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LIMIT BEHAVIOR OF THE BAK–SNEPPEN EVOLUTION MODEL

BY RONALD MEESTER AND DMITRI ZNAMENSKI

Vrije Universiteit

One of the key problems related to the Bak–Sneppen evolution model
on the circle is computing the limit distribution of the fitness at a fixed
observation vertex in the stationary regime as the size of the system tends
to infinity. Some simulations have suggested that this limit distribution is
uniform on (f,1) for some f ∼ 2/3. In this article, we prove that the mean of
the fitness in the stationary regime is bounded away from 1, uniformly in the
size of the system, thereby establishing the nontriviality of the limit behavior.
The Bak–Sneppen dynamics can easily be defined on any finite connected
graph. We also present a generalization of the phase-transition result in the
context of an increasing sequence of such graphs. This generalization covers
the multidimentional Bak–Sneppen model as well as the Bak–Sneppen model
on a tree. Our proofs are based on a “self-similar” graphical representation of
the avalanches.

1. Introduction. The Bak–Sneppen model, introduced in [2], has received a
lot of attention in the literature; see, for instance, [1], [4] and [7]. Bak [1] described
how he and Sneppen were looking for a simple model which was supposed to
exhibit evolutionary behavior and also supposed to fall into the class of processes
that show self-organized critical behavior. For physicists, self-organized critical
behavior refers to power law decay of temporal and spatial quantities. After a
number of attempts, Bak and Sneppen arrived at the following simple process.

Consider a system with N species. These species are represented by N vertices
on a circle, evenly spaced, say. Now each of these species is assigned a so-called
fitness, a number between 0 and 1. The higher the fitness, the better chance the
species has of surviving. The dynamics of evolution is modelled as follows. Every
discrete time step, we choose the vertex with minimal fitness and we think of the
corresponding species as disappearing completely. This species is then replaced
by a new one, with a fresh and independent fitness, uniformly distributed on [0,1].
So far, the dynamics does not have any interaction between the species and does
not result in an interesting process. Indeed, if we only replace the species with the
lowest fitness, then it is easy to see that the system converges to a situation with all
fitnesses equal to 1. Interaction is introduced by also replacing the two neighbors
of the vertex with lowest fitness by new species with independent fitnesses. This
interaction represents co-evolution of related species. This neighbor interaction
makes the model also very interesting from a mathematical point of view.
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It is simple to run this model on a computer. Simulations then suggest the
following behavior, for large N (see [4] and [1] for simulation results). It appears
that the one-dimensional marginals are uniform (in the limit for N → ∞) on
(f,1) for some f whose numerical value is supposed to be close to 2/3. This
threshold value f is the basis for self-organized critical behavior, according to [2],
[1] and [4], as follows. Since in the limit there is no mass below f , one can look
at so-called avalanches of fitnesses below this threshold: starting the counting
at the moment all fitnesses are above f and finishing the counting at the first
next moment all fitnesses are above f again. The random number of updates, for
instance, counted this way, is supposed to follow a power law. For this to make
sense, the conjecture had better be true. This we have not been able to prove.
However, we have been able to prove the weaker result that the mean average
fitness in the stationary regime is bounded away from 1, uniformly in the number
of vertices. Hence, in the limit, there is probability mass of the fitnesses below 1.
Since it is not difficult to show that in the limit there can be no probability mass of
the fitnesses below 1/3, our results establish that the one-dimensional marginals
do not become trivial as N → ∞. For a similar result in a discrete version of this
process, see [6].

Let FN be the distribution function of the one-dimensional marginal in the
stationary regime in the system with N vertices. We prove the following result.

THEOREM 1.1. If q < 1 is close enough to 1, then there exists cq > 0,
independent of N , such that

FN(q) > cq.(1.1)

In Sections 4 and 5, we define the Bak–Sneppen dynamics on arbitrary finite
connected graphs and present a generalization of our results for an increasing
sequences of such graphs.

We remark that corresponding results for a mean-field version of the model are
quite simple to obtain (see, e.g., [3] and [4]). In the mean-field case, it is possible
to prove, using essentially only combinatorics, that the one-dimensional marginals
do indeed converge to a uniform distribution on (c,1) for some constant c which
depends on the characteristics of the model.

In the next section we prepare for the proof of Theorem 1.1 by introducing
the notion of an avalanche and establishing some monotonicity properties of the
avalanches. The proof itself can be found in Section 3.

