn) is nonnegative

and E(A(Sn)) is of the order of E(S−1
n ), that is, from the results of the Appendix,

at most of the order of nrn/S0 with

r := max{p0,p}.
Iterating this, m

(2)
n can be written as the sum of m∗

2,n and of two error terms. The
first one is

α2,1µ

n−1∑
i=0

Ciα
n−1−i
2 .

Since Ci is at most a multiple of αi/S0 and since α2 < α for µ < β ′, this sum is at
most a multiple of αn/S0. The second error term is

n−1∑
i=0

c
(2)
i αn−1−i

2 .

Since c
(2)
i is at most a multiple of (i + 1)ri/S0 and since α2 < r , this sum is at

most a multiple of nrn/S0, which is negligible with respect to αn/S0 since r < α.
This yields the k = 2 case of the theorem when µ < β ′. The proof for k ≥ 3 is
similar and omitted.
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8. Total variation bounds. Part (i) of Theorem 5 is a straightforward
consequence of the fact that the law of Mn conditioned by tn is equal to
the law of M∗

n conditioned by t∗n , and of the following characterization of the
distance in total variation: ‖ηn − η∗

n‖TV is the infimum of P(M �= M∗) over the
couples (M,M∗) of random variables, such that the law of M is ηn and the law
of M∗ is η∗

n.
Applying this to ζn and ζ ∗

n , one gets random variables τ and τ ∗ of law ζn and
ζ ∗
n such that P(τ �= τ ∗) is close to ‖ζn − ζ ∗

n ‖TV. Using τ and τ ∗ to construct M

and M∗ yields an admissible couple (M,M∗) such that {M �= M∗} ⊂ {τ �= τ ∗}.
This proves part (i).

As regards part (ii), recall that Sn(k) denotes the number of particles of type k

at time n and that

Sn+1(k) = Sn(k) +
Sn(k−1)∑

x=1

Zx.

Thus, P(tn+1 = k) involves Sn(k), Sn(k −1) and Sn+1. Replacing Sn+1 by Sn/q in
this recursion relation yields, owing to the lemmas of Section 4, error terms which
involve A(Sn) and which can be controlled. More precisely,

E

(
Sn+1(k)

Sn+1

∣∣∣Fn

)
= (

p + A(Sn)
)Sn(k)

Sn

+ (
q − A(Sn)

)Sn(k − 1)

Sn

.

Integrating this, one gets

P(tn+1 = k) = pP(tn = k) + qP(tn = k − 1) + E(Vn(k)),(11)

where Vn(k) is an error term defined by

SnVn(k) := A(Sn)
(
Sn(k) − Sn(k − 1)

)
.

The mean field version t∗n solves

P(t∗n+1 = k) = pP(t∗n = k) + qP(t∗n = k − 1).

Finally, note that ∑
k≥0

|Sn(k) − Sn(k − 1)| ≤ 2Sn.

This implies that

‖ζn+1 − ζ ∗
n+1‖TV ≤ ‖ζn − ζ ∗

n ‖TV + E(A(Sn)).

This proves part (ii) with � := 2h+/q0.
Turning to part (iii), pick a nondecreasing function ϕ. Then (11) yields

the recursion

E
(
ϕ(t∗n+1) − ϕ(tn+1)

)
(12)

= E(Wn(ϕ)) + pE
(
ϕ(t∗n ) − ϕ(tn)

) + qE
(
ϕ(t∗n + 1) − ϕ(tn + 1)

)
,
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with

Wn(ϕ) := − ∑
k≥0

ϕ(k)Vn(k).

Abel’s transform yields

SnWn(ϕ) = A(Sn)
∑
k≥0

(
ϕ(k + 1) − ϕ(k)

)
Sn(k) ≥ 0.

Finally, if t∗n dominates tn stochastically, all the terms of the right-hand side of (12)
are nonnegative. Hence,

E(ϕ(t∗n+1)) ≥ E(ϕ(tn+1)).

This proves that t∗n+1 dominates tn+1 stochastically.

APPENDIX

On the harmonic means of branching processes. We study the behavior
of E(S−1

n ), where (Sn)n≥0 denotes the homogeneous branching process of
reproducing law (pk)k≥1, starting from a deterministic S0 ≥ 1. We assume that
p1 �= 0 and p1 �= 1, and we denote by L ≥ 1 an integer-valued random variable of
law (pk)k≥1. For |t| ≤ 1 and n ≥ 0, let

f (t) := E(tL), fn(t) := E
(
tSn

)
.

