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OCCUPATION DENSITIES FOR SPDEs WITH REFLECTION1

BY LORENZO ZAMBOTTI

Scuola Normale Superiore di Pisa and Universität Bielefeld

We consider the solution (u,η) of the white-noise driven stochastic
partial differential equation with reflection on the space interval [0,1]
introduced by Nualart and Pardoux, where η is a reflecting measure on
[0,∞) × (0,1) which forces the continuous function u, defined on [0,∞) ×
[0,1], to remain nonnegative and η has support in the set of zeros of u. First,
we prove that at any fixed time t > 0, the measure η([0, t]× dθ) is absolutely
continuous w.r.t. the Lebesgue measure dθ on (0,1). We characterize the
density as a family of additive functionals of u, and we interpret it as a
renormalized local time at 0 of (u(t, θ))t≥0. Finally, we study the behavior
of η at the boundary of [0,1]. The main technical novelty is a projection
principle from the Dirichlet space of a Gaussian process, vector-valued
solution of a linear SPDE, to the Dirichlet space of the process u.

1. Introduction. We are concerned with the solution (u, η) of the stochastic
partial differential equation with reflection of the Nualart–Pardoux type, see [9],



∂u

∂t
= 1

2

∂2u

∂θ2
+ ∂2W

∂t ∂θ
+ η(t, θ),

u(0, θ) = x(θ), u(t,0) = u(t,1) = 0,

u ≥ 0, dη ≥ 0,

∫
udη = 0,

(1)

where u is a continuous function of (t, θ) ∈ O := [0,+∞) × [0,1], forced
to remain nonnegative by the positive measure η on O := [0,+∞) × (0,1),
x : [0,1] �→ [0,∞) and {W(t, θ) : (t, θ) ∈ O} is a Brownian sheet. We denote by ν

the law of a Bessel bridge (eθ )θ∈[0,1] of dimension 3 between 0 and 0; see [10].
The main aim of this paper is to prove the following properties of the reflecting

measure η:

1. For all t ≥ 0, the measure η([0, t], dθ) is absolutely continuous with respect to
the Lebesgue measure dθ on (0,1),

η([0, t], dθ) = η([0, t], θ) dθ.(2)
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The process (η([0, t], θ))t≥0, θ ∈ (0,1), is an additive functional of u,
increasing only on {t :u(t, θ) = 0}, with Revuz measure

1

2
√

2πθ3(1 − θ)3
ν
(
dx|x(θ) = 0

)
.(3)

2. For all t ≥ 0,

η([0, t], θ) = 3

4
lim
ε↓0

1

ε3

∫ t

0
1[0,ε](u(s, θ)) ds,(4)

in probability.
3. There exists a family of additive functionals of u, (la(·, θ))a∈[0,∞),θ∈(0,1), such

that la(·, θ) increases only on {t :u(t, θ) = a} and such that the following
occupation times formula holds for all F ∈ Bb(R):∫ t

0
F(u(s, θ)) ds =

∫ ∞
0

F(a)la(t, θ) da, t ≥ 0.(5)

4. For all t ≥ 0,

η([0, t], θ) = 1

4
lim
a↓0

1

a2 la(t, θ)(6)

in probability.
5. For all t ≥ 0 and a ∈ (0,1),

lim
ε↓0

√
ε

∫ a

0

(
1 ∧ θ

ε

)
η([0, t], dθ) =

√
2

π
t(7)

and symmetrically,

lim
ε↓0

√
ε

∫ 1

a

(
1 ∧ 1 − θ

ε

)
η([0, t], dθ) =

√
2

π
t,(8)

in probability.

Recall that if B is a linear Brownian motion and (X,L) is the unique continuous
solution of the Skorohod problem

dX = dB + dL, X(0) = x ≥ 0, L(0) = 0,

X ≥ 0, t �→ L(t) nondecreasing,
∫ ∞

0
X(t) dL(t) = 0,

then it turns out that 2L is the local time of X at 0 and

L(t) = 1

2
lim
ε→0

1

ε

∫ t

0
1[0,ε](X(s)) ds.(9)

In the infinite-dimensional equation (1), the reflecting term η is a random measure
on space-time. In [12], the following decomposition formula was proved:

η(ds, dθ) = δr(s)(dθ)η
(
ds, (0,1)

)
,(10)
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where δa is the Dirac mass at a ∈ (0,1) and r(s) ∈ (0,1), for η(ds, (0,1))-a.e. s,
is the unique r ∈ (0,1) such that u(s, r) = 0. This formula was used in [12] to
write equation (1) as the following Skorohod problem in the infinite-dimensional
convex set K0 of continuous nonnegative x : [0,1] �→ [0,∞):

du = 1

2

∂2u

∂θ2 dt + dW + 1

2
n(u) · dL,

interpreting the set of x ∈ K0 having a unique zero in (0,1) as the boundary of K0,
the increasing process t �→ Lt := 2η([0, t], (0,1)) as the local time of u at this
boundary and the measure n(u) = δr(s) as the normal vector field to this boundary
at u(s, ·).

On the other hand, the absolute-continuity result (2) suggests an interpretation
of η as sum of reflecting processes t �→ η([0, t], θ), each depending only
on (u(t, θ))t≥0 and increasing only on {t :u(t, θ) = 0}. Therefore, by (2)
equation (1) can also be interpreted as the following infinite system of one-
dimensional Skorohod problems, parametrized by θ ∈ (0,1) and coupled through
the interaction given by the second derivative w.r.t. θ :



u(t, θ) = x(θ) + 1

2

∫ t

0

∂2u

∂θ2 (s, θ) ds + ∂W

∂θ
(t, θ) + η([0, t], θ),

u(t,0) = u(t,1) = 0,

u ≥ 0, η(dt, θ) ≥ 0,

∫ ∞
0

u(t, θ)η(dt, θ) = 0 ∀ θ ∈ (0,1),

(11)

see (49). This interpretation is reminiscent of the result of Funaki and Olla in [6],
where the equilibrium fluctuations around the hydrodynamic limit of a particle
system with reflection on a wall are proved to be governed by the SPDE (1).

By (5), (u(t, θ))t≥0 admits for all a ≥ 0 a local time at a, (la(t, θ))t≥0. However,
by (6), the reflecting term η([0, ·], θ) which appears in (11) is not proportional
to l0(·, θ), which in fact turns out to be identically 0, and is rather a renormalized
local time. The necessity of such renormalization is linked with the unusual
rescaling of (4). These two properties of η seem to be significant differences w.r.t.
the finite-dimensional Skorohod problems.

The formulae (7) and (8) give information about the behavior of η near the
boundary of [0,1]. In particular, (7) and (8) prove that for any t > 0 and any initial
condition x, the mass of η on [0, t]× (0,1) is infinite. This solves a problem posed
by Nualart and Pardoux in [9]. Notice also that the right-hand sides of (7) and (8)
are independent of the initial condition x.

In [12] it was proved that for all I ⊂⊂ (0,1), the process t �→ η([0, t] × I ),
where η is the reflecting term of (1), is an additive functional of u, with Revuz
measure

1

2

∫
I

1√
2πθ3(1 − θ)3

ν
(
dx|x(θ) = 0

)
dθ.(12)
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At a heuristic level, the information given by the formulae (2), (4) and (6)–(8) are
already contained in (12) and in the properties of the invariant measure ν of u: for
instance, if the limit in the right-hand side of (4) exists for all θ ∈ (0,1), then, by
the properties of ν, the Revuz-measure of the limit is (3) and, therefore, (2) holds
by (12) and by the injectivity of the Revuz-correspondence.

