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ON DRIFT AND ENTROPY GROWTH FOR
RANDOM WALKS ON GROUPS

BY ANNA ERSCHLER1

Steklov Mathematical Institute

In this paper we consider drift and entropy growth for symmetric finitary
random walks on finitely generated groups. We construct examples of various
intermediate asymptotics of the drift for such random walks. We establish
general inequalities which connect drift, entropy and exponential growth rate
of groups. Then we apply these inequalities to get estimates for entropy in
particular examples.

1. Introduction. Let G be a group and µ a symmetric measure on it. We
consider random walks on G induced by this measure. In this paper we assume that
the support of µ is finite and generates the group G. We consider two functions

H(n) = HG,µ(n) = − ∑
g∈G

(
µ∗n(g)

)
ln

(
µ∗n(g)

)

and

L(n) = LG,µ(n) = Eµ∗nl(g).

Here l denotes the word length, corresponding to the fixed set of generators, and
µ∗n is the nth convolution of µ. The function H(n) is called the entropy and L(n)

is called the drift (or escape) of the random walk. L(n) shows how fast (on average)
the random walk is moving away from the origin.

It is known that H(n) is asymptotically linear if and only if L(n) is
asymptotically linear [14] and if and only if the Poisson boundary of the
random walk is nontrivial [11]. In particular, it is so for any nonamenable group.
On the other hand, for many examples (e.g., for any Abelian group) L(n) is
asymptotically

√
n.

Until recently it was unknown whether there exist simple random walks on
groups with intermediate growth rate of L(n). The question of finding such random
walks appears in [9]. I learned about this question from A. M. Vershik in 1999. The
problem of finding asymptotics for H(n) is discussed in [1].
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First examples of random walks on groups with intermediate growth rate
of L(n) were found by the author in [3, 6]. In these examples L(n) � n1−1/2k

(for any positive integer k) and L(n) � n/ ln(n). Related questions about the drift
(escape) for these groups were also considered in [12].

In this paper we find new possibilities for the rate of L(n). In particular, we
show that L(n) can be asymptotically equal to

n

ln(ln(· · · ln(n) · · ·)) .

We also estimate the growth of the entropy for random walks on these groups.
The structure of the paper is as follows. In Section 2 we state that certain

functions are concave. We use this auxiliary lemma in the next section.
In Section 3 we consider a two-dimensional simple random walk. We find

asymptotics of some class of functionals depending on local times of this two-
dimensional random walk.

In Section 4 we construct examples of groups and we apply the results of the
previous section to find asymptotics of the drift in these groups.

In Section 5 we give some general estimates for the entropy H(n). We apply
these estimates to the examples considered in Section 4. These examples show
that there are infinitely many possibilities for asymptotics of the entropy. They
also show that the growth of the entropy (as well as of the drift) can be very close
to linear and yet sublinear.

The main results of this paper were announced in [7].

2. An auxiliary lemma.

LEMMA 1. Take 0 < α ≤ 1.

(i) Let

L̃k,α(x) = x

(ln(ln(· · · ln(x)) · · ·)︸ ︷︷ ︸
k

)α
.

Then L̃k,α(x) is concave on the segment [Tk,∞), where

Tk = exp
(
exp · · · exp(4k) · · · ) · · ·︸ ︷︷ ︸

k

.

(ii) There exist a continuous increasing function Lk,α : [0,∞) → [0,∞) and
Xk,α > 0 such that Lk,α(x) is concave, Lk,α(0) = 0 and Lk,α(x) = L̃k,α(x) for
any x > Xk,α .

We prove this lemma in the Appendix.
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3. Some functionals of two-dimensional random walk. We say that the
random walk is simple if µ is equidistributed. In this section we consider a simple
random walk on Z

2. Let b
(n)
z be the number of times the random walk has visited

the element z, z ∈ Z
2, from the moment 0 up to the moment n. Let R(n) be the

number of different elements visited until the moment n (R(n) is called range of
the random walk). First we formulate a simple property of the range.