Let m := E(L), with the convention that m−1 := 0 is L is not integrable. Introduce

r := max{p1,m
−1}.

Finally, let Pγ denote the law of (Sn)n≥0 when pk := γ (1 − γ )k−1, and P
ε the law

of (Sn)n≥0 when p1 := 1 − ε and p2 := ε.

REMARK A.1. The random variable L plays the role of 1 + Z in the iBMP
context. Thus, m corresponds to 1 + λ = 1/p, and p1 in the Appendix is p0 in the
rest of the paper and so on.

A.1. Results. Joffe (1993) mentions, as an unpublished result, the fact that,
for any a > 0,

E(S−a
n ) ≤ cun for any u > max{p1,m

−a},
where c is independent of n. In the same vein, Athreya (1994) shows that,
if p1m

a > 1, then

p−n
1 E(S−a

n |S0 = 1)

is a nondecreasing sequence that converges to a finite limit∫ 1

0
g(t)| log t|a−1 dt

t
.
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Here, g is the unique solution on [0; 1) of the functional equation

g(f (t)) = p1g(t), g(0) = 0, g′(0+) = 1, g(t) �= 0 for t �= 0.

We refine the Athreya–Joffe bounds, mainly for the first moment of S−1
n .

The emphasis is put on explicit and nonasymptotic bounds, as well as on the
dependence of the bounds on S0. Athreya and other authors deal with the
case S0 = 1; see Remark A.4.

PROPOSITION A.2. Let n∗ := n + 1 if p1 = m−1 and S0 = 1, and n∗ := 1
otherwise.

(i) E(S−1
n ) ≥ m−n/S0.

(ii) There exists κ , independent of n and S0, such that

E(S−1
n ) ≤ κn∗rn/S0.

REMARK A.3. The apparition of n in the upper bound when p1 = m−1 and
S0 = 1 is not due to an artifact of our proof, as the example of Pγ shows; see
Proposition A.7 and Remark A.4.

REMARK A.4. After the completion of this paper, we discovered that the
harmonic moments of supercritical branching processes are not an entirely new
subject, owing to the historical notes in a recent preprint that we ran into by Ney
and Vidyashankar (2001).

According to these authors, Heyde and Brown (1971) conjectured that E(S−1
n ) is

equivalent to a multiple of m−n in some cases, and they found a case where
E(S−1

n ) is equivalent to a multiple of nm−n (apparently our Pγ ). Pakes (1975)
established that E(S−1

n ) is equivalent to a multiple of r−n when p1 �= m−1

and L logL is integrable, and he conjectured the case p1 = m−1. Ney and
Vidyashankar settled the case p1 = m−1 and they recovered the case p1 �= m−1,
both results under the weaker assumption that L is integrable. Additionally, they
found the exact equivalent of E(S−i

n ) for any i > 0.
All these authors assume that S0 = 1. As a consequence, they miss the fact that

the degeneracy of the case p1 = m−1 and S0 = 1, namely that the exact equivalent
of E(S−1

n ) is a multiple of nrn and not a multiple of rn, disappears when S0 ≥ 2.
For the higher moments of S−1

n , see Section A.2.

Below, we trade the mostly unspecified constant κ of Proposition A.2 against
nonoptimal geometric terms. For instance, from Proposition A.5,

(1 + ε)−n/S0 ≤ E
ε(S−1

n ) ≤ (1 − ε/2)n/S0.

PROPOSITION A.5. E(S−1
n ) ≤ E(L−1)n/S0.
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The comparison of P with Pγ yields additional upper bounds. Proposition A.6
compares P to P

ε to Pγ and Proposition A.7 solves the case Pγ .

PROPOSITION A.6. One has f ≤ f ε ≤ fγ for ε = 1 −p1 and γ = 1/(1 + ε).
Hence, starting from the same S0,

E(S−1
n ) ≤ E

ε(S−1
n ) ≤ Eγ (S−1

n ).