However, the existence of such limit is not implied by the structure of (12)
alone. According to the theory of Dirichlet forms, a sufficient condition for the
convergence of a family of additive functionals of a Markov process, as for
instance in (4), is the convergence in the Dirichlet space of the corresponding
one-potentials; see Chapter 5 of [4]. In our case, this amounts to introduce the
potentials

Uε(x) := 3

4

∫ ∞
0

e−t 1

ε3 E
[
1[0,ε](u(s, θ))

]
ds,

where x : [0,1] �→ [0,∞) is continuous and u is the corresponding solution of (1),
and to prove that Uε has a limit as ε → 0 with respect to the Dirichlet form
in L2(ν),

E(ϕ,ψ) := 1
2

∫
〈∇ϕ,∇ψ〉dν, ϕ,ψ ∈ W 1,2(ν),

where ∇ and 〈·, ·〉 denote, respectively, the gradient and the canonical scalar
product in H := L2(0,1). Indeed, as proved in [12], u is the diffusion properly
associated with E in L2(ν).

However, due to the strong irregularity of the reflecting measure η in (1), a direct
computation of the norm of the gradient of Uε seems to be out of reach. In order to
overcome this difficulty, we take advantage of a connection between equation (1)
and the following R3-valued linear SPDE with additive white-noise:



∂z3

∂t
= 1

2

∂2z3

∂θ2
+ ∂2W 3

∂t ∂θ
,

z3(t,0) = z3(t,1) = 0,

z3(0, θ) = x(θ),

(13)

where x ∈ H 3 and W 3 is the R3-valued Gaussian process whose components are
three independent copies of W . The process z3 is also called the R3-valued random
string (see [5] and [8]) and is the diffusion properly associated with the Dirichlet
form in L2(µ3),


3(F,G) := 1
2

∫
H 3

〈∇F,∇G〉H 3 dµ3, F,G ∈ W 1,2(µ3),

where µ3 is the law in H 3 of a standard R3-valued Brownian bridge, and
∇F :H 3 �→ H 3 is the gradient of F in H 3; see [1] and [11]. Then, in [12] it was
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noticed that the Dirichlet form E is the image of 
3 under the map �3 :H 3 �→ H ,
�3(y)(θ) := |y(θ)|R3 , that is, ν is the image µ3 under �3 and

W 1,2(ν) = {ϕ ∈ L2(ν) :ϕ ◦ �3 ∈ W 1,2(µ3)},
E(ϕ,ψ) = 
3(ϕ ◦ �3,ψ ◦ �3) ∀ϕ,ψ ∈ W 1,2(ν).

This connection involves directly the Dirichlet forms E and 
3, but not the
corresponding processes. In particular, it does not imply that u is equal in law
to |z3|. Nevertheless, in this paper we prove that this connection gives a useful
projection principle from W 1,2(µ3) onto W 1,2(ν) and that, in particular, the
convergence in W 1,2(µ3) of the one-potentials of z3

Uε(x) := 3

4

∫ ∞
0

e−t 1

ε3 E
[
1[0,ε]

(|z3(s, θ)|)]ds,

as ε → 0, implies the convergence of the one-potentials Uε of u in W 1,2(ν),
and therefore, that (4) holds. Also, the formulae (6)–(8) are proved similarly.
Therefore, precise and nontrivial information about u can be obtained from the
study of the Gaussian process z3.

We recall that an analogous connection has been proved in [13] to hold between
the Rd -valued solution of a linear white-noise driven SPDE, d ≥ 4, and the
solution of a real-valued nonlinear white-noise driven SPDE with a singular drift.

The paper is organized as follows. Section 2 contains the main definitions
and the preliminary results on potentials of the random string in dimension 3.
In Section 3 the occupation densities and the occupation times formula (5) are
obtained for the SPDE with reflection (1). The main results, together with some
corollaries, are then proved in Section 4.

2. The three-dimensional random string. We denote by (gt (θ, θ ′) : t > 0,

θ, θ ′ ∈ (0,1)) the fundamental solution of the heat equation with homogeneous
Dirichlet boundary condition, that is,



∂g

∂t
= 1

2

∂2g

∂θ2
,

gt (0, θ ′) = gt (1, θ ′) = 0,

g0(θ, ·) = δθ ,

where δa is the Dirac mass at a ∈ (0,1). Moreover, we set H := L2(0,1) with the
canonical scalar product 〈·, ·〉 and norm ‖ · ‖, K0 := {x ∈ H :x ≥ 0},

C0 := C0(0,1) := {c : [0,1] �→ R continuous, c(0) = c(1) = 0},

A :D(A) ⊂ H �→ H, D(A) := W 2,2 ∩ W
1,2
0 (0,1), A := 1

2

d2

dθ2 ,
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and for all Fréchet differentiable F :H �→ R we denote by ∇F :H �→ H the
gradient in H . We set O := [0,+∞) × (0,1) and O := [0,+∞) × [0,1]. We
denote by (etA)t≥0 the semigroup generated by A in H , that is,

etAh(θ) :=
∫ 1

0
gt (θ, θ ′)h(θ ′) dθ ′, h ∈ H.

Let W be a two-parameter Wiener process defined on a complete probability space
(�,F ,P), that is, a Gaussian process with zero mean and covariance function

E[W(t, θ)W(t ′, θ ′)] = (t ∧ t ′)(θ ∧ θ ′), (t, θ), (t ′, θ ′) ∈ O.

Let W 3 := (W
i

3)i=1,2,3 be a R3-valued process, whose components are three
independent copies of W , defined on (�,F ,P). We denote by Ft the σ -field
generated by the random variables (W(s, θ) : (s, θ) ∈ [0, t] × [0,1]).

We set for x ∈ H 3 = L2((0,1);R3),

w3(t, θ) :=
∫ t

0

∫ 1

0
gt−s (θ, θ ′)W 3(ds, dθ ′),

z3(t, θ) := etAx(θ) + w3(t, θ), Z3(t, x) := z3(t, ·).
Then z3 is the unique solution of the R3-valued linear SPDE with additive
white-noise (13) above, with x ∈ H 3. The process z3 is also called the R3-valued
random string; see [5] and [8]. Recall that the law of Z3(t, x) is the Gaussian mea-
sure N (etAx,Qt) on H 3, with mean etAx and covariance operator Qt :H 3 �→ H 3:

Qth(θ) =
∫ 1

0
qt(θ, θ ′) h(θ ′) dθ ′,(14)

for all t ∈ [0,∞], θ ∈ (0,1), h ∈ H 3, where

qt(θ, θ ′) :=
∫ t

0
g2s(θ, θ ′) ds, t ∈ [0,∞], θ, θ ′ ∈ (0,1).(15)

Recall that A has complete orthonormal system {εk}k of eigenvectors in H ,

εk(θ) := √
2 sin(πkθ), θ ∈ [0,1], Aek = −(πk)2

2
εk, k ∈ N.(16)

We denote by (β(θ))θ∈[0,1] a three-dimensional standard Brownian bridge and
by µ3, the law of β . Recall that µ3 is equal to the Gaussian measure N (0,Q∞)

on H 3, Q∞ = (−2A)−1, and

q∞(θ, θ ′) = θ ∧ θ ′ − θθ ′.(17)

We set also for all t ∈ [0,∞), θ, θ ′ ∈ (0,1),

qt (θ, θ ′) :=
∫ ∞
t

g2s(θ, θ ′) ds = q∞(θ, θ ′) − qt (θ, θ ′).(18)
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Recall that Z3 is the diffusion associated with the Dirichlet form in L2(µ3),


3(F,G) := 1
2

∫
H 3

〈∇F,∇G〉H 3 dµ3, F,G ∈ W 1,2(µ3),

where ∇F :H 3 �→ H 3 is the gradient of F in H 3; see [1] and [11]. For all
f :H 3 �→ R bounded and Borel and for all x ∈ H 3, we set

P3(t)f (x) := E
[
f

(
Z3(t, x)

)]
, t ≥ 0,

R3(1)f (x) :=
∫ ∞

0
e−tP3(t)f (x) dt.