2. The self-similar graphical representation. Let �(N) = {−N + 1, . . . ,

−1,0} index the set of N vertices on the circle, so that 0 and −N +1 are neighbors.
We use negative indices to simplify notation in the future. We say that in the time
interval [n,n + d], an avalanche from threshold q ∈ [0,1] (also referred to as a
q-avalanche) with origin at x ∈ �(N) and duration d ≥ 1 occurs if at time n,
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x is the vertex with minimal fitness above threshold q and n + d is the first
moment after n with all fitnesses again above q . The range set of the
q-avalanche is the collection of vertices updated during the avalanche and the
range of the q-avalanche is the number of different vertices in the range set. Note
that, according to this definition, if at times n and n+1 all the fitnesses are above q ,
then in the time interval [n,n + 1], an avalanche of range 3 and duration 1 occurs,
even though there were no fitnesses below q .

The fitnesses of the vertices are random variables with values in [0,1] and we
update them according to the uniform distribution on [0,1]. For computational
reasons however, it is convenient for the fitnesses to have values in [0,∞] and to
update them according to the exponential distribution with parameter 1, say. In this
new setup a threshold b corresponds to the threshold q = 1 − e−b in the old setup.

Suppose that a b-avalanche starts at time 0, with the origin at the vertex 0, so that
the vertex 0 and its two neighbors are updated. We can now graphically illustrate
the b-avalanche on �(N) × R

+ (space × fitness) as follows. Look for the vertex
with minimal fitness and call this vertex x. (Note that x must be the vertex 0 or
one of its two neighbors.) Suppose that the fitness of x is equal to s < b. We then
continue updating according to the appropriate rules and wait until all fitnesses are
above the threshold s. This in itself constitutes an s-avalanche, starting at x. We
denote by ξN(x, s) the set of vertices involved in this s-avalanche. In the graphical
representation, we draw an arrow from the space–fitness point (x, s) to the space–
fitness points (i, s) for all i ∈ ξN(x, s).

After the s-avalanche has ended, the new fitnesses of all vertices involved in
this avalanche are independent and identically distributed (i.i.d.) and exponentially
distributed on [s,∞), due to the lack of memory property of the exponential
distribution. We can now look for the minimal fitness among all vertices
in ξN(x, s). If this minimal fitness is above b, then the b-avalanche has stopped.
If this minimal fitness is equal to t , where s < t < b, and is associated with the
vertex y, say, then we start, as before, a t-avalanche with origin y. We continue
updating until all fitnesses are above t . If ξN(y, t) denotes the set of vertices
involved in this t-avalanche, then we draw an arrow in the graphical representation
from the space–fitness point (y, t) to all space–fitness points (i, t) for i ∈ ξN(y, t).
We continue in the obvious way. Under the assumption that all avalanches are
finite, this process will stop a.s. as soon as all fitnesses are above b. The idea of
avalanches which form a hierarchical structure of subavalanches is also mentioned
in [5], in a slightly different context.

This graphical representation, denoted by GRN , is a random graph on the space–
fitness diagram �(N) × R

+. We can describe it more formally as follows.
Let {�k}k∈�(N) be a collection of independent homogeneous Poisson processes.

For each process �k we perform the following procedure. At the j th arrival τk,j

of �k , we draw a pair (ξ̂N(k, τk,j ), η̂N (τk,j )), where ξ̂N (k, τk,j ) is distributed as
the range set and η̂N (τk,j ) is distributed as the duration of a typical τk,j -avalanche,
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FIG. 1. The graphical representation GRN , where, for instance, (k, t)�(k − 2, t + s) in GRN .

with origin at k. We draw arrows in �(N) × R
+ from (k, τk,j ) to (y, τk,j ) for all

y ∈ ξ̂N (k, τk,j ). For any t1 < t2 we say that (x, t1) is connected to (x, t2) by a
time segment. A path is a sequence (x0, s0), . . . , (xn, sn) of points in �(N) × R

+
such that every pair (xj , sj ), (xj+1, sj+1) is connected either by a time segment or
an arrow. For any x, y ∈ Z and t1 ≤ t2 ∈ R, write (x, t1)�(y, t2) in GRN if there
exists a path from (x, t1) to (y, t2). See Figure 1 for an illustration.

For any b > 0, the range set ξN(0, b) of a b-avalanche with origin at 0 consists of
all vertices x such that (0,0)�(x, b) in GRN , and the duration, denoted by ηN(b),
of this avalanche is the sum of η̂N (τx,j ) over all τx,j ≤ b such that (0,0)�(x, τx,j )

in GRN .
The graphical representation provides us with the following monotonicity

properties. For any A ⊂ �(N) and t, s ≥ 0, we denote by ξ
(A,t)
N (s) the random set

of vertices x ∈ �(N) such that there exists y = y(x) ∈ A, and (y, t)�(x, t + s)

in GRN . Similarly, for any A ⊆ �(N) and t, s ≥ 0, we denote by η
(A,t)
N (s) the

sum of η̂N (τx,j ) over all τx,j ≤ t + s such that there exists y = y(x) ∈ A, and
(y, t)�(x, τx,i) in GRN . Then for any A ⊆ B ⊆ �(N), 0 ≤ s1 ≤ s2 and t ≥ 0,

ξ
(A,t)
N (s1) ⊆ ξ

(B,t)
N (s2),

η
(A,t)
N (s1) ≤ η

(B,t)
N (s2).

