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RANDOM POLYTOPES AND THE EFRON–STEIN
JACKKNIFE INEQUALITY

BY MATTHIAS REITZNER

Universität Freiburg and Technische Universität Wien

Let K be a smooth convex body. The convex hull of independent
random points in K is a random polytope. Estimates for the variance of the
volume and the variance of the number of vertices of a random polytope are
obtained. The essential step is the use of the Efron–Stein jackknife inequality
for the variance of symmetric statistics. Consequences are strong laws of
large numbers for the volume and the number of vertices of the random
polytope. A conjecture of Bárány concerning random and best-approximation
of convex bodies is confirmed. Analogous results for random polytopes with
vertices on the boundary of the convex body are given.

1. Introduction and main results. Let Kk+ be the set of compact convex
sets K ∈ R

d , d ≥ 2, with nonempty interior, with boundary of differentiability
class Ck, and with positive Gaussian curvature. Fix K ∈ K2+, and choose points
X1, . . . ,Xn from K , randomly, independently and according to the uniform
distribution. We call the convex hull Kn = conv[X1, . . . ,Xn] a random polytope.
Denote by N(Kn) the number of vertices of Kn, and by V (Kn) the volume of Kn.
It is of interest to determine the asymptotic behavior of N(Kn) which tends to
infinity with probability 1 as n → ∞, and to specify how fast V (Kn) tends
to V (K) as n → ∞. We will always assume that V (K) = 1.

Most of the known results about N(Kn) and V (Kn) concern the expected
volume EV (Kn), the case d = 2, and n fixed. The question to determine this
value for d = 2 and n = 3 was raised by Sylvester in 1864 and so became known
as Sylvester’s problem. Out of a large number of contributions we only mention
the work of Blaschke [8], Dalla and Larman [17], Giannopoulos [21], Buchta [9]
and Buchta and Reitzner [12], all dealing with the case d = 2 and, for d ≥ 3,
Groemer [24, 25], Kingman [33], Affentranger [1] and Buchta and Reitzner [13].

Starting with two classical articles by Rényi and Sulanke [39, 40], the
investigations focused on the asymptotic behavior of EV (Kn) as n tends to
infinity: Rényi and Sulanke determined the asymptotic behavior of V (K) −
EV (Kn) and EN(Kn) in the case d = 2 for smooth K (and also for polygons).
This was generalized by Wieacker [51] (d = 3, K ∈ K3+), Bárány [3] (arbitrary d ,
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K ∈ K3+) and Schütt [46] (arbitrary d , general convex bodies) to

lim
n→∞

(
V (K) − EV (Kn)

)
n2/(d+1) = �d�(K),(1)

where the constant �d only depends on the dimension and is known explicitly (cf.,
e.g., [46]):

�d = 1

2

(
κd−1

d + 1

)−2/(d+1) (d2 + d + 2)(d2 + 1)

(d + 3)(d + 1)! �

(
d2 + 1

d + 1

)
,(2)

with κd the volume of the d-dimensional unit ball, and �(K) denotes the affine
surface area of K ,

�(K) =
∫
∂K

κ(x)1/(d+1) dx,

where κ(x) is the Gaussian curvature of ∂K at x. (For the definition of �(K)

for general, nonsmooth convex bodies using the floating body, see [47].) For an
analogous result for polytopes we refer to [5].

In contrast to these results concerning the first moment of V (Kn) it turned out
to be extremely difficult to deduce more information about the random variable
V (Kn) itself. Already the question to deduce the asymptotic behavior of the
variance of V (Kn) and to establish limit laws seems to be highly nontrivial and
out of reach in most cases. In the planar case, Schneider [42] proved a strong
law of large numbers for V (Kn) if K is smooth; and Cabo and Groeneboom [15]
determined the asymptotic behavior of VarV (Kn) for convex polygons and proved
a central limit theorem, but the stated asymptotic value for the variance appears to
be incorrect (see [32], page 111) and for a corrected version Buchta [11]. Only in
the special case that K is the unit ball further results are available: for all d ≥ 1
Kuefer [34] gave the estimate

VarV (Kn) ≤ c(Bd)n−(d+3)/(d+1)

with a positive constant c(Bd), and Hsing [31] used an analogous estimate for
proving a central limit theorem in the case d = 2.

In this paper we prove estimates for VarV (Kn) [and VarN(Kn)] for all convex
bodies K ∈ K2+ in arbitrary dimensions which in turn imply strong laws of
large numbers. The essential step in the proofs is the use of the Efron–Stein
jackknife inequality [20] for the variance of symmetric statistics. This inequality
is formulated in Section 3.2. It turns out to be a powerful tool for estimating the
variance of functionals f (·) of random polytopes since in this context a version of
the Efron–Stein jackknife inequality reads as follows:

Varf (Kn) ≤ (n + 1)E
(
f (Kn) − f (Kn+1)

)2
.

Hence by choosing an additional random point Xn+1 in K and investigating the
difference between Kn and Kn+1 = conv[Kn,Xn+1], we obtain an upper bound for
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the variance of f (Kn). As will be shown below, in many cases this upper bound is
best possible up to a constant. Thus, using this version of the Efron–Stein jackknife
inequality, rather elementary and short proofs yield rather sharp estimates for the
variance.

THEOREM 1. Let K ∈ K2+ and choose n random points in K independently
and according to the uniform distribution. Then there is a positive constant c(K)

depending on K such that

VarV (Kn) ≤ c(K)n−(d+3)/(d+1).(3)

We mention a recent result of Buchta ([11], Corollary 2) who showed that for
d = 2 and K ∈ K6+ there is a constant c(K) > 0 depending on K such that

VarV (Kn) ≥ c(K)n−5/3.(4)

This indicates that, at least in dimension two, estimate (3) is best possible up
to the constant. We conjecture that for convex bodies K ∈ K2+ the normalized
variance VarV (Kn)n

(d+3)/(d+1) tends to a positive constant (depending on K) as
n tends to infinity, and thus, that the upper bound in Theorem 1 gives the right
asymptotic order of VarV (Kn) in any dimension. Nevertheless, it seems likely
that the constant c(K) in Theorem 1 is far from the right asymptotic constant.

Theorem 1 can be used to deduce a strong law of large numbers for the random
variable V (Kn), thus generalizing Schneider’s result [42] from d = 2 to arbitrary
dimensions. Applying Chebyshev’s inequality we almost immediately get:

THEOREM 2. Let K ∈ K2+, choose a sequence of random points Xi , 1 ≤
i < ∞, in K independently and according to the uniform distribution, and let
Kn = conv[X1, . . . ,Xn]. Then

lim
n→∞

(
V (K) − V (Kn)

)
n2/(d+1) = �d�(K)(5)

with probability 1.

We turn our attention to the number of vertices of Pn. Using the identity

EN(Kn) = n
(
V (K) − EV (Kn−1)

)
(6)

due to Efron [18], the results concerning EV (Kn) can be used to determine the
expected number of vertices of Kn: corresponding to (1),

lim
n→∞ EN(Kn)n

−(d−1)/(d+1) = �d�(K).(7)

By establishing a generalization of Efron’s identity (6), Buchta ([11], Corol-
lary 3) derived an estimate for the variance of N(Kn) if d ≥ 4 and K ∈ Kd+6+ :

VarN(Kn) ≥ c(K)n(d−1)/(d+1).(8)
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A straightforward modification of the proof of Theorem 1 (which will be sketched
in Section 12) yields that E(V (Kn+1) − V (Kn))n

(d+3)/(d+1) tends to a positive
constant as n → ∞ for K ∈ K2+. Together with Corollary 1 and Remark 4 in [11]
this proves for all K ∈ K2+ the existence of a constant c(K) > 0 such that

VarN(Kn) ≥ c(K)n(d−1)/(d+1)(9)

for d ≥ 4. In the following theorem we establish an upper bound with the same
order of magnitude.