Since Z3(t, x) ∈ (C0)
3 a.s. for all t > 0 and all x ∈ H 3, then R3(1)f is

unambiguously defined also for f : (C0)
3 �→ R bounded and Borel.

The main result of this section is the following:

PROPOSITION 1.

1. For all θ ∈ (0,1), a ∈ R3, the function U
θ,a
3 :H 3 �→ R,

U
θ,a
3 (x) :=

∫ ∞
0

e−t 1

(2πqt(θ, θ))3/2
exp

(
−|etAx(θ) − a|2

2qt(θ, θ)

)
dt,(19)

is well defined and belongs to Cb(H
3) ∩ W 1,2(µ3). If (an, θn) → (a, θ) ∈

R3 × (0,1), then

lim
n→∞

∫
H 3

[|Uθn,an

3 − U
θ,a
3 |2 + ‖∇U

θn,an

3 − ∇U
θ,a
3 ‖2]

dµ3 = 0.(20)

Moreover, (θ3/2(1 − θ)3/2U
θ,a
3 )θ∈(0,1), a∈R3 is uniformly bounded, that is,

sup
θ∈(0,1), a∈R3

θ3/2(1 − θ)3/2 sup
x∈H 3

U
θ,a
3 (x) < ∞.(21)

2. Set γ θ (x) := |x(θ)|/√θ , x ∈ (C0)
3. Then �θ

3 := R3(1)γ θ converges to
√

8/π

in W 1,2(µ3) as θ → 0 or θ → 1.

PROOF. Let ω3 := 4π/3, and recall that ω3 is the Lebesgue measure of
{α ∈ R3 : |α| ≤ 1}. If λ ∈ R, we denote by λ · I the linear application R3 � α �→
λ · α ∈ R3.

Step 1. Let x ∈ H 3 be fixed. Notice that z3(t, θ) has law N (etAx(θ), qt (θ,

θ) · I ), where qt(θ, θ) is defined as in (15). We denote by (Gt(a, b) : t, a, b > 0)

the fundamental solution of the heat equation on (0,+∞) with homogeneous
Dirichlet boundary condition at {0}. By the reflection principle we have the explicit
representation

Gt(a, b) = 1√
2πt

exp
(
−(a − b)2

2t

)(
1 − exp

(
−2ab

t

))
.
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We set τθ := inf{t > 0 : θ + Bt ∈ {0,1}}, θ ∈ (0,1). Then we have

gt (θ, θ ′) = Gt(θ, θ ′) − E
[
1(t>τθ ′ ,θ ′+Bτ

θ ′ =1)Gt−τθ ′ (θ,1)
]
.

Let c0 := 1 − exp(−1) ∈ (0,1). Then, for all t > 0 and a ≥ 0,

c0√
2πt

(
1 ∧ 2a2

t

)
≤ Gt(a, a) ≤ 1√

2πt

(
1 ∧ 2a2

t

)
.

For all θ ∈ [0,1] we have P(θ + Bτθ
= 1) = θ , since

θ = E
[
θ + Bτθ

]
= 0 · P

(
θ + Bτθ

= 0
) + 1 · P

(
θ + Bτθ

= 1
)

= P
(
θ + Bτθ

= 1
)
.

Let now θ ∈ [0,1/2]. Then∫ t

0
E

[
1(2s>τθ ,θ+Bτθ

=1)G2s−τθ
(θ,1)

]
ds

= E

[∫ (2t−τθ )+

0

1(θ+Bτθ
=1)

2
√

2πr
exp

(
−(θ − 1)2

2r

)(
1 − exp

(
−2θ

r

))
dr

]

≤ E
[
1(θ+Bτθ

=1)

] ∫ 2t

0

1

2
√

2πr
exp

(
−(θ − 1)2

2r

)(
1 − exp

(
−2θ

r

))
dr

≤ c1√
π

tθ2, c1 := sup
r>0

√
2

r3 exp
(
− 1

8r

)
< ∞.

For all t > 0 and θ ∈ [0,1/2] we obtain

qt (θ, θ) ≥
∫ t

0
G2s(θ, θ) ds − c1√

π
tθ2

≥
∫ t

0

c0

2
√

πs

(
1 ∧ θ2

s

)
ds − c1√

π
tθ2

= c0√
π

(
1(t≤θ2)

√
t + 1(θ2≤t)

(
2θ − θ2

√
t

))
− t

c1√
π

θ2

≥ 1√
π

(
c01(t≤θ2)

√
t + c01(θ2≤t)θ − c1tθ

2)
.

Let t0 := (c0/2c1) ∧ (c0/2c1)
2. If t ≥ t0, then qt(θ, θ) ≥ qt0(θ, θ). If t ≤ t0, then

θ

qt(θ, θ)
≤ √

π

(
θ√

t(c0 − c1
√

tθ2)
1(t≤θ2) + θ

θ(c0 − c1tθ)
1(θ2≤t)

)

≤ 2
√

π

c0

(
1√
t

+ 1
)
.
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By symmetry, we obtain that there exists C0 > 0 such that for all θ ∈ (0,1),(
θ(1 − θ)

qt (θ, θ)

)3/2

≤ C0

(
1

t3/4
∧ 1

)
, t > 0.(22)

Step 2. Fix θ ∈ (0,1). By (22), U
θ,a
3 is well defined and in Cb(H

3). Moreover,
for all x ∈ H 3,

θ3/2(1 − θ)3/2U
θ,a
3 (x)

=
∫ ∞

0
e−t

(
θ(1 − θ)

2πqt(θ, θ)

)3/2

exp
(
−|etAx(θ) − a|2

2qt(θ, θ)

)
dt

≤ C0

(2π)3/2

∫ ∞
0

e−t

(
1

t3/4 ∧ 1
)

dt < ∞,

so that (21) is proved. For all ε > 0, θ ∈ (0,1) and a ∈ R3, we set

f ε
θ,a(y) := 1

ω3ε
3 1(|y(θ)−a|≤ε), y ∈ (C0)

3.

Let x ∈ H 3. Then

R3(1)f ε
θ,a(x) =

∫ ∞
0

e−t 1

ω3ε
3 P

(|w3(t, θ) + etAx(θ) − a| ≤ ε
)
dt

=
∫ ∞

0
e−t 1

ω3ε3

∫
R3

1(|α|≤ε)N
(
etAx(θ) − a, qt (θ, θ) · I )

(dα) dt

=
∫ ∞

0
dt e−t 1

ω3ε
3

×
∫
(|α|≤ε)

1

(2πqt(θ, θ))3/2 exp
(
−|α − etAx(θ) + a|2

2qt(θ, θ)

)
dα(23)

= 1

ω3ε3

∫
(|α|≤ε)

[∫ ∞
0

e−t 1

(2πqt(θ, θ))3/2

× exp
(
−|α − etAx(θ) + a|2

2qt(θ, θ)

)
dt

]
dα

= 1

ω3ε
3

∫
(|α|≤ε)

U
θ,a+α
3 (x) dα.