LEMMA 2. There exist q1, q2 > 0 such that, for any n > 1,

Pr
[
R(n) ≥ q1

n

ln(n)

]
≥ q2.

PROOF. In fact, R(n)/(n/ ln(n)) → π almost surely [2]. �

LEMMA 3. Let f be a concave strictly increasing function such that f (0) = 0.
Consider a simple random walk on Z

2. There exists K > 0 such that

E

( ∑
z∈Z2

f
(
b(n)
z

)) ≤ Kf (ln(n))
n

ln(n)
.

PROOF. Note that ∑
z∈Z2

f
(
b(n)
z

) ≤ f
(
n/R(n)

)
R(n),

since f is concave. Hence

E

[ ∑
z∈Z2

f
(
b(n)
z

)] ≤ E
[
f

(
n/R(n)

)
R(n)

]
.

Note that xf (n/x) is concave on (0,∞), since f (x) is concave on (0,∞). For a
smooth f we know that (xf (n/x))′′ = n2f ′′(n/x)/x3. To prove this in the general
case it is sufficient to consider an approximation of f by twice differentiable
concave functions.

Consequently,

E
[
f

(
n

R(n)

)
R(n)

]
≤ E

[
R(n)]f (

n

E[R(n)]
)

� f (ln(n))
n

ln(n)
.

Then there exists K > 0 such that

E

( ∑
z∈Z2

f
(
b(n)
z

)) ≤ Kf (ln(n))
n

ln(n)
.

This completes the proof of the lemma. �

The following lemma gives an estimate from the other side.
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LEMMA 4. Let f be a strictly increasing function on [0,∞) such that
f (0) = 0 and f (Cx) ≤ Cf (x) for any C > 1. Then for n large enough and for
some positive ε we have

E

[ ∑
z∈Z2

f
(
b(n)
z

)] ≥ εf (ln(n))
n

ln(n)
.

PROOF. Note that for any ε1 > 0 there exists K > 0 such that for n large
enough

Pr
[
b

(n)
0 ≥ K ln(n)

] ≥ 1 − ε1.

(This follows from [5], Theorem 1.) Let n ≥ 4 and let m = [n/2]. Since m > 1,
Lemma 2 implies that

Pr
[
R(m) ≥ q1

m

ln(m)

]
≥ q2.

Let x
(n)
1 , . . . , x

(n)
s be different points visited by the random walk up to the

moment n, enumerated in the order of visiting.
Let βn

i = b
(n)

x
(n)
i

.

Take ε1 such that ε1 ≤ 1/2.
Note that, for any 0 ≤ i ≤ q1

m
ln(m)

,

Pr
[
β

(n)
i ≥ K ln(m)

] ≥ Pr
[
β

(n)
i ≥ K ln(m),R(m) ≥ i

]
= Pr

[
β

(n)
i ≥ K ln(m)|R(m) ≥ i

]
Pr

[
R(m) ≥ i

]
≥ Pr

[
β

(n)
i ≥ K ln(m)|R(m) ≥ i

]
q2

≥ Pr
[
β

(n)
0 ≥ K ln(m)

]
q2 ≥ (1 − ε1)q2 ≥ q2

2
.

Hence for any n large enough,

E

[ ∑
z∈Z2

f
(
b(n)
z

)] ≥ q2

2
f

(
K ln

([
n

2

]))
q1

n/2

ln(n/2)
� f (ln(n))

n

ln(n)
.

�

COROLLARY 1. (i) Let Lk,α(x) be the function defined in Lemma 1 (0 <

α ≤ 1). Then

E

[ ∑
z∈Z2

Lk,α

(
b(n)
z

)] � Lk+1,α(n).
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(ii) Let f (x) = xα (0 < α ≤ 1). Then

E

[ ∑
z∈Z2

f
(
b(n)
z

)] � n/ ln(n)(1−α).