THEOREM 3. Let K ∈ K2+ and choose n random points in K independently
and according to the uniform distribution. Then there is a positive constant c(K)

depending on K such that

VarN(Kn) ≤ c(K)n(d−1)/(d+1).(10)

In the planar case, Groeneboom [26] determined the asymptotic behavior of
VarN(Kn) if K is a convex polygon or the unit disc, and established a central
limit theorem. By Groeneboom’s result for the unit disc, by (9) and (10) we
are led to conjecture that for convex bodies K ∈ K2+ the normalized variance
VarN(Kn)n

−(d−1)/(d+1) tends to a positive constant (depending on K) as n tends
to infinity.

In the case d ≥ 4, Theorem 3 implies a strong law of large numbers for N(Kn).
[The restriction to d ≥ 4 comes from the fact that N(Kn) is not necessarily a
monotone function in n, see the discussion in Section 8.]

THEOREM 4. Let K ∈ K2+, d ≥ 4, choose a sequence of random points Xi ,
1 ≤ i < ∞, in K independently and according to the uniform distribution, and let
Kn = conv[X1, . . . ,Xn]. Then

lim
n→∞N(Kn)n

−(d−1)/(d+1) = �d�(K)(11)

with probability 1.

The interdependence between N(Kn) and V (K) − V (Kn) mentioned in (6) be-
comes even more interesting when one compares approximation of convex bodies
by random polytopes to approximation of convex bodies by best-approximating
inscribed polytopes. To this end one is interested in the minimum of the difference
V (K) − V (P ) among all convex polytopes P ⊂ K with at most N vertices. Let
Kbest

N be a polytope for which the minimum is attained. For convex bodies K ∈ K2+
Gruber [27] proved

lim
N→∞

(
V (K) − V (Kbest

N )
)
N2/(d−1) = 1

2 deld−1 �(K)(d+1)/(d−1),(12)

where deld−1 is a constant depending only on the dimension. It should be noted
that in this context N is the number of vertices of the best-approximating polytope
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whereas in (5) n denotes the number of random points. Inspired by this difference
Bárány [4] investigated the random variable (V (K) − V (Kn))N(Kn)

2/(d−1) and
proved that for d = 2,3,

lim
n→∞ E

((
V (K) − V (Kn)

)
N(Kn)

2/(d−1)
) = �d

(d+1)/(d−1)�(K)(d+1)/(d−1)

as n → ∞. Here we prove an even stronger result for the remaining cases d ≥ 4.
In fact, since convergence of random variables Xn → c1 and Yn → c2 with
probability 1 as n → ∞ implies

XnY
2/(d−1)
n → c1c

2/(d−1)
2

with probability 1 as n → ∞, the following theorem is an immediate consequence
of Theorems 2 and 4:

THEOREM 5. Let K ∈ K2+, d ≥ 4, choose a sequence of random points Xi ,
1 ≤ i < ∞, in K independently and according to the uniform distribution, and let
Kn = conv[X1, . . . ,Xn]. Then

lim
n→∞

(
V (K) − V (Kn)

)
N(Kn)

2/(d−1) = �d
(d+1)/(d−1)�(K)(d+1)/(d−1)(13)

with probability 1.

Combining (12) and (13) proves that, for K ∈ K2+,

lim
n→∞

V (K) − V (Kn)

V (K) − V (Kbest
N(Kn))

= �d
(d+1)/(d−1)

deld−1 /2

with probability 1 independent of the convex body K . Thus it is of interest to
compare the arising constants: whereas the constant �d is given explicitly in (2)
the constant deld−1 is explicitly known only for d = 2 and d = 3: del1 = 1/6 and
del2 = 1/(2

√
3). This yields

�2
3

del1 /2
∼ 5,885 . . . (d = 2),

�3
2

del2 /2
∼ 3,683 . . . (d = 3).

On the other hand, by Stirling’s formula we have

�d
(d+1)/(d−1) = 1

4πe
d + o(d)

and it was proved by Mankiewicz and Schütt [35] that

1

2
deld−1 = 1

4πe
d + o(d),

which proves

�d
(d+1)/(d−1)

deld−1 /2
→ 1 as d → ∞.
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Thus, as the dimension tends to infinity, approximation of convex bodies by
random polytopes in the interior of K is nearly as good as approximation of convex
bodies by best-approximating inscribed polytopes.

A problem which is implicit in the proof of Theorem 1, and the solution of
which is used explicitly in the proof of Theorem 3, is of independent interest.
Consider the random polytope Kn and choose in addition a further independent
random point X in K . The question one has to answer is the following: if
X ∈ K \ Kn how many facets of Kn can be seen from X? We show that the
expected number of facets tends to a constant independent of n, and that also the
second moment remains bounded as n → ∞.

So denote by Fn(X) the number of facets of Kn which can be seen from X,
that is, which are [up to (d − 2)-dimensional faces] contained in the interior of the
convex hull of Kn and X. We set Fn(X) = 0 if X is contained in Kn.

THEOREM 6. Let K ∈ K2+ and choose random points X1, . . . ,Xn,X in K

independently and according to the uniform distribution. Then there is a positive
constant Cd depending on the dimension such that

lim
n→∞ EFn(X)n2/(d+1) = Cd�(K).(14)

Further there is a positive constant c(K) depending on K such that

EFn(X)2 ≤ c(K)n−2/(d+1).(15)

The constant Cd can be given explicitly.
By (14) the mean number of facets which can be seen from X tends to 0 if X is

chosen uniformly in K . But by (1) the random point X is contained in K \Kn, and
thus Fn(X) = 0, with probability �d�(K)n−2/(d+1) + o(n−2/(d+1)) as n tends to
infinity. Thus the first statement of Theorem 6 can be equivalently formulated as
follows:

lim
n→∞ E

(
Fn(X)|X ∈ K\Kn

) = Cd

�d

,(16)

which is independent of the convex body K .
The bounds for the variance of V (K) − V (Kn) and N(Kn) in Theorem 1 and

Theorem 3 are by definition bounds for the difference between the second moment
and the square of the first moment of V (K) − V (Kn) and N(Kn). As results for
the second moments seem to be unknown so far, we state the following immediate
consequences of (1) and (7) explicitly:

COROLLARY 7. Let K ∈ K2+ and choose n random points in K independently
and according to the uniform distribution. Then

lim
n→∞E

(
V (K) − V (Kn)

)2
n4/(d+1) = �d

2�(K)2
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and

lim
n→∞ EN(Kn)

2n−2(d−1)/(d+1) = �d
2�(K)2.

By a refinement of (1) in the sense of asymptotic expansions proved in [37] we
also get an asymptotic expansion for the second moment for K ∈ Kk+1+ , k ≤ d +2.
There are constants aj (K) depending on K such that

E
(
V (K) − V (Kn)

)2

= a4(K)n−4/(d+1) + a6(K)n−6/(d+1)

+ a8(K)n−8/(d+1) + · · · + O
(
n−(k+1)/(d+1))

as n → ∞. The coefficient a4(K) coincides with the coefficient given in
Corollary 7. An analogous result also holds for the number of vertices of Kn.

Clearly there is a large number of functionals of the random polytope Kn which
are of high interest. The maybe most interesting generalizations of N(Kn) and
V (Kn) are the number of k-dimensional faces Nk(Kn) of Kn, k = 0, . . . , d − 1,
and the intrinsic volumes Vi(Kn) of Kn, i = 1, . . . , d , where, for instance, Vd = V

is the volume, 2Vd−1 the surface area and V1 is a multiple of the mean width.
As for Vi(Kn) the asymptotic behavior of its expectations for i = 1, . . . , d

was determined by Bárány [3] and Reitzner [37] if K is smooth, whereas the
computation of ENk(Kn) seems to be an open problem for k = 1, . . . , d − 3.
For k = d − 2 and k = d − 1 see [51]. Concerning higher moments in the case
d ≥ 3 only the quantity V1(Kn) was investigated if Kn is a random polytope in a
ball: Schreiber [44] determined the asymptotic behavior of all higher moments of
V1(Kn) and then [45] even proved a central limit theorem for V1(Kn).

The maybe most natural way to measure the distance between Kn and K is to
use the Hausdorff distance δ(Kn,K) between them. Yet for δ(Kn,K) not much is
known in general: Bárány [2] stated estimates for δ(Kn,K) for smooth K and all
d ≥ 2. In the case d = 2, Bingham, Bräker and Hsing [7] succeeded in proving a
central limit theorem both for smooth convex bodies and for polygons.