By (22) and the dominated convergence theorem, we have that, for all (θ, a) ∈
(0,1) × R3,

lim
ε→0

R3(1)f ε
θ,a(x) = U

θ,a
3 (x) ∀x ∈ H 3,(24)

uniformly for x in bounded sets of H 3, and by (22),

|R3(1)f ε
θ,a(x)| ≤

∫ ∞
0

e−t 1

(2πqt(θ, θ))3/2 dt < ∞.(25)
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Step 3. We want to prove now that U
θ,a
3 is in W 1,2(µ3): to this aim we shall

prove that R3(1)f ε
θ,a converges to U

θ,a
3 in W 1,2(µ3). Recall that etA(C0) ⊆ C0 for

all t ≥ 0. We define for all x ∈ (C0)
3, a ∈ R3 \ {x(θ)},

Uθ,a

h
(x) := −

∫ ∞
0

e−t etAh(θ)

(2π)3/2(qt (θ, θ)2
ψ

((
etAx(θ) − a

)/√
qt(θ, θ)

)
dt

(26)

where ψ : R3 �→ R3, ψ(a) := a exp
(
−|a|2

2

)
.

By standard estimates on the Green function g, we obtain for all h ∈ H 3, t > 0 and
θ ∈ (0,1),

[∫ 1

0
|gt (θ, θ ′)|2 dθ ′

]1/2

≤ 1 ∧ (2θ/t)

t1/4 , |etAh(θ)| ≤ 1 ∧ (2θ/t)

t1/4 ‖h‖,(27)

so that∣∣∣∣ sup
‖h‖=1

Uθ,a

h
(x)

∣∣∣∣ ≤
∫ ∞

0

e−t

(qt (θ, θ))2t1/4

∣∣ψ((
etAx(θ) − a

)/√
qt(θ, θ)

)∣∣dt.

Since β has law µ3 = N (0,Q∞), then etAβ has law N (0, etAQ∞etA) =
N (0,Q∞ − Qt). Since |ψ| ≤ 1,

(
E

[∣∣∣∣ sup
‖h‖=1

Uθ,a

h
(β)

∣∣∣∣
2])1/2

≤
∫ ∞

0

e−t

(qt (θ, θ))2t1/4

(∫
R3

∣∣ψ(
α′/

√
qt(θ, θ)

)∣∣2N (
a, qt (θ, θ) · I )

(dα′)
)1/2

dt

≤
∫ ∞

0

e−t

(qt (θ, θ))2t1/4

{
1 ∧

[(
qt (θ, θ)

2πqt (θ, θ)

)3/4

‖ψ‖L2(R3)

]}
dt

≤ 1

(q1(θ, θ))3/4

∫ 1

0

1

(qt (θ, θ))5/4t1/4
dt + 1

(q1(θ, θ))2

∫ ∞
1

e−t dt,

so that by (22), we obtain, for all δ ∈ (0,1/2],

sup
a∈R3

sup
θ∈[δ,1−δ]

(
E

[∣∣∣∣ sup
‖h‖=1

Uθ,a

h
(β)

∣∣∣∣
2])1/2

< ∞.

Therefore, setting for µ3-a.e. x,

Uθ,a := −
∫ ∞

0
e−t gt (θ, ·)

(2π)3/2(qt (θ, θ))2 ψ
((

etAx(θ) − a
)/√

qt(θ, θ)
)
dt,
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we have that Uθ,a ∈ L2(H 3,µ3;H 3), and 〈Uθ,a, h〉 = Uθ,a

h
in L2(µ3), for

all h ∈ H 3. Arguing analogously, we have

(
E

[‖Uθ,a+α(β) − Uθ,a(β)‖2])1/2

≤
∫ ∞

0

e−t

(qt (θ, θ))2t1/4(28)

×
{

1 ∧
[(

qt(θ, θ)

2πqt(θ, θ)

)3/4∥∥ψ(· + α/
√

qt (θ, θ)
) − ψ

∥∥
L2(R3)

]}
dt

and by (22), we obtain, for all δ ∈ (0,1/2],
lim
α→0

sup
a∈R3

sup
θ∈[δ,1−δ]

(
E

[‖Uθ,a+α(β) − Uθ,a(β)‖2])1/2 = 0.(29)

Therefore, for all θ ∈ (0,1), we can differentiate under the integral sign in (23) and
obtain

∇R3(1)f ε
θ,a = 1

ω3ε3

∫
(|α|≤ε)

Uθ,a+α dα in L2(H 3,µ3;H 3).

Therefore, by (28),∫
H 3

‖∇R3(1)f ε
θ,a − Uθ,a‖2 dµ3

≤ 1

ω3ε3

∫
(|α|≤ε)

∫
H 3

‖Uθ,a+α − Uθ,a‖2 dµ3 dα → 0

as ε → 0, R3(1)f ε
θ,a converges to U

θ,a
3 in L2(µ3) and ∇R3(1)f ε

θ,a converges
to Uθ,a in L2(H 3,µ3;H 3) as ε → 0. Since W 1,2(µ3) is complete, then
U

θ,a
3 ∈ W 1,2(µ3), ∇U

θ,a
3 = Uθ,a in L2(H 3,µ3;H 3) and R3(1)f ε

θ,a converges to

U
θ,a
3 in W 1,2(µ3) as ε → 0. Moreover, by (29), for all δ ∈ (0,1/2],

lim
ε↓0

sup
a∈R3

sup
θ∈[δ,1−δ]

∫
H 3

‖∇R3(1)f ε
θ,a − ∇U

θ,a
3 ‖2 dµ3 = 0.(30)

Step 4. We want to prove (20). By the dominated convergence theorem the map
R3 × (0,1) � (a, θ) �→ U

θ,a
3 ∈ L2(µ3) is continuous. Notice now that

P3(t)f
ε
θ,a(x) =

∫
H 3

f ε
θ,a(y)N (etAx,Qt)(dy),

and by standard Gaussian computations we obtain, for all t > 0,

∇P3(t)f
ε
θ,a(x) =

∫
H 3

1

ω3ε3 1(|y(θ)−a|≤ε)[Q−1
t etA(y − etAx)]N (etAx,Qt)(dy).



202 L. ZAMBOTTI

Denoting by Tr the trace in H 3, by (16) we have, for all t > 0,[∫
H 3

‖Q−1
t etA(y − etAx)‖2N (etAx,Qt)(dy)

]1/2

= [
Tr[etAQ−1

t etA]]1/2

=
[

3
∞∑

k=1

(πk)2e−(πk)2t

1 − e−(πk)2t

]1/2

≤ √
3
[

π2e−π2t

1 − e−π2t
+

∫ ∞
1

(πk)2e−(πk)2t

1 − e−(πk)2t
dk

]1/2

≤ √
3
[

1

t
+ 1

t3/2

∫ ∞
1

(πk)2e−(πk)2

1 − e−(πk)2 dk

]1/2

≤ C(t−3/4 ∧ 1),

for some constant C > 0. Then we can write

∇R3(1)f ε
θ,a(x)

=
∫
(C0)

3

1

ω3ε3 1(|y(θ)−a|≤ε)

×
[∫ ∞

0
dt e−t [Q−1

t etA(y − etAx)]N (etAx,Qt)(dy)

]
and obtain, by the dominated convergence theorem, that the map

(0,1) × R3 � (θ, a) �→ ∇R3(1)f ε
θ,a ∈ L2(H 3,µ3;H 3)

is continuous. Since the locally uniform limit of continuous functions is continu-
ous, (30) yields (20).