(2.1)

In particular, for ξN(0, b) = ξ
({−1,0,−N+1},0)
N (b) and ηN(b) = η

({−1,0,−N+1},0)
N (b),

we have

ξN(0, b1) ⊆ ξN(0, b2), ηN(b1) ≤ ηN(b2), if b1 ≤ b2.(2.2)

The last inequality allows us to couple two copies GRN and GR′
N of the graphical

representation in such a way that for any k ∈ �(N), �k(·) restricted to [0, b/2] is
the same as �′

k(·) restricted to [b/2, b], and η̂(τk,j ) ≤ η̂′(τ ′
k,j ) for τk,j ∈ [0, b/2]

and τ ′
k,j ∈ [b/2, b]. See Figure 2 for an illustration of the coupled GRN and GR′

N .
Note that we do not claim that the two copies together yield a realization of the
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FIG. 2. The lower part of GRN and the upper part of GR′
N coupled together.

evolution of the process from 0 to b. Nevertheless, this coupling gives us, for
any b > 0,

η
(�(N),0)
N (b/2) ≤ η

′(�(N),b/2)
N (b/2)

and, hence,

2E
(
η

(�(N),b/2)
N (b/2)

)≥ E
(
η

(�(N),0)
N (b)

)
.(2.3)

3. Proving Theorem 1.1. An important step in the proof of Theorem 1.1
is the following lemma, which estimates the probability that an avalanche has
range N , uniformly in N . For any b ∈ R+, define PN(b) as the probability that
an avalanche has range N .

LEMMA 3.1. If b is large enough, then PN(b) ≥ 1/2, uniformly in N .

PROOF. For any x ∈ A ⊆ �(N), denote by �(x,A) the left corner of A with
respect to x,

�(x,A) = min
{
k ∈ (−∞, x] | [k, x] ⊆ A mod N

}
and write lN (s) := �(0, ξN(0, s)) for the leftmost vertex involved in an s-avalanche
with the origin at 0. We will have proved the lemma if we show that lN is explosive
in the sense that there exists a 0 < b∞ < ∞ such that for any 0 ≤ i ≤ imax =

 log3/2(N − 1)� ∈ N,

P
(
lN(b∞) ≤ max

{−(3
2

)i
,−N + 1

})≥ 1
2 + (1

2

)i+1
,(3.1)
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where the max actually works only at i = imax. Indeed, (3.1) implies that
PN(b∞) ≥ 1

2 . To achieve this, choose a constant b0 ≥ 17. Define a converging
sequence of thresholds b1, b2, b3, . . . as follows:

bi = bi−1 + (3
4

)i
b0, i ≥ 1,

b∞ = lim
i→∞bi = 4b0.

Observe that due to the monotonicity property (2.1), it suffices to prove that for
all i ∈ [0, imax],

P
(
lN(bi) ≤ max

{−(3
2

)i
,−N + 1

})≥ 1
2 + (1

2

)i+1
.(3.2)

We proceed by induction. First note that

P
(
lN(b0) ≤ −1

)= 1.(3.3)

Next, suppose that (3.2) holds for some i ∈ [0, imax − 1]. Observe that{
lN(bi) ≤ −(3

2

)i
,

∃x ∈ [−(3
2

)i
,−1

2

(3
2

)i]∩ �(N), ∃ τx,j ∈ �x ∩ [bi, bi+1)

such that �
(
x, ξ̂N(x, τk,j )

)≤ x − ( 3
2

)i}
implies

{
lN(bi+1) ≤ max

{−(3
2

)i+1
,−N + 1

}}
.