PROOF. This corollary follows from Lemmas 1, 3 and 4 since, for n > N ,

n

ln(n)
Lk,α(ln(n)) � n

ln(n)

ln(n)

(ln(ln · · · ln(n) · · ·))α � Lk+1,α(n)

and
n

ln(n)
ln(n)1−α = n

ln(n)α
. �

4. Main result. First we recall the definition of the wreath product.

DEFINITION 1. Let C, D be groups and denote by
∑

C D the space of
functions f :C → D with finite support. The wreath product of C and D is a
semidirect product of C and

∑
C D, where C acts on

∑
C D by shifts: if c ∈ C,

f :C → D,f ∈ ∑
C D, then cf (x) = f (xc−1), x ∈ C. Let C 
D denote the wreath

product.

Note that if C is infinite, then the group of finite D-valued configurations
∑

C D

is infinitely generated. However, the wreath product C 
 D is finitely generated
whenever C and D are finitely generated.

LEMMA 5. Let a1, a2, . . . , ak generate A and let µ be the measure equidis-
tributed on these generators and their inverses.

Then for some finite symmetric measure ν on B = Z
2 
 A the drift of the

corresponding simple random walk satisfies

LB,ν(n) � E
∑
z∈Z2

LA,µ(
b(n)
z

)
.

PROOF. The proof of this lemma is similar to that of Lemma 3 in [6].
For any a ∈ A, ãe denotes the function from Z

2 to A such that ãe(0) = a and
ãe(x) = e for any x �= 0. Let ae = (0, ãe). Let w′

1,w
′
2 be the standard generators

of Z
2 and w1 = (w′

1, e), w2 = (w′
2, e).

Consider the following set of generators of B:

(ae
j )

pws(a
e
n)

q,

p, q = 0,1 or −1, s = 1 or 2 and 1 ≤ j, n ≤ k.
Consider the simple random walk on B , corresponding to this set of generators.
Let µ2 be the measure on A such that µ2(e) = 1/2 and µ2(aj ) = µ2(a

−1
j ) =

1/(4k) for any 1 ≤ j ≤ k. The random walk on B = Z
2 
 A is realized as
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follows: Let Xn, n ≥ 0, be a simple symmetric random walk on Z
2 and denote

by {b(n)
z : z ∈ Z

2} and R(n) its occupation process and its range, as introduced in
the previous section.

Let ξ
(z)
n be independent and identically distributed symmetric random walks

on the group A, with steps distributed with respect to µ2. The random walk on
B = Z

2 
 A is

Un = (Xn,φn)

with

φn(z) = ξ
(z)

2b
(n)
z −δ(z,0)−δ(z,Xn)

.

Let c
(n)
z = lA(φn(z)).

Then

1
2

∑
z∈Z2

c(n)
z ≤ lB(Un) ≤ 2

( ∑
z∈Z2

c(n)
z + R

)
.

Hence

1
2E

[ ∑
z∈Z2

c(n)
z

]
= 1

2

∑
z∈Z2

E
[
c(n)
z

] ≤ E[lB(Un)] ≤ 2

( ∑
z∈Z2

E
[
c(n)
z

] + E[R]
)
.

It is clear that

LA,µ2(n) � LA,µ(n).

Note that

E
[
c(n)
z |Xk, k = 0,1,2, . . . , n

] = LA,µ2
(
2b(n)

z − δ(z,0) − δ(z,Xn)

)
.

Hence

E
[
min

(
LA,µ2(2b),LA,µ2(2b − 1),LA,µ2(2b − 2)

)]
≤ E

[
c(n)
z |b(n)

z = b
]

≤ E
[
max

(
LA,µ2(2b),LA,µ2(2b − 1),LA,µ2(2b − 2)

)]
.

There exist C2,C3 > 0 such that

C2L
A,µ(n) ≤ LA,µ2(2n − 2),LA,µ2(2n − 1),LA,µ2(2n) ≤ C3L

A,µ(n).

Hence

C2E

[ ∑
z∈Z2

LA,µ
(
b(n)
z

)] ≤ ∑
z∈Z2

E
[
c(n)
z

] ≤ C3E

[ ∑
z∈Z2

LA,µ
(
b(n)
z

)]
.