Step 5. We prove now the last assertion. By symmetry, it is enough to consider
the case θ → 0. Recall that γ θ (x) = |x(θ)|/√θ , x ∈ (C0)

3. Then

�θ
3 (x) := R3(1)γ θ (x)

= 1√
θ

∫ ∞
0

e−t
∫

R3
|α|N (

etAx(θ), qt (θ, θ) · I )
(dα) dt

=
∫ ∞

0
e−t

√
qt(θ, θ)

θ

∫
R3

|α|N (
etAx(θ)/

√
qt(θ, θ), I

)
(dα) dt,

and

∇�θ
3 (x) = −

∫ ∞
0

e−t

√
qt(θ, θ)

θ
gt (θ, ·)

∫
R3

(
α − etAx(θ)/

√
qt(θ, θ)

)|α|

× N
(
etAx(θ)/

√
qt(θ, θ), I

)
(dα) dt,
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for all x ∈ (C0)
3. By the Cauchy–Schwarz inequality,∣∣∣∣

∫
R3

(
α − etAx(θ)/

√
qt(θ, θ)

)|α|N (
etAx(θ)/

√
qt(θ, θ), I

)
(dα)

∣∣∣∣
≤

[∫
R3

|α|2N (0, I )(dα)

]1/2[∫
R3

∣∣∣∣α + etAx(θ)√
qt(θ, θ)

∣∣∣∣
2

N (0, I )(dα)

]1/2

= √
3

√
3 + |etAx(θ)|2

qt(θ, θ)
.

By (27) we obtain

‖∇�θ
3 (x)‖ ≤ √

3
∫ ∞

0
e−t 1

t1/4

(
1 ∧ 2θ

t

)√
3 + |etAx(θ)|2

qt(θ, θ)
dt.

By the sub-additivity of the square-root, by (22) and since qt (θ, θ) ≤ θ(1 − θ),[
E

(‖∇�θ
3 (β)‖2)]1/2

≤ √
3

∫ ∞
0

e−t

t1/4

(
1 ∧ 2θ

t

)(√
3 +

√
qt (θ, θ)

qt (θ, θ)

)
dt

≤ √
3

∫ ∞
0

e−t

(
1 ∧ 2θ

t

)( √
3

t1/4 + (C0)
1/3

t3/4

)
dt → 0

as θ → 0. Since µ3 is invariant for z3, we have

E
(
�θ

3 (β)
) = 1√

θ
E

(|β(θ)|) =: cθ .

By the Poincaré inequality for 
3, see [2], there exists C > 0 such that

E
(
�θ

3(β) − cθ

)2 ≤ 1

C
E

(‖∇�θ
3(β)‖2) → 0,

as θ → 0, and since

cθ = 4π√
θ

∫ ∞
0

1

(2πθ(1 − θ))3/2 r3 exp
(
− r2

2θ(1 − θ)

)
dr

= √
1 − θ

√
2

π

∫ ∞
0

r3 exp
(
−r2

2

)
dr

= √
1 − θ

√
8

π
→

√
8

π
,

we obtain that �θ
3 converges to

√
8/π in W 1,2(µ3) as θ → 0. �
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3. Occupation densities. Following [9], we set the following:

DEFINITION 1. A pair (u, η) is said to be a solution of equation (1) with initial
value x ∈ K0 ∩ C0, if:

(i) {u(t, θ) : (t, θ) ∈ O} is a continuous and adapted process, that is, u(t, θ)

is Ft -measurable for all (t, θ) ∈ O, a.s. u(·, ·) is continuous on O, u(t, ·) ∈ K0 ∩C0
for all t ≥ 0, and u(0, ·) = x.

(ii) η(dt, dθ) is a random positive measure on O such that η([0, T ]× [δ,1 −
δ]) < +∞ for all T, δ > 0, and η is adapted, that is, η(B) is Ft -measurable for
every Borel set B ⊂ [0, t] × (0,1).

(iii) For all t ≥ 0 and h ∈ D(A),

〈u(t, ·), h〉 − 〈x,h〉 −
∫ t

0
〈u(s, ·),Ah〉ds

(31)

= −
∫ 1

0
h′(θ)W(t, θ) dθ +

∫ t

0

∫ 1

0
h(θ)η(ds, dθ) a.s.

(iv)
∫
O udη = 0.

In [9], existence and uniqueness solutions of equation (1) were proved.
We denote by (e(θ))θ∈[0,1], the 3-Bessel bridge between 0 and 0, see [10], and

by ν, the law on K0 of e. We recall the following result, proved in [12].

THEOREM 1. Let �3 :H 3 = L2(0,1;R3) �→ K0, �3(y)(θ) := |y(θ)|R3 .

1. The process u is a Strong–Feller Markov process properly associated with the
symmetric Dirichlet form E in L2(ν),

E(ϕ,ψ) := 1
2

∫
K0

〈∇ϕ,∇ψ〉dν, ϕ,ψ ∈ W 1,2(ν).

2. The Dirichlet form E is the image of 
3 under the map �3, that is, ν is the
image of µ3 under �3 and

W 1,2(ν) = {ϕ ∈ L2(ν) :ϕ ◦ �3 ∈ W 1,2(µ3)},
(32)

E(ϕ,ψ) = 
3(ϕ ◦ �3,ψ ◦ �3) ∀ϕ,ψ ∈ W 1,2(ν).

We refer to [4] and [7] for all basic definitions in the theory of Dirichlet forms.
Notice that by point 1 in Theorem 1 and by Theorem IV.5.1 in [7], the Dirichlet
form E is quasi-regular. In particular, by the transfer method stated in VI.2 of [7],
we can apply several results of [4] in our setting.

We recall the definition of an additive functional of the Markov process u. We
denote by (Px :x ∈ K0) the family the of laws of u on E := C([0,∞);K0) and
the coordinate process on K0 by: Xt :E �→ K0, t ≥ 0, Xt(e) := e(t). By a positive
continuous additive functional (PCAF) in the strict sense of u, we mean a family
of functions At :E �→ R+, t ≥ 0, such that:
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(A1) (At)t≥0 is adapted to the minimum admissible filtration (Nt )t≥0 of u, see
Appendix A.2 in [4].

(A2) There exists a set 
 ∈ N∞ such that Px(
) = 1 for all x ∈ K0, θt (
) ⊆ 


for all t ≥ 0, and for all ω ∈ 
 : t �→ At(ω) is continuous nondecreasing,
A0(ω) = 0 and for all t, s ≥ 0,

At+s(ω) = As(ω) + At(θsω),(33)

where (θs)s≥0 is the time-translation semigroup on E.

Two PCAFs in the strict sense A1 and A2 are said to be equivalent if

Px(A
1
t = A2

t ) = 1 ∀ t > 0, ∀x ∈ K0.

If A is a linear combination of PCAFs in the strict sense of u, then the Revuz-
measure of A is a Borel signed measure m on K0 such that∫

K0

ϕ dm =
∫
K0

Ex

[∫ 1

0
ϕ(Xt) dAt

]
ν(dx) ∀ϕ ∈ Cb(K0).

Moreover, U ∈ D(E) is the one-potential of a PCAF A in the strict sense with
Revuz-measure m if

E1(U,ϕ) =
∫
K0

ϕ dm ∀ϕ ∈ D(E) ∩ Cb(K0),

where E1 := E + (·, ·)L2(ν). We introduce the following notion of convergence of
positive continuous additive functionals in the strict sense of X.