See Figure 3 for an illustration. Hence to finish the inductive step, it suffices to

FIG. 3. Illustration of the induction step.
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show that for all i ∈ [0, imax − 1],

P


∀x ∈ [−(3

2

)i
,−1

2

(3
2

)i]∩ �(N), ∀ τx,j ∈ �x ∩ [bi, bi+1),

�
(
x, ξ̂N(x, τk,j )

)
> x − (3

2

)i

≤ (1

2

)i+2
.(3.4)

Since the �(x, ξ̂N(x, τk,j ))’s are independent and since (due to the monotonicity
property) for any x ∈ �(N) and τx,j ≥ bi ,

P
(
�
(
x, ξ̂N(x, τx,j )

)
> x − (3

2

)i)≤ P
(
lN(bi) > −(3

2

)i)≤ 1
2 ,

the points ⋃
x∈[−( 3

2 )i ,− 1
2 ( 3

2 )i ]∩�(N)

{
τx,j ∈ �x ; �

(
x, ξ̂N(x, τx,j )

)≤ x − (3
2

)i}(3.5)

constitute a thinning of the Poisson process
⋃

x∈[−( 3
2 )i ,− 1

2 ( 3
2 )i ]∩�(N)

�x with

deleting probability at most 1/2. Thus the points in (3.5) contain a Poisson process
of intensity at least

1
2 ·
(

intensity of
⋃

x∈[−( 3
2 )i ,− 1

2 ( 3
2 )i ]∩�(N)

�x

)

≥ 1
2

(⌊(3
2

)i⌋− ⌊1
2

(3
2

)i⌋)≥ 1
2 · 1

3

(3
2

)i
.

Observe that the event in (3.4) implies that the process (3.5) has no arrivals between
time bi and bi+1, a time interval of length b0(

3
4 )i , and hence it has probability at

most

exp
{
−1

6

(
3

2

)i

b0

(
3

4

)i}
= exp

{
−b0

6

(
9

8

)i}
≤
(

1

2

)i+2

, i ∈ N,

since b0 ≥ 17. So we have (3.4) and the proof is complete. �

PROOF OF THEOREM 1.1. Suppose we start from an i.i.d. uniform distribu-
tion above the threshold q < 1, which we assume however is so close to 1 that in
the model where we update fitnesses according to the exponential distribution, we
would have PN(b/2) > 1/2, uniformly in N . (Recall that b and q are related via
q = 1 − e−b.) We define the dynamics via the following independent sequences of
i.i.d. random variables. Fix some q ′ ∈ (q,1). Let, for i = 1,2,3, Ui = (Ui

j )j∈N be

a sequence of i.i.d. random variables uniformly distributed on [q ′,1]. We use Ui

to construct the dynamics above threshold q ′. Let, for i = 1,2,3, Vi = (V i
j )j∈N be

a sequence of i.i.d. random variables uniformly distributed on [0, q ′]. We use Vi

to construct the dynamics below threshold q ′. Let, for i = 1,2,3, Si = (Si
j )j∈N be

a sequence of i.i.d. Bernoulli distributed random variables taking the value 1 with



THE BAK–SNEPPEN MODEL 1993

probability 1−q ′ and the value 0 with probability q ′. We use Si to choose between
Ui and Vi , and store the result in the sequence Gi = (Gi

j )j∈N, i = 1,2,3:

Gi
j =

{
Ui

j , if Si
j = 1,

V i
j , if Si

j = 0,
j ∈ N.

It is clear that for i = 1,2,3, the sequence Gi consists of i.i.d. random variables
uniformly distributed on [0,1]. We use the beginning of the sequence G2 (this
choice is arbitrary) to assign the initial fitnesses to the vertices. At time n ∈
[0,N − 1], we use the random variable G2

n to assign an initial fitness to the vertex
with number −n. Now we are ready to define the dynamics. At every time n ≥ N

we choose the vertex k, say, with minimal fitness at time n − 1, and we assign to
(k − 1, k, k + 1)(modN) the triple (G1

n,G
2
n,G

3
n).

Let f0(n) denote the fitness of a fixed observation vertex at time n. Let jn be
the moment that this vertex received its current fitness, that is,

jn = min{j ≤ n | f0(j) = f0(n)}.
Let i(n) be the number of the sequence providing this value, that is,

f0(n) = G
i(n)
jn

.

Observe that (since jjn = jn) i(n) = i(jn). We say that n is q ′-good if during
[jn, n] the minimal fitness of all vertices is always less than q ′. Then, for any time
n ∈ N and any q ′′ ∈ (q ′,1), we have

P
(
f0(n) < q ′′)= n−1∑

j=0

P
(
f0(n) < q ′′, jn = j

)

=
3∑

i=1

n−1∑
j=0

P
(
Gi

j < q ′′, jn = j, i(j) = i
)

≥
3∑

i=1

n−1∑
j=0

P
(
Gi

j < q ′′, jn = j, i(j) = i, n is q ′-good
)

≥
3∑

i=1

n−1∑
j=0

P
(
Ui

j < q ′′, jn = j, i(j) = i, n is q ′-good
)
.