We also want to mention the connection between random approximation of
convex bodies and the floating body. This has been used in the papers by Bárány
and Larman [6] and Bárány [2] to deduce estimates for ENk(Kn), EVi(Kn) and
Eδ(Kn,K) in terms of volumes of floating bodies. In the planar case it was shown
by Buchta and Reitzner [12] that this connection can be made explicit.

The paper is organized in the following way. In the next section we investigate
random polytopes with vertices chosen on the boundary of a smooth convex body
and give an estimate for the variance of the volume also in that case. Section 3
contains the tools and Sections 4–12 contain the proofs of our results.

Surveys on random polytopes and related questions are due to Buchta [10],
Schneider [42, 43] and Weil and Wieacker [50]. For further results concerning
best-approximating polytopes we refer to a recent survey article by Gruber [29]



RANDOM POLYTOPES 2143

where approximation of convex bodies by random polytopes is compared to
approximation by best-approximating polytopes. We also want to mention a paper
of Steele [49] which, to the best of our knowledge, is the only work where the
Efron–Stein jackknife inequality is used in geometric probability.

2. Random points on the boundary of smooth convex bodies. From the
point of view of approximation, it is more suitable to choose the random points
on the boundary of K than from its interior: the rate of convergence of the
volume of the random polytope to the volume of K increases from n−2/(d+1)

[cf. (1)] to n−2/(d−1) [cf. (17)], which is the same rate of convergence as for
best-approximating polytopes [cf. (12)]. Clearly this is due to the fact, that now
by construction each random point is on ∂K and thus is a vertex of the random
polytope.

So denote by dK a positive continuous density function on the boundary of K ,
and choose n random points X1, . . . ,Xn on the boundary of K independently and
according to dK . Denote by Kbd

n the convex hull of X1, . . . ,Xn. Then for K ∈ K2+
lim

n→∞
(
V (K) − EV (Kbd

n )
)
n2/(d−1) = �bd

d �dK
(K),(17)

where

�dK
(K) =

∫
∂K

dK(x)−2/(d−1)κ(x)1/(d−1) dx,

and where the constant �bd
d only depends on the dimension. This result is due to

Schneider [42] (for d = 2) and Schütt and Werner [48] (for arbitrary d and even
more general convex bodies); compare also [38] for an alternative proof. Schneider
proves an even stronger result: let d = 2 and K ∈ K2+, choose a sequence of
random points Xi , 1 ≤ i < ∞, and let Kn = conv[X1, . . . ,Xn]. Then

lim
n→∞

(
V (K) − V (Kbd

n )
)
n2 = �bd

2 �dK
(K)

with probability 1. By giving an estimate for the variance of V (Kbd
n ) it is possible

to generalize this result to arbitrary dimensions.

THEOREM 8. Let K ∈ K2+ and choose n random points on ∂K independently
and according to a positive continuous density function dK . Then there is a positive
constant c(K,dK) depending on K and dK such that

VarV (Kbd
n ) ≤ c(K,dK)n−1−4/(d−1).(18)

Theorem 8 and Chebyshev’s inequality yield

P

(∣∣(V (K) − V (Kbd
n )

) − E
(
V (K) − V (Kbd

n )
)∣∣n2/(d−1) ≥ ε

)
≤ c(K,dK)ε−2n−1

for d ≥ 2. We thus see that the probabilities

P

(∣∣(V (K) − V
(
Kbd

nk

)) − E
(
V (K) − V

(
Kbd

nk

))∣∣n2/(d+1)
k ≥ ε

)
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are summable for nk = k2. By the Borel–Cantelli lemma this implies that
the random variable (V (K) − V (Kbd

nk
))nk

2/(d−1) tends to �bd
d �dK

(K) with
probability 1 as n tends to infinity. Since V (K)−V (Kbd

n ) is decreasing this proves:

COROLLARY 9. Let K ∈ K2+, choose a sequence of random points Xi ,
1 ≤ i < ∞, on ∂K independently and according to a positive continuous density
function dK , and let Kbd

n = conv[X1, . . . ,Xn]. Then

lim
n→∞

(
V (K) − V (Kbd

n )
)
n2/(d−1) = �bd

d �dK
(K)(19)

with probability 1.

Note that for dK(x) = κ(x)1/(d+1)�(K)−1 we have with probability 1

lim
n→∞

(
V (K) − V (Kbd

n )
)
n2/(d−1) = �bd

d �(K)(d+1)/(d−1).

This result should be compared to the approximation of smooth convex bodies
by best-approximating polytopes (12). In particular, by the work of Schütt and
Werner [48] and Mankiewicz and Schütt [35] it follows that �bd

d /(1
2 deld−1) → 1

as the dimension tends to infinity.
The result of Theorem 6 can be stated much more clearly for random points

on the boundary of K . This is due to the fact that an additional random point
chosen on the boundary of K is contained in K\Kbd

n with probability 1. So choose
n random points and thus the random polytope Kbd

n , choose another random
point X according to the density function dK , and denote by Fn(X) the number of
facets of Kbd

n which can be seen from X. The following theorem states, without the
additional remark leading to (16), that the expectation of Fn(X) tends to a positive
constant as n tends to infinity, and that the second moment remains bounded.

THEOREM 10. Let K ∈ K2+ and choose random points X1, . . . ,Xn,X on ∂K

independently and according to a positive continuous density function dK . Then
there is a positive constant Cbd

d depending on the dimension such that

lim
n→∞ EFn(X) = Cbd

d(20)

and there is a positive constant c(K,dK) depending on K and on dK such that

EFn(X)2 ≤ c(K,dK).(21)

Note that Cbd
d only depends on the dimension, and thus (20) is independent of K

and, in particular, independent of the density function dK .
For more information on convex hulls of random points chosen on the boundary

of smooth convex bodies we refer to [14, 23, 28, 36, 38]. Their results should be
compared to results on best-approximation due to Gruber [27] and Glasauer and
Gruber [22].
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3. Tools.

3.1. The first tool. The first tool is a precise description of the local behavior
of the boundary of a smooth convex body. Fix K ∈ K2+. At every boundary point x

of K there is a paraboloid Q
(x)
2 —given by a quadratic form b

(x)
2 —osculating ∂K

at x. Q
(x)
2 and b

(x)
2 can be defined in the following way: identify the hyperplane

tangent to K at x with R
d−1 and x with the origin. Then there is a convex function

f (x)(y) ∈ C2, y = (y1, . . . , yd−1) ∈ R
d−1 representing ∂K in a neighborhood

of x, that is, (y, f (x)(y)) ∈ ∂K . Denote by f
(x)
ij (0) the second partial derivatives

of f (x) at the origin. Then

b
(x)
2 (y) := 1

2

∑
i,j

f
(x)
ij (0)yiyj

and

Q
(x)
2 := {

(y, z) | z ≥ b
(x)
2 (y)

}
.

The essential point in the following lemma is the fact that these paraboloids
approximate the boundary of K uniformly for all x ∈ ∂K .

LEMMA 11. Let K ∈ K2+ be given. Choose δ > 0 sufficiently small. Then
there exists a λ > 0 only depending on δ and K , such that for each boundary
point x of K the following holds: identify the hyperplane tangent to K at x

with R
d−1 and x with the origin. The λ-neighborhood Uλ of x in ∂K defined

by projRd−1 Uλ = λBd−1 can be represented by a convex function f (x)(y) ∈ C2,
y ∈ λBd−1. Furthermore,

(1 + δ)−1b
(x)
2 (y) ≤ f (x)(y) ≤ (1 + δ)b

(x)
2 (y),(22) √

1 + |gradf (x)(y)|2 ≤ (1 + δ)(23)

and

(1 + δ)−12b
(x)
2 (y) ≤ (y,0) · nK(y) ≤ (1 + δ) 2b

(x)
2 (y)(24)

for y ∈ λBd−1, where nK(y) is the outer unit normal vector of K at the boundary
point (y, f (x)(y)).