DEFINITION 2. Let (An(t))t≥0, n ∈ N ∪ {∞}, be a sequence of PCAF’s in the
strict sense of u. We say that An converges to A∞, if:

1. For all ε > 0 and for all x ∈ K0 ∩ C0,

lim
n→∞An(t + ε) − An(ε) = A∞(t + ε) − A∞(ε),(34)

uniformly for t in compact sets of [0,∞), Px -almost surely.
2. For E -q.e. x ∈ K0 ∩ C0,

lim
n→∞An(t) = A∞(t),(35)

uniformly for t in compact sets of [0,∞), Px -almost surely.

LEMMA 1. Let (An(t))t≥0, n ∈ N∪{∞}, be a sequence of PCAFs in the strict
sense of X, and let Un be the one-potential of An, n ∈ N ∪ {∞}. If Un → U∞
in D(E), then An converges to A∞ in the sense of Definition 2.

PROOF. Since Un → U∞ in D(E), by Corollary 5.2.1 in [4], we have point 2
of Definition 2, that is, there exists an E -exceptional set V such that (35) holds for
all x ∈ K0 \V . By the Strong–Feller property of X, Px -a.s. Xt ∈ E\V , for all t > 0
and for all x ∈ K0, and by the additivity property, (34) holds for all x ∈ K0. �
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REMARK 1. We recall that if (A,A) is a measurable space, (�,F ,P) a
probability space and Xn is a sequence of A ⊗ F -measurable random variables,
such that Xn(a, ·) converges in probability for every a ∈ A, then there exists
a A ⊗ F -measurable random variable X, such that X(a, ·) is the limit in
probability of Xn(a, ·) for every a ∈ A.

We can now state the main result of this section:

THEOREM 2. Let θ ∈ (0,1), a ≥ 0.

1. For all (θ, a) ∈ (0,1) × [0,∞), there exists a PCAF in the strict sense of u,
(la(t, θ))t≥0, such that (la(·, θ))θ∈(0,1),a∈[0,∞) is continuous in the sense of
Definition 2 and jointly measurable, such that for all a ≥ 0,

la(t, θ) = lim
ε↓0

1

ε

∫ t

0
1[a,a+ε](u(s, θ)) ds, t ≥ 0,

in the sense of Definition 2.
2. The Revuz-measure of la(·, θ) is√

2

πθ3(1 − θ)3
a2 exp

(
− a2

2θ(1 − θ)

)
ν
(
dx|x(θ) = a

)
, a ≥ 0,

and, in particular, l0(·, θ) ≡ 0. Moreover, la(·, θ) increases only on {t :
u(t, θ) = a}.

3. The following occupation times formula holds for all θ ∈ (0,1),∫ t

0
F(u(s, θ)) ds =

∫ ∞
0

F(a)la(t, θ) da, F ∈ Bb(R), t ≥ 0.(36)

For an overview on existence of occupation densities see [3].
We set 
3

1 := 
3 + (·, ·)L2(µ3)
, E1 := E + (·, ·)L2(ν). For all f :H �→ R bounded

and Borel and for all x ∈ K0 ∩ C0, we introduce the one-resolvent of u,

R(1)f (x) =
∫ ∞

0
e−tEx[f (Xt)]dt,

where Ex denotes the expectation w.r.t. the law of the solution u of (1) with initial
value x. The next lemma gives the projection principle from the Dirichlet space
W 1,2(µ3), associated with the Gaussian process z3, to the Dirichlet space W 1,2(ν)

of the solution u of the SPDE with reflection (1).

LEMMA 2. There exists a unique bounded linear operator � :W 1,2(µ3) �→
W 1,2(ν), such that for all F,G ∈ W 1,2(µ3) and f ∈ W 1,2(ν),


3
1(F,f ◦ �3) = E1(�F,f ),(37)


3
1
(
(�F) ◦ �3,G

) = 
3
1
(
F, (�G) ◦ �3

)
.(38)
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In particular, we have that for all ϕ ∈ L2(ν) and F ∈ W 1,2(µ3),

R(1)ϕ = �
(
R3(1)[ϕ ◦ �3]),(39)

‖�F‖E1 ≤ ‖F‖
3
1
.(40)

Finally, � is Markovian, that is, �1 = 1 and

F ∈ W 1,2(µ3), 0 ≤ F ≤ 1 �⇒ 0 ≤ �F ≤ 1.(41)

PROOF. Let D := {ϕ ◦ �3 :ϕ ∈ W 1,2(ν)} ⊂ W 1,2(µ3). Let W 1,2(µ3) be
endowed with the scalar product 
3

1: then, by (32), D is a closed sub-
space of W 1,2(µ3). Therefore, there exists a unique bounded linear projector
�̂ :W 1,2(µ3) �→ D , symmetric with respect to the scalar product 
3

1. For all
F ∈ W 1,2(µ3) we set �F := f , where f is the unique element of W 1,2(ν) such
that f ◦ �3 = �̂F . Then (37) and (38) are satisfied by construction. Let now
ϕ,ψ ∈ W 1,2(ν). Then by (32),

E1
(
R(1)ϕ,ψ

) =
∫
K0

ϕψ dν =
∫
H 3

(ϕ ◦ �3)(ψ ◦ �3) dµ3

= 
3
1
(
R3(1)[ϕ ◦ �3],ψ ◦ �3

) = 
3
1
(
�̂R3(1)[ϕ ◦ �3],ψ ◦ �3

)
= E1

(
�R3(1)[ϕ ◦ �3],ψ)

,

which implies (39). Then, since �̂ is a symmetric projector,

‖�F‖E1 = ‖�̂F‖
3
1
≤ ‖F‖
3

1
,

so that (40) is proved. Notice now that 1 ∈ D , so that obviously �1 = 1. Moreover,
recall that �̂F is characterized by the property

�̂F ∈ D, 
3
1(F − �̂F,G) = 0 ∀G ∈ D .

Let F ∈ W 1,2(µ3) such that F ≥ 0. Since E is a Dirichlet form, then (�̂F )− :=
(−�̂F ) ∨ 0 still belongs to D , and since 
3

1 is a Dirichlet form,

0 = 
3
1
(
F − �̂F, (�̂F )−

) = 
3
1
(
F, (�̂F )−

) + ‖(�̂F )−‖2

3

1
≥ ‖(�̂F )−‖2


3
1
,

so that �̂F ≥ 0, and (41) follows. �

PROOF OF THEOREM 2. Let a ≥ 0. For all ε > 0 we set

f ε(y) := 1

ε
1[a,a+ε](y(θ)), y ∈ K0 ∩ C0.
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By Lemma 2, we have that

R(1)f ε = �
(
R3(1)[f ε ◦ �3])

= 1

ε

∫
(a≤|α|≤a+ε)

�(U
θ,a+α
3 ) dα

= 1

ε

∫ a+ε

a
r2 dr

∫
S2

�(U
θ,r ·n
3 )H2(dn),

where H2 is the two-dimensional Hausdorff measure, U
θ,a·n
3 is the one-potential

in W 1,2(µ3) defined by (19) and � is the operator defined in Lemma 2. By (20),
the map r �→ U

θ,r ·n
3 ∈ W 1,2(µ3) is continuous. Let Uθ,a ∈ W 1,2(ν) be defined by

Uθ,a := a2
∫

S2
�(U

θ,a·n
3 )H2(dn), a ≥ 0.