(3.6)

Now observe that for any j ∈ [0, n], the event {jn = j, i(j) = i, n is q ′-good} is
measurable with respect to

σ
{
Ui

j ′,V i
j ′, Si

j ′, Si
j ′′,V i

j ′′,0 ≤ j ′ < j, j ≤ j ′′ ≤ n, i = 1,2,3
}
.
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Hence, for any j ∈ [0, n], the events {Ui
j < q ′′} and {jn = j, i(j) = i, n is q ′-good}

are independent, and we can continue the estimate (3.6) as follows:

=
3∑

i=1

n−1∑
j=0

P (Ui
j < q ′′)P

(
jn = j, i(j) = i, n is q ′-good

)

= q ′′ − q ′

1 − q ′
3∑

i=1

n−1∑
j=0

P
(
jn = j, i(j) = i, n is q ′-good

)

= q ′′ − q ′

1 − q ′ P (n is q ′-good ).

(3.7)

It remains to estimate the probability that n is q ′-good from below, uniformly in
n and N .

Define a sequence (τN
j )j∈N of stopping times, with respect to the natural

filtration, as follows: τ0 = 0 and for any j ∈ N, τj+1 is the end of the first
q-avalanche of range N after τj . For any j ∈ N, we call the time interval IN

j =
[τj , τj+1) the j th period. It is clear that at every τN

j the fitnesses are i.i.d. and
uniformly distributed above the threshold q . Thus the period lengths are i.i.d.
random variables. For any time n, we denote by τj (n) the maximal τj such that
τj ≤ n, that is, n ∈ [τj (n), τj (n)+1), and we say that n is q ′-nice, if during [τj (n), n]
the minimal fitness is always less than q ′. For any n ∈ N, if n is q ′-nice, then
n is q ′-good. Indeed, suppose that n is q ′-nice. If jn ≥ τj (n), then n is clearly
q ′-good. Suppose jn < τj (n). Since during the q-avalanche of range N of the
previous period, every vertex has been updated, jn belongs to this q-avalanche
and hence the minimal fitness at the time interval [jn, τj (n)) is always less than
q < q ′ and n is q ′-good. Thus it suffices to show that the probability that time n is
q ′-nice is bounded away from zero uniformly in N and n.

A period can be decomposed into two parts: the duration of the avalanche of
range N and the waiting time until this avalanche. We denote by WN a typical
waiting time before the avalanche of range N and denote by AN the duration of
this avalanche. During a q-avalanche, the minimal fitness is always at most q < q ′.
Hence, if in the ith period, the waiting time WN satisfies WN = 0, and in addition
there is at least one vertex at time τN

i with fitness between q and q ′, then any
time n within the ith period is q ′-nice. The event that there is such a vertex with
fitness between q and q ′ is independent of WN and AN associated to that period,
and has probability

p1 = 1 −
(

1 − q ′ − q

1 − q

)N

≥ q ′ − q

1 − q
> 0 uniformly in N.

Hence, in the stationary regime with N vertices, we can write (using alternating
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renewal process theory)

P (n is q ′-nice) ≥ p1P (n is in a period with WN = 0)

→ p1P (WN = 0)
E(AN)

E(WN) + E(AN)

for n → ∞. At this point, we switch from q to b, since we use results from the
previous section.

Since P (WN = 0) = PN(b) ≥ PN(b/2) ≥ 1/2 uniformly in N , it suffices to
prove that there exists a constant 0 < c(b) < ∞, independent of N , such that

E(WN) ≤ c(b)E(AN).(3.8)

Denote by YN the number of b-avalanches preceding the b-avalanche of range N .
Every avalanche has range N with probability PN(b), independently of all other
avalanches. Hence YN + 1 has a geometrical distribution with parameter PN(b)

and we have

E(YN) = 1

PN(b)
− 1.

Let (ZN
i )i∈N be an i.i.d. sequence of random variables distributed as the duration

of a typical b-avalanche, conditioned on its range being smaller than N . Then we
can use YN of those avalanches to obtain WN , that is,

WN = ZN
1 + · · · + ZN

YN
.

In words, at the beginning of a new avalanche, we first decide (with the correct
probability) whether or not the avalanche has range N . If not, we choose one,
conditioned on its range being smaller than N , and the resulting duration is
the next ZN

i . Since due to the construction, YN is independent of the sequence
(ZN

i )i∈N, we have that

E(WN) = E
(
ZN

1 + · · · + ZN
YN

)
= E(YN)E(ZN

1 ) =
(

1

PN(b)
− 1

)
E(ZN

1 ).
(3.9)

We now estimate E(ZN
1 ) from above and E(AN) from below [recall that the pair

(ξN(b), ηN(b)) represents the range set and duration of a b-avalanche],

E(ZN
1 ) = E

(
ηN(b)