The proof of this lemma is contained in [38].
In particular, fix some δ1 with 0 < δ1 ≤ 1 and denote by λ1 the corresponding λ

and define

h1 := 1
2λ2

1 min
x∈∂K,v∈Sd−1

b
(x)
2 (v) > 0.(25)



2146 M. REITZNER

Let the cap K ∩ H+ be the intersection of K with a half space H+ and define the
height of the cap K ∩ H+ as the maximal distance of the points in K ∩ H+ to the
hyperplane ∂H+. Then the boundary of each cap of K with height less than h1
can be represented by a convex function fulfilling (22) and (23) with δ = δ1 and
λ = λ1.

3.2. The second tool. The second tool is the Efron–Stein jackknife inequal-
ity [20]; see also [19, 30].

If S = S(Y1, . . . , Yn) is any real symmetric function of the independent identi-
cally distributed random vectors Yj , 1 ≤ j < ∞, we set Si = S(Y1, . . . , Yi−1, Yi+1,

. . . , Yn+1) and S(·) = 1
n+1

∑n+1
i=1 Si . The Efron–Stein jackknife inequality then says

VarS ≤ E

n+1∑
i=1

(Si − S(·))2 = (n + 1)E(Sn+1 − S(·))2.(26)

Note that the right-hand side is not decreased if S(·) is replaced by any other
function of Y1, . . . , Yn+1.

We apply this inequality to the random variable f (Kn) where f (·) is a function
of the random polytope. Then Sn+1 = f (conv[X1, . . . ,Xn]) = f (Kn), and we
replace S(·) by f (Kn+1) which is a function of the convex hull of Kn and a further
random point Xn+1.

In the case that f (·) is the volume of the random polytope (26) implies

VarV (Kn) ≤ (n + 1)E
(
V (Kn+1) − V (Kn)

)2
,(27)

and if f (·) denotes the number of vertices of Kn we obtain

VarN(Kn) ≤ (n + 1)E
(
N(Kn+1) − N(Kn)

)2
.(28)

4. Proof of Theorem 1. Let K ∈ K2+ be given, and assume that V (K) = 1.
We have to prove that E(V (Kn+1)− V (Kn))

2 is at least of order n−1−(d+3)/(d+1).
Choose random points X1, . . . ,Xn in K independently and according to the

uniform distribution. First we exclude those cases where the Hausdorff distance
of Kn to K is greater than εK with

εK := 1
144 min

x∈∂K,v∈Sd−1
b2(v)

(
max

x∈∂K,v∈Sd−1
b2(v)

)−1

h1,(29)

where h1 is defined in (25). If δ(Kn,K) > εK , then there exists a facet of Kn whose
affine hull cuts off a cap of height at least εK from K and which contains no further
random point. Since the volume of all caps of height at least εK is bounded from
below by a positive constant cK > 0, it is immediate that

P
(
δ(Kn,K) > εK

) ≤
(

n

d

)
(1 − cK)n−d = O

(
nd(1 − cK)n

)
.
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Hence for computing VarV (Kn) we assume that δ(Kn,K) < εK and add an error
term O(nd(1 − cK)n). In particular, we assume that the origin is contained in Kn.

For I = {i1, . . . , id } ⊂ {1, . . . , n} denote by FI the convex hull of Xi1 , . . . ,Xid

which is a (d −1)-dimensional simplex. The affine hull of FI is denoted by H(FI).
This hyperplane dissects R

d into two (closed) half spaces, and we denote that half
space which contains the origin by H0(FI), and the other by H+(FI). (The origin
is contained in exactly one half space with probability 1.)

Observe that Kn+1\Kn is either empty (if Xn+1 ∈ Kn) or consists of several
simplices which are the convex hull of Xn+1 and those facets of Kn which can be
seen from Xn+1. Denote the set of these facets by F (Xn+1), that is,

F (Xn+1)

= F (X1, . . . ,Xn;Xn+1)(30)

= {
FI :Kn ⊂ H0(FI),Xn+1 ∈ H+(FI), I = {i1, . . . , id} ⊂ {1, . . . , n}}.

Then

E
(
V (Kn+1) − V (Kn)

)2

=
∫
K

· · ·
∫
K

( ∑
F∈F (Xn+1)

V (conv[F,Xn+1])
)2

dX1 · · · dXn dXn+1

≤
∫
K

· · ·
∫
K

(∑
I

I (FI ∈ F (Xn+1))V+(FI)

)2

dX1 · · · dXn dXn+1

+ O
(
nd(1 − cK)n

)
,

(31)

where V+(FI) denotes the volume of K ∩H+(FI), the summation extends over all
subsets I = {i1, . . . , id} of {1, . . . , n}, and the integration over all n-tuples of points
in K such that δ(Kn,K) < εK .

In the first step we expand the integrand:

≤ ∑
I

∑
J

∫
K

· · ·
∫
K

I
(
FI ∈ F (Xn+1)

)
V+(FI)

× I
(
FJ ∈ F (Xn+1)

)
V+(FJ) dX1 · · · dXn dXn+1

+ O
(
nd(1 − cK)n

)
,

(32)

where the summation extends over all subsets I = {i1, . . . , id} and J = {j1, . . . , jd}
of {1, . . . , n}.

The summation determines two subsets {i1, . . . , id} and {j1, . . . , jd} of
{1, . . . , n} that may have nonempty intersection. If we fix the number of common
integers, say k, then the corresponding term in (32) is independent of the choice
of i1, . . . , id and j1, . . . , jd . For given k ∈ {0, . . . , d} denote by F1 the convex hull
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of X1, . . . ,Xd and by F2 the convex hull of Xd−k+1, . . . ,X2d−k . Then we obtain

≤
d∑

k=0

(
n

d

)(
d

k

)(
n − d

d − k

)

×
∫
K

· · ·
∫
K

I
(
F1 ∈ F (Xn+1)

)
V+(F1)

× I
(
F2 ∈ F (Xn+1)

)
V+(F2) dX1 · · · dXn dXn+1

+ O
(
nd(1 − cK)n

)
.

(Note that for k = d we have F1 = F2.) Since the integrand is a symmetric function
of the two sets of random points (X1, . . . ,Xd−k) and (Xd+1, . . . ,X2d−k), we
restrict our integration to those pairs of facets where the diameter of K ∩H(F2) is
smaller than the diameter of K ∩ H(F1):

≤
d∑

k=0

2
(

n

d

)(
d

k

)(
n − d

d − k

)

×
∫
K

· · ·
∫
K

I
(
F1 ∈ F (Xn+1)

)
V+(F1)I

(
F2 ∈ F (Xn+1)

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)
× dX1 · · · dXn dXn+1

+ O
(
nd(1 − cK)n

)
.

In the second step we estimate this expression by replacing I (F2 ∈ F (Xn+1))

by I (H(F2) ∩ H(F1) 
= ∅) since the sets K ∩ H+(F1) and K ∩ H+(F2) have at
least the point Xn+1 in common:

≤
d∑

k=0

2
(

n

d

)(
d

k

)(
n − d

d − k

)

×
∫
K

· · ·
∫
K

I
(
F1 ∈ F (Xn+1)

)
V+(F1)I

(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)
× dX1 · · · dXn dXn+1

+ O
(
nd(1 − cK)n

)
.

Because F1 ∈ F (Xn+1) if and only if the points X2d−k+1, . . . ,Xn are contained
in H0(F1) and Xn+1 is contained in H+(F1), the integration with respect to
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X2d−k+1, . . . ,Xn,Xn+1 yields

≤
d∑

k=0

2
(

n

d

)(
d

k

)(
n − d

d − k

)

×
∫
K

· · ·
∫
K

(
1 − V+(F1)

)n−2d+k
V+(F1)

2I
(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)
dX1 · · · dX2d−k

+ O
(
nd(1 − cK)n

)
.

In the next step we investigate∫
K

· · ·
∫
K

I
(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)
dXd+1 · · · dX2d−k.