By (40) we have that R(1)f ε converges to Uθ,a in W 1,2(ν) as ε → 0. For all ε > 0
and ϕ ∈ W 1,2(ν) ∩ Cb(K0), we have

E1
(
R(1)f ε, ϕ

) =
∫
K0

f εϕ dν = 1

ε
E

[
ϕ(e)1[a,a+ε](e(θ))

]
,

where the law of e is ν and E1 = E + (·, ·)L2(ν). Letting ε → 0, we get

E1(U
θ,a, ϕ) = lim

ε→0

1

ε
E

[
ϕ(e)1[a,a+ε](e(θ))

]
(42)

=
√

2

πθ3(1 − θ)3
a2 exp

(
− a2

2θ(1 − θ)

)
E[ϕ(e)|e(θ) = a].

By Lemma 2, � is a Markovian operator and by (21) in Proposition 1, the family
(U

θ,a·n
3 :n ∈ S2) is uniformly bounded in the supremum-norm. Therefore, Uθ,a is

bounded, and by (42) Uθ,a is the one-potential of a nonnegative finite measure.
By Theorem 5.1.6 in [4], there exists a PCAF (la(t, θ))t≥0 in the strict sense of u,
with one-potential equal to Uθ,a and with Revuz-measure given by (42). Notice
now that R(1)f ε is the one-potential of the following PCAF in the strict sense
of u,

t �→ 1

ε

∫ t

0
1[a,a+ε](u(s, θ)) ds, t ≥ 0.

Therefore, points 1 and 2 of Theorem 2 are proved by (20), Lemma 1 and
Remark 1. To prove the last assertion of point 2, just notice that the following
PCAF of u,

t �→
∫ t

0
|u(s, θ) − a|la(ds, θ),
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has Revuz-measure√
2

πθ3(1 − θ)3
a2 exp

(
− a2

2θ(1 − θ)

)
· |x(θ) − a|ν(

dx|x(θ) = a
) ≡ 0.

To prove point 3 it is enough to notice that the PCAF of u in the left-hand side
of (36) has one-potential R(1)Fθ , where Fθ(y) := F(y(θ)), y ∈ K0 ∩ C0, and the
PCAF in the right-hand side has one-potential,∫ ∞

0
r2F(r) dr

∫
S2

�(U
θ,r ·n
3 )H2(dn)

= �

(∫
R3

F(|α|)Uθ,α
3 dα

)

= �
(
R3(1)[Fθ ◦ �3]) = R(1)Fθ .

Since R(1)Fθ is bounded, then, arguing like in Theorem 5.1.6 of [4], the two
processes in (36) coincide as PCAF’s in the strict sense. �

4. The reflecting measure η. Recall that η is the reflecting measure on
O = [0,∞) × (0,1) which appears in equation (1). The main result of this section
is the following:

THEOREM 3. Let θ ∈ (0,1).

1. For all θ ∈ (0,1), there exists a PCAF in the strict sense (l(t, θ))t≥0 of u,
such that (l(·, θ))θ∈(0,1) is continuous in the sense of Definition 2 and jointly
measurable, and such that

l(t, θ) = lim
ε↓0

3

ε3

∫ t

0
1[0,ε](u(s, θ)) ds,

in the sense of Definition 2.
2. The PCAF (l(t, θ))t≥0 has Revuz-measure√

2

πθ3(1 − θ)3 ν
(
dx|x(θ) = 0

)
,

and increases only on {t :u(t, θ) = 0}.
3. We have

l(t, θ) = lim
a↓0

1

a2
la(t, θ)

in the sense of Definition 2.
4. For all t ≥ 0 and x ∈ K0, η([0, t], dθ) is absolutely continuous w.r.t. the

Lebesgue measure dθ and

η([0, t], dθ) = 1
4 l(t, θ) dθ.(43)
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5. For all a ∈ (0,1),

lim
ε↓0

√
ε

∫ a

0

(
1 ∧ θ

ε

)
η([0, t], dθ) =

√
2

π
t,

lim
ε↓0

√
ε

∫ 1

a

(
1 ∧ 1 − θ

ε

)
η([0, t], dθ) =

√
2

π
t

in the sense of Definition 2.

PROOF. For all ε > 0 we set

gε(y) := 3

ε3 1[0,ε](y(θ)), y ∈ K0 ∩ C0.

By Lemma 2, we have that

R(1)gε = �
(
R3(1)[gε ◦ �3])

= 3

ε3

∫
(|α|≤ε)

�(U
θ,α
3 ) dα

= 3

ε3

∫ ε

0
r2 dr

∫
S2

�(U
θ,r ·n
3 )H2(dn).

By Lemma 2, R(1)gε converges in W 1,2(ν) as ε → 0 to

Uθ := 4π�(U
θ,0
3 ), a ≥ 0.

For all ε > 0 and ϕ ∈ W 1,2(ν) ∩ Cb(K0), we have

E1
(
R(1)gε, ϕ

) =
∫
K0

gεϕ dν = 3

ε3 E
[
ϕ(e)1[0,ε](e(θ))

]
,

and letting ε → 0, we get

E1(U
θ,ϕ) = lim

ε→0

3

ε3
E

[
ϕ(e)1[0,ε](e(θ))

]
(44)

=
√

2

πθ3(1 − θ)3 E[ϕ(e)|e(θ) = 0].

Since � is Markovian, by (21), Uθ is bounded, and by (44), Uθ is the one-potential
of a nonnegative finite measure. By Theorem 5.1.6 in [4], there exists a PCAF
(l(t, θ))t≥0 in the strict sense of u, with one-potential equal to Uθ and with Revuz-
measure given by (44). Since R(1)gε is the one-potential of the following PCAF
of u,

t �→ 3

ε3

∫ t

0
1[0,ε](u(s, θ)) ds, t ≥ 0,
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then, points 1 and 2 of Theorem 3 are proved by (20), Lemma 1 and Remark 1. To
prove the last assertion of point 2, just notice that the following PCAF of u,

t �→
∫ t

0
u(s, θ)l(ds, θ),

has Revuz-measure √
2

πθ3(1 − θ)3 · x(θ)ν
(
dx|x(θ) = 0

) ≡ 0.

From the proof of Theorem 2, we know that the one-potential of la(·, θ) is

Uθ,a = a2
∫

S2
�(U

θ,a·n
3 )H2(dn), a ≥ 0.

Then Uθ,a/a2 converges as a → 0 to Uθ in W 1,2(ν). Since Uθ,a/a2 is the one-
potential of la(·, θ)/a2, by Lemma 1, point 3 of Theorem 3 is proved. Let now
I ⊂⊂ (0,1) be Borel. Notice that the following PCAF in the strict sense of u,

t �→ 1
4

∫
I
l(t, θ) dθ(45)

has Revuz-measure

1

2

∫
I

1√
2πθ3(1 − θ)3

ν
(
dx|x(θ) = 0

)
dθ,(46)

and one-potential equal to

1
4UI := 1

4

∫
I
Uθ dθ.

On the other hand, it was proved in Theorem 7 of [12] that the PCAF in the strict
sense of u,

t �→ η([0, t] × I )(47)

has Revuz-measure equal to (46). Therefore, by Theorem 5.1.6 in [4], the two
PCAFs of u in (45) and (47) coincide, and since UI is a bounded one-potential
then they coincide as PCAFs in the strict sense. Therefore, point 4 is proved. We
prove now the last assertion. For all ε ∈ (0,1/2), set hε : [0,1] �→ [0,1]

hε(θ) := √
ε

((
1 ∧ θ

ε

)
1[0,1/2](θ) + 4θ(1 − θ)1[1/2,1](θ)

)
.