∣∣|ξN(b)| ≤ N − 1
)

=
∞∑

k=0

kP (ηN(b) = k, |ξN(b)| ≤ N − 1)

P (|ξN(b)| ≤ N − 1)
≤

∞∑
k=0

kP (ηN(b) = k)

P (|ξN(b)| ≤ N − 1)

≤ E(ηN(b))

P (|ξN(b)| ≤ N − 1)
= 1

1 − PN(b)
E
(
ηN(b)

)
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and

E(AN) = E
(
ηN(b)

∣∣|ξN(b)| = N
)

≥ E
(
ηN(b)1{|ξN(b)| = N})≥ E

(
ηN(b)1{|ξN(b/2)| = N})

≥ E

(
η

(�(N),b/2)
N

(
b

2

)
1{|ξN(b/2)| = N}

)
,

and since η
(�(N),b/2)
N (b/2) and 1{|ξN(b/2)| = N} are independent, this is equal to

E

(
η

(�(N),b/2)
N

(
b

2

))
P

(∣∣∣∣ξN

(
b

2

)∣∣∣∣= N

)
≥ 1

2
E
(
ηN(b)

)
PN

(
b

2

)
,

where the last inequality follows from (2.3). Combining the estimates of E(ZN
1 )

and E(AN), we have

E(ZN
1 ) ≤ 1

1 − PN(b)

2

PN(b/2)
E(AN).

Since PN(b) ≥ PN(b/2) ≥ 1/2, the above inequality together with (3.9) gives us

E(WN) ≤
(

1

PN(b)
− 1

)
1

1 − PN(b)

2

PN(b/2)
E(AN)

≤ 2

PN(b)PN(b/2)
E(AN) ≤ 8E(AN).

Thus we have (3.8) and the theorem. �

4. Extension to general graphs. Let G be a finite connected graph. One can
define on G a Bak–Sneppen process in the following way. We call two vertices
neighbors if they are connected by a bond in G. Every vertex of G accommodates
a random variable (the fitness) with value in [0,1]. At the initial moment, all the
fitnesses are i.i.d. and uniformly distributed on [0,1]. Every discrete time step we
choose a vertex with minimal fitness and replace it, together with the fitnesses of
all its neighbors, by new independent fitnesses, uniformly distributed in [0,1]. We
give bounds for the mean of the fitness in the stationary regime. These bounds
depend on the local geometrical structure of G, but are independent of the number
of vertices in G.

To state our main result, here follows some notation. Let VG denote the set of
vertices of G. For any two vertices x, y ∈ VG, we denote by ρG(x, y) the distance
between them, that is, the number of bonds in the shortest path between x and y.
Then for any vertex x ∈ VG and k ∈ N, we can define the ball

Bx
G(k) = {y ∈ VG | ρ(y, x) ≤ k}



THE BAK–SNEPPEN MODEL 1997

and the sphere

Sx
G(k) = {y ∈ VG | ρG(y, x) = k}.

Observe that since G is finite, we have, for sufficiently large k = k(G), that
Bx

G(k) = VG and Sx
G(k) = ∅ for any x ∈ VG.

For any k ∈ N denote by mG(k) the number of vertices in the smallest ball
of radius k and denote by MG(k) the number of vertices in the largest sphere of
radius k, that is,

mG(k) = min
x∈VG

|Bx
G(k)|,

MG(k) = max
x∈VG

|Sx
G(k)|.

Consider an increasing sequence of radii

ri = ⌊(4
3

)i+2⌋
, i ∈ N.(4.1)

For any vertex x of G we denote by Fx
G the distribution function of the fitness

at x in the stationary regime. In the following two theorems we establish an
analogue of the phase-transition result for an infinite collection of finite connected
graphs.

THEOREM 4.1. Let G be an infinite collection of finite connected graphs such
that, for some 60 ≤ b < ∞,

b

4

(
4

5

)i

mG

(⌊
ri

3

⌋)
≥ log

(
MG

(⌈
2ri

3

⌉))
uniformly in G ∈ G, i ∈ N.(4.2)

Then there exists cb > 0 and qb ∈ (0,1) such that

Fx
G(qb) > cb uniformly in G ∈ G, x ∈ G.

THEOREM 4.2. Let G be an infinite collection of finite connected graphs of
uniformly bounded degree, that is, there exists a constant K ∈ N such that

max
x∈VG

|Bx
G(1)| < K uniformly in G ∈ G.(4.3)

Then for any sequence (Gn)n∈N ⊂ G such that

|VGn | → ∞ as n → ∞,

we have

lim
n→∞

(
max

x∈VGn

F x
Gn

(1/K)

)
= 0.