PROPOSITION A.7. The sequence of general term bn
γ := Eγ (S−1

n )/γ n is

increasing and starts from b0
γ = 1/S0. If S0 ≥ 2, bn

γ → 1/(S0 − 1). If S0 = 1,
bn
γ ∼ n log(1/γ ), since

Eγ (S−1
n ) = log(1/γ n)γ n/(1 − γ n).

COROLLARY A.8. If S0 ≥ 2,

E(S−1
n ) ≤ (2 − p1)

−n/(S0 − 1).

If S0 = 1,

E(S−1
n ) ≤ (2 − p1)

−n(2 − p1)/(1 − p1).

In Corollary A.8, the order of magnitude of the upper bound when n → ∞ is not
correct when (2 − p1)

−1 > r . The exception is P
ε, for which we get surprisingly

tight estimates.

COROLLARY A.9. Let dn
ε := (1 + ε)nE

ε(S−1
n ). If S0 ≥ 2,

1/S0 ≤ dn
ε ≤ 1/(S0 − 1) ≤ 2/S0.

If S0 = 1,

1 ≤ dn
ε ≤ 1 + ε−1,

and the limit of dn
ε when n → ∞ is greater than 1

2 (1 + ε−1). Thus, for any S0 ≥ 1,

(1 + ε)−n/S0 ≤ E
ε(S−1

n ) ≤ (1 + ε−1)(1 + ε)−n/S0.

REMARK A.10. For general laws, there is a gap between our upper and lower
bounds when p1 > m−1. In that case, Athreya’s result shows that E(S−1

n )/pn
1

converges to a finite limit when S0 = 1. However, the refinement of (i) into

E(S−1
n ) ≥ cpn

1/S0

cannot hold with any absolute constant c, as the example of P = 1
2(δ1 + δN2) and

S0 = N shows, when N → ∞ (we leave the details to the reader). We mention
without proof the following results. One always has

E(S−1
n ) ≥ p

nS0
1 , E(S−1

n ) ≥ m−n/S0.
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On the other hand, if p
S0
1 > m−1, E(S−1

n ) ≤ cc
S0
1 p

nS0
1 , and, if p

S0
1 < m−1,

E(S−1
n ) ≤ c′m−n. Thus, as n → ∞,

n−1 logE(S−1
n ) → r(S0) := max{pS0

1 ,m−1}.

A.2. Higher moments. We mention without proof that the same techniques
apply to moments of higher orders. Using the concavity of the function of t > 0
defined by

k∏
i=1

(t−1/k + ci)
−1

for any nonnegative ci , one can prove that

E(S−k
n |S0) ≤ S−k

0 E(S−k
n |S0 = 1),

E
(
ek(Sn)

−1|S0
) ≤ ek(S0)

−1
E(S−k

n |S0 = 1).

The comparison with Pγ uses the moments of ek(Sn)
−1 for S0 = 1. These are such

that, for any k ≥ 2,

Eγ

(
ek(Sn)

−1|S0 = 1
) ∼ γ n/(k − 2)!.

For k = 2, the “∼” sign can be replaced by a “≤” sign. Thus, for instance,

E
((

Sn(Sn + 1)
)−1) ≤ (2 − p1)

−n/S2
0 .

A.3. PCR. Some general comments are in order, as regards the applications
of these bounds in the PCR or iBMP context. First, the PCR reaction involves P

ε.
For a general P, the iterations of our proof of iBMP bounds always converge. They
yield bounds on the order of αn if and only if α > r , where

α := 1 − (1 − m−1)µ/β,

and where µ and β in (0; 1) are parameters of the model that are independent of
the branching process generated by the offspring. See Piau (2001) for the infinite-
target limit and Piau (2002) for the finite-target case when P = P

ε, and the rest of
the present paper for a general P. Thus, for P

ε, the domain of validity of the αn

bounds is exactly µ < β . For a general P, if one uses a bound of the form

E(S−1
n ) ≤ κρn/S0,

the domain of validity of our PCR-like bounds on the order of αn is α > ρ. Thus,
from Proposition A.2, a necessary condition is α > r , that is,

µ < β(1 − r)/(1 − m−1).