Since the height h(F1) of the cap K ∩ H(F1) is less than εK (and thus < h1) we
can apply Lemma 11 with δ = δ1. To this end identify the hyperplane in H+(F1)

tangent to ∂K and parallel to H(F1) with R
d−1. Then the boundary of K can

be represented by a convex function f (y) with y ∈ R
d−1. We introduce polar

coordinates: Set y = rv with r ∈ R+ and v ∈ Sd−1. The representation (22) of
the points (rv, f (rv)) in ∂K ∩ H(F1) thus gives

h(F1) = f (rv) ≥ 1
2r2b2(v)

or, equivalently,

r2 ≤ 2h(F1)b2(v)−1,

and thus the diameter of K ∩ H(F1) is bounded from above:

diam
(
K ∩ (H(F1))

) ≤ 2 max
v∈Sd−1

r ≤ 23/2h(F1)
1/2

(
min

v∈Sd−1
b2(v)

)−1/2

.

Since the diameter of K ∩ H(F2) is bounded by the diameter of K ∩ H(F1), it is
clear that the projection of K ∩H(F2) onto R

d−1 is contained in a ball with radius

323/2h(F1)
1/2

(
min

v∈Sd−1
b2(v)

)−1/2

.

Using (22) we thus see that the maximal distance of K ∩H(F2) to R
d−1 is bounded

from above by

c̄h(F1) = 144
(

min
v∈Sd−1

b2(v)

)−1

max
v∈Sd−1

b2(v)h(F1) (< h1),

where c̄ is independent of F1 and F2. This implies that the cap K ∩ H+(F2) and
thus also the random points Xd+1, . . . ,X2d−k ∈ K ∩H(F2) are contained in a cap
K ∩ H+ with height c̄h(F1), where ∂H+ is parallel to H(F1).
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Hence∫
K

· · ·
∫
K

I
(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)
dXd+1 · · · dX2d−k

≤
∫
K

· · ·
∫
K

I
(
Xd+1 · · ·dX2d−k ∈ K ∩ H+

)
V+(H+) dXd+1 · · · dX2d−k

≤ V+(H+)d−k+1

≤ c̄ d(d−k+1)V+(F1)
d−k+1

(33)

since c̄ > 1 and thus the cap K ∩ H+ is contained in the cap c̄(K ∩ H+(F1)).
The last step is easy:

E
(
V (Kn+1) − V (Kn)

)2

≤ 2c̄ d2+d
d∑

k=0

(
n

d

)(
d

k

)(
n − d

d − k

)

×
∫
K

· · ·
∫
K

(
1 − V+(F1)

)n−2d+k
V+(F1)

d−k+3 dX1 · · · dXd

+ O
(
nd(1 − cK)n

)
,

where now we skip the assumption that F1 is sufficiently close to the boundary
of K . By Lemma 12 in Section 11 we see that each of the summands is bounded
from above by(

n

d

)(
d

k

)(
n − d

d − k

){
cd�(K)n−2d+k−2−2/(d+1) + o

(
n−2d+k−2−2/(d+1))}

≤ cn−2−2/(d+1)

with a suitable constant c since the binomial coefficients are of order n2d−k.
Combined with the Efron–Stein jackknife inequality (27) this proves Theorem 1.

5. Proof of Theorem 2. Choose a sequence of random points Xi , 1 ≤ i < ∞,
in K independently and according to the uniform distribution, and let Kn =
conv[X1, . . . ,Xn]. Then Chebyshev’s inequality together with Theorem 1 yields

P

(∣∣(V (K) − V (Kn)
) − E

(
V (K) − V (Kn)

)∣∣n2/(d+1) ≥ ε
)

≤ ε−2n4/(d+1) VarV (Kn)

≤ c(K)ε−2n−(d−1)/(d+1).

Since the sum
∑

n
−(d−1)/(d+1)
k is finite for nk = k4 we thus see that the

probabilities

P

(∣∣(V (K) − V (Knk
)
) − E

(
V (K) − V (Knk

)
)∣∣n2/(d+1)

k ≥ ε
)
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are summable. By the Borel–Cantelli lemma and (1), this implies that

lim
k→∞

(
V (K) − V (Knk

)
)
nk

2/(d+1) = �d�(K)(34)

with probability 1. Since V (K) − V (Kn) is decreasing,

(
V (K) − V (Knk

)
)
nk−1

2/(d+1)

≤ (
V (K) − V (Kn)

)
n2/(d+1) ≤ (

V (K) − V (Knk−1)
)
nk

2/(d+1)

for nk−1 ≤ n ≤ nk, where by definition nk+1/nk → 1, and thus the subsequence
limit (34) suffices to prove Theorem 2.

6. Proof of Theorem 6. Choose n random points X1, . . . ,Xn in K inde-
pendently and according to the uniform distribution, and further another random
point X in K . Using the notation introduced in (30) we have

EFn(X) =
∫
K

· · ·
∫
K

∑
I
(
FI ∈ F (X)

)
dX1 · · · dXn dX,

where the summation extends over all subsets I = {i1, . . . , id} of {1, . . . , n}. This
integral is independent of the choice of i1, . . . , id , and hence is equal to(

n

d

)∫
K

· · ·
∫
K

I
(
F1 ∈ F (X)

)
dX1 · · · dXn dX,

where F1 denotes the convex hull of X1, . . . ,Xd . Integrating with respect to
X,Xd+1, . . . ,Xn gives

=
(

n

d

)∫
K

· · ·
∫
K

(
1 − V+(F1)

)n−d
V+(F1) dX1 · · · dXd + O

(
nd(1 − cK)−n

)
,

where we assumed that δ(Kn,K) < εK and thus that the origin is contained in Kn.
By Lemma 12 this implies

=
(

n

d

){
cd�(K)n−d−2/(d+1) + o

(
n−d−2/(d+1))} + O

(
nd(1 − cK)−n)

as n → ∞. As
(n
d

)
is of order nd , this proves the first part of Theorem 6.

To prove the second part of Theorem 6 one has to investigate the integral

EFn(X)2 =
∫
K

· · ·
∫
K

(∑
I
(
FI ∈ F (X)

))2
dX1 · · · dXn dX,

which is the same as (31) but where the term V+(FI) is removed. A trivial
modification of the proof of Theorem 1 thus gives the desired result.
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7. Proof of Theorem 3. We have to investigate

E
(
N(Kn+1) − N(Kn)

)2
.

Let Kn be fixed. Now, if the additional random point Xn+1 is contained in Kn, the
variable N(Kn+1) − N(Kn) equals to 0. But, for Xn+1 /∈ Kn some of the vertices
of Kn are contained in the interior of Kn+1, say N−(Xn+1), and we have

N(Kn+1) − N(Kn) = 1 − N−(Xn+1).

Note that since Kn is simplicial with probability 1, it follows that

N−(Xn+1) ≤ dFn(Xn+1).

Summarizing, we obtain

|N(Kn+1) − N(Kn)| ≤ (d + 1)Fn(Xn+1).

By the Efron–Stein jackknife inequality (28) and by Theorem 6 this implies

VarN(Kn) ≤ (n + 1)E
(
N(Kn+1) − N(Kn)

)2

≤ (d + 1)2(n + 1)EFn(Xn+1)
2

≤ (d + 1)2cn(d−1)/(d+1).

8. Proof of Theorem 4. Choose a sequence of random points Xi , 1 ≤ i < ∞,
in K independently and according to the uniform distribution, and let Kn =
conv[X1, . . . ,Xn]. Then using Chebyshev’s inequality together with the upper
bound (10) yields

P
(|N(Kn) − EN(Kn)|n−(d−1)/(d+1) ≥ ε

) ≤ ε−2n−2(d−1)/(d+1) VarN(Kn)(35)

≤ c(K)ε−2n−(d−1)/(d+1).(36)

We thus see that for d ≥ 4 the probabilities P(|N(Knk
) − EN(Knk

)| ×
nk

−(d−1)/(d+1) ≥ ε) are summable for nk = k2. This implies that

lim
k→∞N(Knk

)nk
−(d−1)/(d+1) = �d�(K)

with probability 1.
Since N(Kn) is not necessarily a monotone function [observe that it can happen

that N(Kn) > N(Kn+1) if more then one vertex of Kn is contained in the interior
of Kn+1] it is not trivial to deduce the convergence of the sequence N(Kn) from
the convergence of the subsequence N(Knk

). What helps is the observation that
N(Kn) increases at most by one if an additional point is added to Kn. So

N(Knk
) − (nk − n) ≤ N(Kn) ≤ N

(
Knk−1

) + (n − nk−1)
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for nk−1 = (k − 1)2 ≤ n ≤ nk = k2, which proves that N(Kn)n
−(d−1)/(d+1) is

bounded from below by

N(Knk
)n

−(d−1)/(d+1)
k

(
nk−1

nk

)−(d−1)/(d+1)

− (nk − nk−1)nk
−(d−1)/(d+1)

and form above by

N(Knk−1)n
−(d−1)/(d+1)
k−1

(
nk

nk−1

)−(d−1)/(d+1)

+ (nk − nk−1)nk
−(d−1)/(d+1).