The proof uses a standard branching process argument and is omitted.
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4.1. Examples.

1. The original Bak–Sneppen model on the circle. Here G = (Pn)n∈N, where
Pn is the regular polygon with n vertices. Observe that for any k ≥ n, we have
MPn(
2k/3�) = 0. For any k < n, we have

mPn(�k/3�) ≥ 2k/3, MPn(
2k/3�) ≤ 2.

Then condition (4.2) holds for b ≥ 60 and condition (4.3) holds for K = 3.

2. The multidimensional Bak–Sneppen model. Let d ≥ 2 be the dimension.
We consider G = (Gn)n∈N, where for every n ∈ N the set of vertices VGn =
{1, . . . , n}d , and with the usual nearest neighbor structure with periodic boundary
conditions. Observe that for any k ≥ n we have MPn(
2k/3�) = 0. For any k < n,
we have

mPn(�k/3�) ∼ c1k
d, MPn(
2k/3�) ∼ c2k

d−1.

Property (4.2) holds for b ≥ 30d and condition (4.3) holds for K = 2d + 1.

3. The Bak–Sneppen model on a tree. Choose d ≥ 2 and consider G =
(Td(n))n∈N, where Td(n) is the regular d-ary tree with d offspring at each vertex
and n generations. Observe that for any k > 3n we have MPn(
2k/3�) = 0. For
any k ≤ 3n, we have

mPn(�k/3�) ∼ c3d
k/6, MPn(
2k/3�) ∼ c4d

2k/3.

One can check that property (4.2) holds for b ≥ 30d and that condition (4.3) holds
for K = d + 2.

5. Proof of Theorem 4.1. The proof of Theorem 4.1 essentially follows the
proof of Theorem 1.1. For any finite G, one can associate a graphical represen-
tation GRG. The construction of this graphical representation is essentially the
same as before. Let {�k}k∈VG

be a collection of independent homogeneous Pois-
son processes. For each process �k we perform the following procedure. At the
j th arrival τk,j of �k , we draw a pair (ξ̂G(k, τk,j ), η̂G(k, τk,j )), where ξ̂G(k, τk,j )

is distributed as the range set and η̂G(k, τk,j ) is distributed as the duration of a
typical τk,j -avalanche with origin at k. We draw arrows in VG × R

+ from (k, τk,j )

to (y, τk,j ) for all y ∈ ξ̂G(k, τk,j ). As before, we can define, for any A ⊆ VG,

0 ≤ t, s < ∞, the processes ξ
(A,t)
G (s) and η

(A,t)
G (s) such that the monotonicity

properties hold:

ξ
(A,t)
G (s1) ⊆ ξ

(B,t)
N (s2),

η
(A,t)
G (s1) ≤ η

(B,t)
N (s2), 0 ≤ s1 ≤ s2.

(5.1)
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The range set ξG(x, b) and the duration ηG(x, b) of a b-avalanche with origin at

x ∈ VG can be written as ξG(x, b) = ξ
(Bx

G(1),0)

G (b) and ηN(x, b) = η
(Bx

G(1),0)

G (b).
The only place where we previously used the geometrical structure of G is

Lemma 3.1 and the related definitions. We give a new lemma for a collection of
finite connected graphs.

For any vertex x of G and any q > 0, define P x
G(q) as the probability that

updating x and the neighbors in the configuration with all fitnesses above q results
in a q-avalanche of range |VG|.

LEMMA 5.1. Let G be a finite connected graph such that for some 60 ≤
b0 < ∞,

b0

4

(
4

5

)i

mG

(⌊
ri

3

⌋)
≥ log

(
MG

(⌈
2ri

3

⌉))
uniformly in i ∈ N.

Then there exists q∞(b0) ∈ (0,1), depending only on b0 such that for any
q > q∞(b0),

P x
G(q) > 1/2 uniformly in x ∈ G.

PROOF. As in the proof of Lemma 3.1, we work with fitnesses defined
on [0,∞) and update them according to the exponential distribution with
parameter 1, say. Recall that in the new setup a threshold b corresponds to the
threshold q = 1 − e−b in the old setup.

We will have proved the lemma if we show that for any x ∈ G, the process
ξG(x, t) is explosive in the sense that there exists b∞ ∈ (0,∞), depending only
on b0, such that for any i ∈ N [essentially for i ≤ imax = maxx,y ρ(y, z), because
for i > imax we have Bx

G(ri) ≡ VG],

P
(
Bx

G(ri) ⊆ ξG(x, b∞)
)≥ 1

2 + (1
2

)i+1
.(5.2)

Indeed, (5.2) implies that P x
G(b∞) ≥ 1

2 . To achieve this, choose a constant b0 that
satisfies the condition of the lemma. Define a converging sequence of thresholds
b1, b2, b3, . . . as

bi = bi−1 + (4
5

)i
b0, i ≥ 1,

b∞ = lim
i→∞bi = 5b0.