Then hε is concave and continuous on [0,1], with

h′′
ε (dθ) = − 1√

ε
δε(dθ) − √

ε81[1/2,1](θ) dθ,
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where δε is the Dirac mass at ε. Moreover, hε(0) = hε(1) = 0 and hε → 0
uniformly on [0,1] as ε → 0. By (31) we have then

lim
ε→0

(
1

2
√

ε

∫ t

0
u(s, ε) ds − √

ε

∫ 1/2

0

(
1 ∧ θ

ε

)
η([0, t], dθ)

)
= 0.(48)

Recall the definition of γ θ given in point 2 of Proposition 1. We set γ ε :K0 ∩
C0 �→ R, γ ε(x) := x(ε)/

√
ε. Then, by Lemma 2 we have that R(1)γ ε =

�(R3(1)γ ε). By point 2 of Proposition 1 and by Lemma 2, we obtain that R(1)γ ε

converges to
√

8/π in W 1,2(ν). Therefore, by Lemma 1,

lim
ε→0

1

2
√

ε

∫ t

0
u(s, ε) ds =

√
2

π
t,

in the sense of Definition 2, and by (48) point 5 is proved. �

COROLLARY 1. For all x ∈ K0 ∩ C0, a.s. the set

S := {s > 0 :∃ θ ∈ (0,1), u(s, θ) = 0}
is dense in R+ and has zero Lebesgue measure.

PROOF. By point 5 in Theorem 3, for all x ∈ K0 ∩ C0, a.s. for all t > 0 we
have η([0, t] × (0,1)) = +∞, so that, in particular, η([0, t] × (0,1)) > 0. By (iv)
in Definition 1 the support of η is contained in the set {u = 0}, so that for all t > 0,
there exists s ∈ (0, t)∩S. By the Markov property, for all q ∈ Q and all t > q , there
exists s ∈ (q, t)∩S, which implies the density of S in R+. To prove that S has zero
Lebesgue measure, recall that the law of u(t, ·) is absolutely continuous w.r.t. ν

for all t > 0, and ν(x :∃ θ ∈ (0,1), x(θ) = 0) = 0. Then, if H1 is the Lebesgue
measure on R,

Ex[H1(S)] =
∫ ∞

0
Ex[1S(t)]dt =

∫ ∞
0

P
(∃ θ ∈ (0,1), u(t, θ) = 0

)
dt = 0. �

Notice now that, by points 2 and 4 of Theorem 3, equation (1) can be formally
written in the following form:



u(t, θ) = x(θ) + 1

2

∫ t

0

∂2u

∂θ2 (s, θ) ds + ∂W

∂θ
(t, θ) + 1

4
l(t, θ),

u(t,0) = u(t,1) = 0,

u ≥ 0, l(dt, θ) ≥ 0,

∫ ∞
0

u(t, θ)l(dt, θ) = 0 ∀ θ ∈ (0,1),

(49)

where, as usual, the first line is rigorously defined after taking the scalar product
in H between each term and any h ∈ D(A). Formula (49) allows to interpret
(u(·, θ), l(·, θ))θ∈(0,1) as the solution of a system of one-dimensional Skorohod
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problems, parametrized by θ ∈ (0,1). This fact is reminiscent of the result of
Funaki and Olla who proved in [6] that the stationary solution of a certain system
of one-dimensional Skorohod problems converges under a suitable rescaling to the
stationary solution of (1).

Finally, we show that u satisfies a closed formula and that equation (1) is related
to a fully nonlinear equation. Let (w(t, θ))t≥0,θ∈[0,1] be the stochastic convolution

w(t, θ) :=
∫ t

0

∫ 1

0
gt−s (θ, θ ′)W(ds, dθ ′),

solution of 


w(t, θ) = 1

2

∫ t

0

∂2w

∂θ2
(s, θ) ds + ∂W

∂θ
(t, θ)

w(t,0) = w(t,1) = 0.

(50)

Subtracting the first line of (49) and the first line of (50), we obtain that

(t, θ) �→ 1

2

∂2

∂θ2

∫ t

0

(
u(s, θ) − w(s, θ)

)
ds

is in L1
loc((0,1); C([0, T ])) for all T > 0, that is, it admits a measurable version

which is continuous in t for all θ ∈ (0,1) and such that the sup-norm in t ∈ [0, T ]
is locally integrabile in θ . Then, we can write



u(t, θ) = x(θ) + w(t, θ) + 1

2

∂2

∂θ2

∫ t

0
(u − w)(s, θ) ds + 1

4
l(t, θ),

u(t,0) = u(t,1) = 0,

u ≥ 0, l(dt, θ) ≥ 0,

∫ ∞
0

u(t, θ)l(dt, θ) = 0 ∀ θ ∈ (0,1),

(51)

where every term is now well defined and continuous in t , and we can apply
Skorohod’s lemma (see Lemma VI.2.1 in [10]) for fixed θ ∈ (0,1), obtaining

1

4
l(t, θ) = sup

s≤t

[
−

(
x(θ) + w(s, θ) + 1

2

∂2

∂θ2

∫ s

0
(u − w)(r, θ) dr

)]
∨ 0,(52)

for all t ≥ 0, θ ∈ (0,1). Therefore, we have the following:

COROLLARY 2. For all x ∈ K0 ∩ C0, a.s. u satisfies the closed formula

u(t, θ) = x(θ) + w(t, θ) + 1

2

∂2

∂θ2

∫ t

0

(
u(s, θ) − w(s, θ)

)
ds

(53)

+ sup
s≤t

[
−

(
x(θ) + w(s, θ) + 1

2

∂2

∂θ2

∫ s

0

(
u(r, θ) − w(r, θ)

)
dr

)]
∨ 0,
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for all t ≥ 0, θ ∈ (0,1). In particular, v, defined by

v(t, θ) :=
∫ t

0

(
u(s, θ) − w(s, θ)

)
ds,

is a solution of the following fully nonlinear equation:


∂v

∂t
= 1

2

∂2v

∂θ2 + x(θ) + sup
s≤t

[
−

(
x(θ) + w(s, θ) + 1

2

∂2v

∂θ2 (s, θ)

)]
∨ 0,

v(0, ·) = 0, v(t,0) = v(t,1) = 0,

(54)

unique in V := {v′ :O �→ R continuous: ∂v′/∂t continuous, ∂2v′/∂θ2 ∈
L1

loc((0,1); C([0, T ])) for all T > 0}.
The uniqueness of solutions of equation (54) in V is a consequence of the

pathwise uniqueness of solutions of equation (1), proved in [9]: indeed, if v′ ∈ V
is a solution of (54), then setting

u′(t, θ) := ∂v′

∂t
(t, θ) + w(t, θ),

η′(dt, dθ) := dt

{
sup
s≤t

[
−

(
x(θ) + w(s, θ) + 1

2

∂2v′

∂θ2 (s, θ)

)]
∨ 0

}
dθ

and repeating the above arguments backwards, we obtain that (u′, η′) is a weak
solution of (1), so that u′ = u and, therefore, v′ = v.

Notice that, by point 5 in Theorem 3, by (43)–(54) and by the continuity of
∂v/∂t on O, then, for all t > 0, ∂2v/∂θ2(t, ·) is not in L1(0,1), so that by the
uniqueness a C1,2(O) solution of (54) does not exist.
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