Since nk+1/nk → 1, and (nk − nk−1)nk
−(d−1)/(d+1) → 0 for d ≥ 4 this proves

Theorem 4.

9. Sketch of proof of Theorem 8. Analogously to the proof of Theorem 1
we restrict our investigations to random polytopes with δ(Kbd

n ,K) < εK. Using
the notation introduced in (30) we have

E
(
V (Kbd

n+1) − V (Kbd
n )

)2

≤
∫
∂K

· · ·
∫
∂K

(∑
I

I
(
FI ∈ F (Xn+1)

)
V+(FI)

)2

(37)

×
n+1∏
m=1

dK(Xm)dX1 · · · dXn dXn+1

+ O
(
nd(1 − cbd

K )n
)
,

where the summation extends over all subsets I = {i1, . . . , id} of {1, . . . , n} and the
integration over all random points such that δ(Kbd

n ,K) < εK . This expression can
be estimated by

d∑
k=0

2
(

n

d

)(
d

k

)(
n − d

d − k

)

×
∫
∂K

· · ·
∫
∂K

I (F1 ∈ F (X))V+(F1)I (H(F2) ∩ H(F1) 
= ∅)V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)

×
n+1∏
m=1

dK(Xm)dX1 · · · dXn dXn+1

+ O
(
nd(1 − cbd

K )n
)
,
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where F1 denotes the convex hull of X1, . . . ,Xd and F2 the convex hull of
Xd−k+1, . . . ,X2d−k . Integrating with respect to X2d−k+1, . . . ,Xn+1 yields

d∑
k=0

2
(

n

d

)(
n − d

d − k

)

×
∫
∂K

· · ·
∫
∂K

(
1 − S+(F1)

)n−2d+k
S+(F1)V+(F1)

× I
(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)

×
2d−k∏
m=1

dK(Xm)dX1 · · · dX2d−k

+ O
(
nd(1 − cbd

K )n
)
.

Here S+(F1) is the weighted surface area
∫
H+(F1)∩∂K dK(x) dx.

The arguments used to deduce (33) show that the cap K ∩H+(F2) and thus also
the random points Xd+1, . . . ,X2d−k ∈ K ∩ H(F2) are contained in a cap K ∩ H+
with height c̄h(F1). Since the cap K ∩H+ is contained in the cap c̄(K ∩H+(F1)),∫

∂K
· · ·

∫
∂K

I
(
H(F2) ∩ H(F1) 
= ∅

)
V+(F2)

× I
(
diam(K ∩ H(F2)) < diam(K ∩ H(F1))

)

×
2d−k∏

m=d+1

dK(Xm)dXd+1 · · · dX2d−k

≤
∫
∂K

· · ·
∫
∂K

I (Xd+1 · · ·dX2d−k ∈ K ∩ H+)V+(H+)

×
2d−k∏

m=d+1

dK(Xm)dXd+1 · · · dX2d−k

≤ S+(H+)d−kV+(H+)

≤ c
(d−1)(d−k)+d

S+(F1)
d−kV+(F1),

where

c = max∂K dK(x)

min∂K dK(x)
c̄.

Now by Lemma 13 and since the binomial coefficients are of order n2d−k , each
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of the summands

2
(

n

d

)(
d

k

)(
n − d

d − k

)
c

(d−1)(d−k)+d

×
∫
∂K

· · ·
∫
∂K

(
1 − S+(F1)

)n−2d+k
S+(F1)

d−k+1V+(F1)
2

×
d∏

m=1

dK(Xm)dX1 · · · dXd

is bounded from above by

n2d−kc
d2{

cd�2,dK
(K)n−2d+k−2(d+1)/(d−1) + o

(
n−2d+k−2(d+1)/(d−1))}

≤ cn−2(d+1)/(d−1)

with a suitable constant c.
Combined with the Efron–Stein jackknife inequality this shows

VarV (Kbd
n ) ≤ (n + 1)E

(
V (Kbd

n+1) − V (Kbd
n )

)2 ≤ cn−1−4/(d−1),

which proves Theorem 8.

10. Sketch of proof of Theorem 10. Analogously to the proof of Theorem 6
we have

EFn(X) =
∫
∂K

· · ·
∫
∂K

∑
I
(
FI ∈ F (X)

) n∏
m=1

dK(Xm)dK(X)dX1 · · · dXn dX

=
(

n

d

)∫
∂K

· · ·
∫
∂K

(
1 − S+(F1)

)n−d
S+(F1)

d∏
m=1

dK(Xm)dX1 · · · dXd

+ O
(
nd(1 − cbd

K )−n
)

=
(

n

d

){
cdn

−d + o(n−d)
}

by Lemma 13 as n → ∞. As
(n
d

)
is of order nd this proves the first part of

Theorem 10.
To prove the second part of Theorem 10 one has to investigate the integral

EFn(X)2

=
∫
∂K

· · ·
∫
∂K

(∑
I
(
FI ∈ F (X)

))2 n∏
m=1

dK(Xm)dK(X)dX1 · · · dXn dX,

which is the same as (37) but where the term V+(FI) is removed. A trivial
modification of the proof of Theorem 8 thus gives the result.
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11. The expected volume of random caps. This section contains the more
technical part of the proofs of Theorems 1, 6, 8 and 10.

Let K ∈ K2+ be given. Assume that V (K) = 1 and that the origin is contained
in the interior of K . Choose random points X1, . . . ,Xd in K independently
and according to the uniform distribution. The convex hull of X1, . . . ,Xd is a
(d −1)-dimensional simplex whose affine hull is denoted by H(X1, . . . ,Xd). This
hyperplane dissects R

d into two (closed) halfspaces, and we denote that halfspace
which contains the origin by H0(X1, . . . ,Xd), and the other by H+(X1, . . . ,Xd).
Let V+ = V+(X1, . . . ,Xd) be the volume of H+(X1, . . . ,Xd) ∩ K . In the
following lemma we establish an asymptotic formula for the expectation of
(1 − V+)n−iV k+. The method of proof of this lemma is well known. We include
it here in detail for the sake of completeness.

LEMMA 12. Let K ∈ K2+ with V (K) = 1 and 0 ∈ K , and choose random
points X1, . . . ,Xd in K independently and according to the uniform distribution.
Then for fixed i, k ∈ N,

E
(
(1 −V+)n−iV k+

) = cd(k)�(K)n−k−d+1−2/(d+1) + o
(
n−k−d+1−2/(d+1)

)
(38)

as n → ∞.

PROOF. In a first step we transform the integral

E
(
(1 − V+)n−iV k+

) =
∫
K

· · ·
∫
K

(1 − V+)n−iV k+ dX1 · · · dXd

using the Blaschke–Petkantschin formula (cf., e.g., [41], II.12.3),∫
K

· · ·
∫
K

· · · dX1 · · · dXd

= (d − 1)!
∫
H∈H(d,d−1)

∫
K∩H

· · ·
∫
K∩H

· · ·Vd−1(conv[X1, . . . ,Xd ])
× dX1 · · · dXd dH,

(39)

where Vd−1(A) denotes the (d − 1)-dimensional volume of A. The Blaschke–
Petkantschin formula relates the d-dimensional volume elements dXj of the points
Xj ∈ K to the (d − 1)-dimensional volume elements dXj of points Xj ∈ K ∩ H ,
where H is a random hyperplane in R

d . (Throughout this section we denote by dX

the j -dimensional volume element corresponding to the j -dimensional Hausdorff
measure on a given space. The space itself, and thus its dimension, and thus the
precise meaning of dX, is determined by the range of integration.) The differential
dH corresponds to the suitably normalized rigid motion invariant Haar measure
on the Grassmannian H(d, d − 1) of hyperplanes in R

d . A hyperplane can be
parametrized by its unit normal vector u ∈ Sd−1 and its distance h to the origin.
Denoting by du the element of surface area on Sd−1 we have dH = dudh. Note
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that the integrand vanishes for h > hK(u) where hK(u) is the support function
of K in direction u. Also note that V+ = V+(h,u) only depends on H(h,u) but
not on the relative position of the points Xj ∈ H(h,u). This yields∫

K
· · ·

∫
K

(1 − V+)n−iV k+ dX1 · · · dXd

= (d − 1)!
∫
Sd−1

∫ hK(u)

0
(1 − V+)n−iV k+IK∩H(h,u) dhdu

with

IK∩H(h,u)

=
∫
K∩H(h,u)

· · ·
∫
K∩H(h,u)

Vd−1(conv[X1, . . . ,Xd ])
× dX1 · · · dXd.