Observe that due to the monotonicity property (5.1), it suffices to prove that for all
i ∈ N, x ∈ VG,

P
(
Bx

G(ri) ⊆ ξG(x, bi)
)≥ 1

2 + (1
2

)i+1
.(5.3)

We proceed by induction. First note that for any x ∈ VG,

P
(
Bx

G(1) ⊆ ξG(x, b0)
)= 1.(5.4)
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Next, suppose that (5.3) holds for some i ∈ N and all x ∈ VG. Observe that{
Bx

G(ri) ⊆ ξG(x, bi),

∀ z ∈ Sx
G(
2ri/3�),∃y ∈ Bz

G(�ri/3�),∃ τy,j ∈ �y ∩ [bi, bi+1)(5.5)

such that B
y
G(ri) ⊆ ξ̂G(y, τy,j )

}
implies

Bx
G(ri+1) ⊆ ξG(x, bi+1).

Indeed, if a ∈ Bx
G(ri+1) \ Bx

G(ri), then there exists z = z(a) ∈ Sx(
2ri/3�) such
that ρ(a, z) + ρ(z, x) ≤ ri+1, and hence ρ(a, z) ≤ 
2ri/3�. Then if there exists
τ ∈ ⋃y∈Bz

G(�ri/3�) �y ∩ [bi, bi+1) such that B
y
G(ri) ⊆ ξ̂G(y, τ ), then ρ(a, y) ≤

ρ(a, z) + ρ(z, y) ≤ ri , and hence a ∈ ξ̂G(y, τ ). See Figure 4 for an illustration
of (5.5). Hence to finish the inductive step, it suffices to show that, uniformly
in i ∈ N,

P




∃ z ∈ Sx
G(
2ri/3�) such that

∀y ∈ Bz
G(�ri/3�), ∀ τy,j ∈ �y ∩ [bi, bi+1),

B
y
G(ri) �⊆ ξ̂G(y, τy,j )


≤ (1

2

)i+2
.(5.6)

Since the events B
y
G(ri) ⊆ ξ̂G(y, τy,j ) are independent and since (due to the

monotonicity property) for any y ∈ VG and τy,j ≥ bi ,

P
(
B

y
G(ri) ⊆ ξ̂G(y, τy,j )

)≤ P
(
B

y
G(ri) ⊆ ξ̂G(y, bi)

)≤ 1
2 ,

FIG. 4. Illustration of (5.5).
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for any z ∈ Sx
G(
2ri/3�), the points

⋃
y∈Bz

G(�ri/3�)

{
τy,j ∈ �y;B

y
G(ri) ⊆ ξ̂G(y, τy,j )

}
(5.7)

constitute a thinning of the Poisson process
⋃

y∈Bz
G(�ri/3�) �y with deleting

probability at most 1/2. Thus the points in (5.7) contain a Poisson process of
intensity at least

1

2
·
(

intensity of
⋃

y∈Bz
G(�ri/3�)

�y

)
≥ 1

2
· mG

(⌊
ri

3

⌋)
.

Observe that the event in (5.6) implies that for some z ∈ Sx
G(
2ri/3�), the

process (5.7) has no arrivals between time bi and bi+1, a time interval of length
b0(

4
5)i . The last event has probability at most

exp
{
−1

2
mG

(⌊
ri

3

⌋)
b0

(
4

5

)i}

uniformly in z ∈ Sx
G(
2ri/3�). Thus we can estimate the probability in (5.6) by

MG

(⌈
2ri

3

⌉)
exp
{
−b0

2
mG

(⌊
ri

3

⌋)(
4

5

)i}
.

Split the above expression into two terms:(
MG

(⌈
2ri

3

⌉)
exp
{
−b0

4
mG

(⌊
ri

3

⌋)(
4

5

)i})
exp
{
−b0

4
mG

(⌊
ri

3

⌋)(
4

5

)i}
.

The first term is less than or equal to 1 under the conditions of the lemma. For the
second term, we write

exp
{
−b0

4
mG

(⌊
ri

3

⌋)(
4

5

)i}

≤ exp
{
−b0

4

(
1 +

⌊
ri

3

⌋)(
4

5

)i}

≤ exp
{
−b0

4

(
1

3

(
4

3

)i)(4

5

)i}

≤ exp
{
−b0

12

(
16

15

)i}
≤
(

1

2

)i+2

, i ∈ N,

since b0 ≥ 60. So we have (5.6) and the proof is complete. �
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