This condition is met if µ < (1 − p1)β .
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On the other hand, Proposition A.5 and Corollary A.8 allow for explicit values
of κ . Since the iBMP bounds involve κ , one would prefer to use these. Starting
from Corollary A.8, the condition becomes

µ < β
(
1 − (2 − p1)

−1)
/(1 − m−1),

which is satisfied if µ < 1
2(1 − p1)β . This is the meaning of Remark 14

in Section 6.

A.4. Technicalities. We start with simple convexity considerations. Proposi-
tion A.5 is part (ii) of Lemma A.11. Then we define the orbit of a given point
under the action of f . Lemma A.13 provides estimates of this orbit.

LEMMA A.11. (i) E(L)−1S−1
n ≤ E(S−1

n+1|Sn) ≤ E(L−1)S−1
n .

(ii) m−nS−1
0 ≤ E(S−1

n ) ≤ E(L−1)nS−1
0 .

(iii) E(S−1
n |S0) ≤ S−1

0 E(S−1
n |S0 = 1).

DEFINITION A.12. Let a0 ∈ (0; 1) and let (ak)k∈Z denote the orbit of a0 with
respect to the action of f , that is,

ak := f (k)(a0),

where f (k) denotes the composition of f with itself k times if k ≥ 1, and the
composition of the inverse of f with itself (−k) times if k < 0.

Since f (t) < t for t ∈ (0; 1), (ak)k is decreasing, ak → 0 when k → +∞ and
ak → 1 when k → −∞.

LEMMA A.13. (i) For any k ≥ 0, ak ≥ a0p
k
1 and 1 − a−k ≥ (1 − a0)m

−k .
(ii) For any k ≥ 0, ak ≤ c1p

k
1, where c1 depends only on p1.

(iii) For any q > m−1, 1 − a−k ≤ qk for k large enough.
(iv) If L is square integrable, for any k ≥ 0, 1 − a−k ≤ c2m

−k , where
c2 depends only on m and E(L2).

(v) If L logL is integrable, for any k ≥ 0, 1 − a−k ≤ c3m
−k , where c3 depends

only on the law of L.

Careful computations give c1 ≤ e2/p1 in (i) of Lemma A.13. Part (v) is given in
Athreya and Ney (1972) and we omit the proof.

A.5. Proofs.

PROOF OF LEMMA A.11. Let Li denote i.i.d. copies of L. Conditionally on
{Sn = S}, Sn+1 follows the law of L1 + · · · + LS . Since t−1 is a convex function
of t > 0,

E(S−1
n+1|Sn = S) ≥ E(Sn+1|Sn = S)−1 = S−1

E(L)−1.
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On the other hand, (t−1 + c)−1 is a concave function of t > 0, for any c > 0.
For any i.i.d. random variables Yi and Y , applying this to t = Y−1

i successively
from i = 1 to i = S, one gets

E
(
(Y1 + · · · + YS)−1) ≤ E(Y−1)S−1.(A.1)

For Yi := Li , (A.1) implies (i), hence (ii). Let Si denote i.i.d. copies of Sn

when S0 = 1. Conditionally on {S0 = S}, Sn follows the law of S1 + · · · + SS .
For Yi := Si , (A.1) implies (iii). �

PROOF OF LEMMA A.13. Part (i) stems from

f (t) ≥ p1t, 1 − f (t) ≤ m(1 − t).

As regards (ii), we first prove that, for any q > p1, ak ≤ qk for k large
enough. To see this, note that f (t) ∼ p1t when t → 0 implies that, for any
p1 < q ′ < q , f (t) ≤ q ′t for s small enough and that ak+1 ≤ q ′ak for k large enough
since ak → 0.

Using this first step and the inequality f (t) ≤ p1t + (1 − p1)t
2, one gets, for

any q > p1,

ak+1 ≤ p1ak + (1 − p1)a
2
k ≤ p1ak + (1 − p1)q

2k

for k large enough. Iterating this,

ak ≤ p
k−k0
1 ak0 + (1 − p1)

k−1∑
i=k0

pk−1−i
1 q2i .

If q <
√

p1, the sum is bounded by a multiple of pk
1; hence, (i) holds for k large

enough. Changing the value of c1 yields (i) for any k ≥ 0.
Starting from 1 − f (t) ∼ m(1 − t) when t → 1, the proof of (iii) is similar to

the first step of (ii). The proof of (iv) is similar to the second step of (ii), as follows.
From f ′′ ≤ f ′′(1) = E(L(L − 1)) =: 2v2 and f ′(1) = m, one gets

1 − f (t) ≥ m(1 − t) − v2(1 − t)2.