Now let u ∈ Sd−1 be fixed. The proof of Lemma 12 consists of showing that∫ hK(u)

0
(1 − V+)n−iV k+IK∩H(h,u) dh ∼ c4κ(u)−1+1/(d+1)n−k−d+1−2/(d+1)(40)

[equation (48)] uniformly in u.
As K is of class K2+ there is an unique point x ∈ ∂K with outer normal vector u.

Choose δ > 0 sufficiently small. By Lemma 11 there exists a λ = λ(δ) > 0 such
that the λ-neighborhood of x in ∂K can be represented by a convex function
f (x)(y) fulfilling (22) and (23). Choose ε > 0 such that for each u the intersection
H+(hK(u) − ε,u) ∩ ∂K is contained in the λ-neighborhood of the boundary
point x. Furthermore we assume that hK(u) ≥ ε for any u. This implies that for
all u the halfspace H+(hK(u) − ε) cuts off from ∂K the point x.

We split the integral (40) into two parts: h ∈ [0, hK(u) − ε] and h ∈ [hK(u) −
ε,hK(u)].

Estimating the integral∫ hK(u)−ε

0
(1 − V+)n−iV k+IK∩H(h,u) dh

is easy. As IK∩H(h,u) is always bounded by a constant γ1 independent of h and u,
as V+ ≤ 1, and since there exists a constant γ2 = γ2(δ) > 0 independent of u with
V+ = V+(h,u) ≥ γ2 for h ≤ hK(u) − ε, we have

0 ≤
∫ hK(u)−ε

0
(1 − V+)n−iV k+IK∩H(h,u) dh ≤ γ1(1 − γ2)

n−i(hK(u) − ε
)
.(41)

Estimating the second part of the integral is more difficult. Let R
d = {(y, z) |

y ∈ R
d−1, z ∈ R}. For the moment identify the tangent hyperplane to ∂K at x with

the plane z = 0 and x with the origin such that K is contained in the halfspace z ≥ 0
and u coincides with (0,−1). Define H(h) to be the hyperplane parallel to z = 0
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with distance z = hK(u) − h to the origin, and let H+(h) be the corresponding
halfspace cutting off from ∂K the point x, that is, the new origin.

We introduce polar coordinates: let R
d = (R+ × Sd−2) × R and thus denote by

(rv, z) a point in R
d , r ∈ R

+, v ∈ Sd−2, z ∈ R. Since K ∈ K2+ the λ-neighborhood
of x in ∂K can be represented by a convex function f (x)(rv). For abbreviation

write b2(·) and f (·) instead of b
(x)
2 (·) and f (x)(·):

(1 + δ)−1b2(v)r2 ≤ z = f (rv) ≤ (1 + δ)b2(v)r2.(42)

By choosing a suitable Cartesian coordinate system in R
d−1 the coefficient b2(v)

can be written as

b2(v) = 1
2

(
k1〈v, e1〉2 + · · · + kd−1〈v, ed−1〉2)

and since for all boundary points of K the principal curvatures ki are bounded from
below and above by positive constants the same holds for b2(v). Inequality (42)
implies

(1 + δ)−1/2b2(v)−1/2z1/2 ≤ r = r(v, z) ≤ (1 + δ)1/2b2(v)−1/2z1/2,(43)

where r is the radial function of K ∩ H(h). From this we obtain estimates for the
(d − 1)-dimensional volume of K ∩ H(h):

(1 + δ)−(d−1)/2c1κ(u)−1/2z(d−1)/2

(44) ≤ Vd−1(K ∩ H(h)) ≤ (1 + δ)(d−1)/2c1κ(u)−1/2z(d−1)/2

with a suitable constant c1 > 0. [Recall that z = hK(u) − h.]
For given z (43) means that K ∩ H(h) contains an ellipsoid E− defined

by (1 + δ)−1b2(v)r2 = z, respectively, is contained in an ellipsoid E+ defined by
(1 + δ)b2(v)r2 = z. We are interested in the value of

IK∩H(h) =
∫
K∩H(h)

· · ·
∫
K∩H(h)

Vd−1(conv[X1, . . . ,Xd ]) dX1 · · · dXd.

Clearly if the range of integration is increased, respectively, decreased, I will
increase, respectively, decrease:

IE− ≤ IK∩H ≤ IE+ .

Note that these integrals are invariant under volume-preserving affinities, that is,
they do not depend on the shape of the ellipsoids but only on their volumes.
Hence IE− , respectively, IE+ , is proportional to Vd−1(E−)d+1, respectively,
Vd−1(E+)d+1. Thus there exists a suitable constant c2 for which

(1 + δ)−(d2−1)/2c2κ(u)−(d+1)/2z(d2−1)/2

(45)
≤ IK∩H(h) ≤ (1 + δ)(d

2−1)/2c2κ(u)−(d+1)/2z(d2−1)/2.
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By definition,

V+ =
∫ hK(u)

h
Vd−1(K ∩ H(p)) dp(46)

which by (44) implies

(1 + δ)−(d−1)/2 2

d + 1
c1κ(u)−1/2z(d+1)/2

(47)

≤ V+ ≤ (1 + δ)(d−1)/2 2

d + 1
c1κ(u)−1/2z(d+1)/2.

Now we are ready to estimate the integral

∫ hK(u)

hK(u)−ε
(1 − V+)n−iV k+IK∩H(h) dh.

Note that (46) is equivalent to

dV+
dh

= −Vd−1(K ∩ H(h)),

which implies

∫ hK(u)

hK(u)−ε
(1 − V+)n−iV k+IK∩H(h) dh

=
∫ V+(h=hK(u)−ε)

0
(1 − V+)n−iV k+IK∩H(V+)Vd−1(K ∩ H(V+))−1 dV+,

where H(V+) denotes the hyperplane parallel to z = 0 cutting off from K a cap of
volume V+.

Combining this with (45) and (44) yields

(1 + δ)(d−1)d(d+3)/(d+1)c3κ(u)−1+1/(d+1)

×
∫ V+(h=hK(u)−ε)

0
(1 − V+)n−iV

k+d−2+2/(d+1)
+ dV+

≤
∫ hK(u)

hK(u)−ε
(1 − V+)n−iV k+IK∩H(h) dh

≤ (1 + δ)−(d−1)d(d+3)/(d+1)c3κ(u)−1+1/(d+1)

×
∫ V+(h=hK(u)−ε)

0
(1 − V+)n−iV

k+d−2+2/(d+1)
+ dV+

with a suitable constant c3.
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Thus we are interested in the asymptotic behavior of the integral

∫ V+(h=hK(u)−ε)

0
(1 − V+)n−iV

k+d−2+2/(d+1)
+ dV+

= B
(
n − i + 1, k + d − 1 + 2

d + 1

)

+ O
(
(1 − γ2)

n−i
)

as n → ∞. [Recall that V+ ≥ γ2 for h ≤ hK(u)−ε.] Since the asymptotic behavior
of the Beta-function B(·, ·) is well known (cf., e.g., [16], page 60),

B(n − i + 1, t) = �(t)n−t + O(n−t−1)

as n → ∞, this yields the following bounds:

(1 + δ)(d−1)d(d+3)/(d+1)

× c4κ(x)−1+1/(d+1)
(
n−k−d+1−2/(d+1) + O

(
n−k−d−2/(d+1)