Setting bk := 1 − a−k , this implies

bk−1 = f (bk) ≥ mbk − v2b2
k .

Hence, for any q > m−1,

bk ≤ m−1bk−1 + v2m−1b2
k ≤ m−1bk−1 + v2m−1q2k

for k large enough. Iterating this and choosing q < 1/
√

m yields (iv). �

PROOF OF PROPOSITION A.2. Part (i) stems from (ii) of Lemma A.11.
As regards (ii), by a truncation argument, one can assume that L logL is integrable.
From (iii) of Lemma A.11, it is enough to consider the case S0 = 1. Then

E(S−1
n ) =

∫ 1

0
fn(t)

dt

t
= ∑

k∈Z

Ak,
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where

Ak :=
∫ ak

ak+1

fn(t)
dt

t
.

We denote by B+, B0 and B− the sums of Ak for k ≥ 0, −n ≤ k ≤ 0 and k ≤ −n,
respectively. Since fn(t)/t is nondecreasing, for any k,

Ak ≤ fn(ak)a
−1
k (ak − ak+1).

Since S0 = 1, fn(ak) = f0(f
(n)(ak)) = ak+n. Hence,

Ak ≤ ak+na
−1
k (ak − ak+1).

If k ≥ 0, from (ii) of Lemma A.13 and from the fact that ak+1 ≥ p1ak,

B+ ≤ ∑
k≥0

c1(1 − p1)p
k+n
1 = c1p

n
1 .

If k ≤ 0, a−1
k ≤ a−1

0 and ak − ak+1 ≤ 1 − ak+1 ≤ c3m
k from (v) of Lemma A.13.

If k ≤ −n, ak+n ≤ 1, then

B− ≤ ∑
k≤−n

a−1
0 c3m

k = cm−n.

If k ≥ −n, ak+n ≤ c1p
k+n
1 . Thus,

B0 ≤ ∑
−n≤k≤0

a−1
0 c3c1p

k+n
1 mk.

If p1 �= m−1, B0 is bounded above by a multiple of the largest of pn
1 and m−n.

If p1 = m−1 = r , B0 is bounded above by a multiple of nrn. This proves (ii)
when S0 = 1.

Finally, if p1 = m−1 = r and S0 ≥ 2, from fn(ak) ≤ a2
k+n and the fact

that fn(t)/t2 is nondecreasing,

Ak ≤ a2
k+na

−2
k (ak − ak+1).

The method above then shows that B+, B0 and B− are bounded by multiples
of r2n, r2n and rn, respectively. Thus, the result holds for S0 = 2. For any S0 ≥ 2,
Sn is stochastically greater than the sum of S0/2 i.i.d. copies of Sn conditioned
by S0 = 2. The result obtains from the analogue of (iii) in Lemma A.11. �

PROOF OF PROPOSITIONS A.6 AND A.7. One uses the following relations:

f ε(t) = (1 − ε)t + εt2, fγ ◦ fγ ′ = fγγ ′,

fγ (t) = γ t

1 − (1 − γ )t
, E(S−1

n ) =
∫ 1

0
fn(t)

dt

t
.
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Since f
(n)
γ = fγ n , the change of variable t → u := f

(n)
γ (t) yields

Eγ (S−1
n ) =

∫ t=1

t=0
uS0

dt

t
= γ n

∫ u=1

u=0
uS0−1 du

w(u)
,

where w(u) := γ n + (1 − γ n)u. An exact computation then yields the case S0 = 1
of Proposition A.7, and the bound w(u) ≥ u yields the case S0 ≥ 2. �

PROOF OF COROLLARY A.8. The S0 ≥ 2 part stems from Propositions
A.6 and A.7. Writing ES for E(·|S0 = S), the S0 = 1 part stems from

E1(S
−1
n+1) = ∑

k≥1

pkEk(S
−1
n ) ≤ p1E1(S

−1
n ) + (1 − p1)E2(S

−1
n ),

since Ek(S
−1
n ) ≤ E2(S

−1
n ) for any k ≥ 2, and from E2(S

−1
n ) ≤ (2 − p1)

−n. �
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