))

≤
∫ hK(u)

hK(u)−ε
(1 − V+)n−iV k+IK∩H dp(48)

≤ (1 + δ)−(d−1)d(d+3)/(d+1)

× c4κ(x)−1+1/(d+1)
(
n−k−d+1−2/(d+1) + O

(
n−k−d−2/(d+1)

))

as n → ∞, where the constant in O(·) and the constant c4 are independent of x.
Concerning the remaining integration note that the term

∫
Sd−1

κ(u)−1+1/(d+1) du =
∫
∂K

κ(x)1/(d+1) dx

is the affine surface area �(K). Since the terms in (41) are of smaller order,
(48) implies

(1 + δ)(d−1)d(d+3)/(d+1)c5�(K)
(
n−k−d+1−2/(d+1) + O

(
n−k−d−2/(d+1)

))
≤ E

(
(1 − V+)n−iV k+

)
≤ (1 + δ)−(d−1)d(d+3)/(d+1)c5�(K)

(
n−k−d+1−2/(d+1)+ O

(
n−k−d−2/(d+1)

))

as n → ∞ with a suitable constant c5. This holding for each δ, δ > 0 proves
Lemma 12. �
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For the proofs of Theorems 8 and 10 we need an analogous result for random
points chosen on the boundary of the convex body K . Let K be given, assume
that the origin is contained in the interior of K , and let dK be a positive
continuous density function on the boundary of K . Choose random points
X1, . . . ,Xd independently and according to the density function dK . The affine
hull of X1, . . . ,Xd dissects the space into two halfspaces, into the halfspace
H0(X1, . . . ,Xd) which contains the origin, and into H+(X1, . . . ,Xd). Denote
by V+ the volume of H+(X1, . . . ,Xd) ∩ K , and by S+ the weighted surface area
of H+(X1, . . . ,Xd) ∩ ∂K :

S+ =
∫
H+(X1,...,Xd)∩∂K

dK(x) dx.

LEMMA 13. Let K ∈ K2+, and choose random points X1, . . . ,Xd in K

independently and according to a positive continuous density function dK on the
boundary of K . Then for fixed i, j, k ∈ N,

E
(
(1 − S+)n−iS

j
+V k+

) = cd(j, k)�k,dK
(K)n−j−d+1−k(d+1)/(d−1)

(49)
+ o

(
n−j−d+1−k(d+1)/(d−1)

)
as n → ∞, where

�k,dK
(K) =

∫
∂K

dK(x)1−k(d+1)/(d−1)κ(x)k/(d−1) dx.

The proof of this lemma is similar to the proof of Lemma 12. For details we
refer the reader to [38] where an analogous proof is worked out in detail in Sections
5.2–5.5. Here we only give a sketch of the proof.

PROOF OF LEMMA 13. We transform the integral

E
(
(1 − S+)n−iS

j
+V k+

)

=
∫
∂K

· · ·
∫
∂K

(1 − S+)n−iS
j
+V k+

d∏
m=1

dK(Xm)dX1 · · · dXd

using an analogue of the Blaschke–Petkantschin formula due to Zähle [52]:

dX1 · · · dXd

= (d − 1)!Vd−1(conv[X1, . . . ,Xd ])
d∏

m=1

pH(Xm)−1 dX1|H · · · dXd |H dH,
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where dXj |H denotes the (d − 1)-dimensional volume element of Xj in H ∩ ∂K .
The additional term pH(Xm) is the length of the projection of the outer unit normal
vector of K at Xm onto the hyperplane H . This yields

E
(
(1 − S+)n−iS

j
+V k+

)
= (d − 1)!

∫
Sd−1

∫ hK(u)

0
(1 − S+)n−iS

j
+V k+I∂K∩H(h,u) dhdu,

where

I∂K∩H(h,u)

=
∫
∂K∩H(h,u)

· · ·
∫
∂K∩H(h,u)

Vd−1(conv[X1, . . . ,Xd ])

×
d∏

m=1

dK(Xm)pH(h,u)(Xm)−1

× dX1|H(h,u) · · · dXd |H(h,u).

Now let u ∈ Sd−1 be fixed. As K is of class K2+ there is an unique point x ∈ ∂K

with outer normal vector u. Using Lemma 11 we obtain

S+ ∼ c1dK(x)κ(x)−1/2z(d−1)/2,

V+ ∼ c2κ(x)−1/2z(d+1)/2

and

I∂K∩H ∼ c3dK(x)dκ−(d+1)/2z(d2−2d−1)/2,

where ∼ indicates formulae analogously to (44), (47) and (45).
Combining this yields

∫ hK(u)

0
(1 − S+)n−iS

j
+V k+I∂K∩H(h,u) dhdu

∼ c4dK(x)1−k(d+1)/(d−1)κ(x)k/(d−1)−1

×
∫ S+(h=0)

0
(1 − S+)n−iS

j+d−2+k(d+1)/(d−1)
+ dS+

∼ c4dK(x)1−k(d+1)/(d−1)κ(x)k/(d−1)−1n−j−d+1−k(d+1)/(d−1).

The integration with respect to u now yields Lemma 13. �
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12. Sketch of proof of lim E(V (Kn+1) − V (Kn))n(d+3)/(d+1) = c�(K).
Analogously to (31) and using the notation introduced in Section 5, we have

E
(
V (Kn+1) − V (Kn)

)
=

∫
K

· · ·
∫
K

∑
F∈F (Xn+1)

V (conv[F,Xn+1]) dX1 · · · dXn dXn+1

=
(

n

d

)∫
K

· · ·
∫
K

I
(
F1 ∈ F (Xn+1)

)
V (conv[F1,Xn+1]) dX1 · · · dXn dXn+1

=
(

n

d

)∫
K

· · ·
∫
K

(
1 − V+(F1)

)n−d
I
(
Xn+1 ∈ H+(F1)

)
× V (conv[F1,Xn+1]) dX1 · · · dXd dXn+1

+ O
(
nd(1 − cK)n

)
.

Since the volume of the simplex conv[F1,Xn+1] is determined by Vd−1(F1)

and the height hF1(Xn+1) of the simplex, the use of the Blaschke–Petkantschin
formula (39) yields

E
(
V (Kn+1) − V (Kn)

)
=

(
n

d

)
(d − 1)!

d

∫
Sd−1

∫ hK(u)

0
(1 − V+)n−dI(2)

K∩H(h,u)JK∩H(h,u) dhdu

+ O
(
nd(1 − cK)n

)
with

I(2)
K∩H(h,u) =

∫
K∩H(h,u)

· · ·
∫
K∩H(h,u)

Vd−1(conv[X1, . . . ,Xd ])2dX1 · · · dXd

and

JK∩H(h,u) =
∫
K∩H+(h,u)

hF1(Xn+1) dXn+1

=
∫ hK(u)−h

0
tVd−1

(
K ∩ H

(
hK(u) − h + t, u

))
dt.

Fix u and recall that (as in Section 10) z = hK(u) − h. Then by (44),

JK∩H(h,u) ∼ c1κ(u)−1/2
∫ z

0
(z − t)t(d−1)/2 dt

(50)
∼ c2κ(u)−1/2z(d+3)/2,

where ∼ indicates formulae involving upper and lower bounds analogously to (44).
On the other hand, analogously to (45),

I(2)
K∩H(h,u) ∼ c3κ(u)−(d+2)/2z(d2+d+2)/2,
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which combined with (50) implies

I(2)
K∩H(h,u)JK∩H(h,u) ∼ c4κ(u)−(d+3)/2z(d+1)2/2.

Now the proof proceeds as in the proof of Lemma 12: by (47) we obtain

I(2)
K∩H(h,u)JK∩H(h,u) dh ∼ c5κ(u)−1+1/(d+1)V

d+2/(d+1)
+ dV+,

and since∫ 1

0
(1 − V+)n−dV

d+2/(d+1)
+ dV+

= �

(
d + 1 + 2

d + 1

)
n−d−1−2/(d+1) + O

(
n−d−2−2/(d+1)),

we obtain

E
(
V (Kn+1) − V (Kn)

) ∼ c6�(K)n−(d+3)/(d+1)

with a suitable constant c6.
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