This completes the proof of the lemma. �
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THEOREM 1. (i) Let F be a finite group. Consider the following groups that
are defined recurrently:

G1 = Z
2 
 F ; Gi+1 = Z

2 
 Gi.

Then for some simple random walk on Gi and for any n large enough, we have

LGi (n) � n

ln(ln · · · lnn) · · ·)︸ ︷︷ ︸
k

.

(ii) Consider the following groups that are defined recurrently:

F1 = Z; Fi+1 = Z 
 Fi;
let

H1,i = Z
2 
 Fi, Hj+1,i = Z

2 
 Hj,i.

Then for some simple random walk on Hj,i and for any n large enough, we have

LHj,i
(n) � n

2i√
ln(ln(· · · ln︸ ︷︷ ︸

j

(n) · · ·))
.

PROOF. (i) We prove the theorem by induction on i. Base i = 1. In this case
Gi = Z

2 
 F and L(n) is asymptotically equal to n/ ln(n) [3]. The induction step
follows from the previous lemma and Corollary 1.

(ii) We prove the statement by induction on j . For H1,i = Fi the asymptotics
of the drift is found in [6]. It is proven there that, for some random walk on Fi ,

LFi
(n) � n1−1/2k

.

The induction step follows from the previous lemma and Corollary 1. �

5. Estimates of the entropy. In this section we give estimates for the entropy
of a random walk. It is known (see [1]) that for a wide class of measures on
nilpotent groups H(n) � ln(n). As mentioned before, H(n) is asymptotically
linear for any nonamenable group. In this section we study intermediate examples.

Let v(n) be the growth function of the group [i.e., v(n) = #{g ∈ G : l(g) ≤ n}].
Let

l = lim
n→∞L(n)/n,

h = lim
n→∞H(n)/n,

v = lim
n→∞ ln(v(n))/n.
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(It is a well-known fact that these limits exist, since L(n),H(n) and v(n) are
subadditive. See, e.g., [15].) It is known (see [9, 15]) that

h ≤ vl.

The following lemma generalizes this fact.

LEMMA 6. For any ε > 0 there exists C > 0 such that

H(n) ≤ (v + ε)L(n) + ln(n) + C.

PROOF. Let a
(n)
i = Prµ∗n[l(g) = i]. Then by definition

L(n) =
n∑

i=0

ia
(n)
i .

Comparing µ∗n with the measure which is equidistributed on every sphere in
the group we get

H(n) ≤
n∑

i=1

a
(n)
i ln

(
v(i)/a

(n)
i

)

=
n∑

i=1

a
(n)
i ln(v(i)) +

n∑
i=1

a
(n)
i

(− ln
(
a

(n)
i

)) ≤
n∑

i=1

a
(n)
i ln(v(i)) + ln(n).

For any ε > 0 there exists K > 0 such that v(i) ≤ K(v + ε)i . Hence

H(n) ≤
n∑

i=1

a
(n)
i

(
i(v + ε) + ln(K)

) + ln(n)

= (v + ε)

n∑
i=1

a
(n)
i i + ln(K) + ln(n)

= (v + ε)L(n) + ln(K) + ln(n). �

Another lemma estimates the entropy from the other side:

LEMMA 7. (i) There exists C > 0 such that

H(n) ≥ CEµ∗nl2(g)/n − ln(n) ≥ CL2(n)/n − ln(n).

(ii) There exists K > 0 such that

L(n) ≤ K

√
n
(
ln(v(n)) + ln(n)

)
.
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PROOF. (i) Let pn(x) be the probability of hitting x after n steps. In [14] it is
shown that there exist K1,K2 > 0 such that, for any x and n,

pn(x) ≤ K1n
3/4 exp

(−K2l(x)2/n
) ≤ K1n exp

(−K2l(x)2/n
)
.

Then note that

− ∑
g∈G : l(g)=i

µ∗n(g) ln
(
µ∗n(g)

) ≥ (− ln(K1) − ln(n) + K2i
2/n

)
a

(n)
i .

Hence

H(n) ≥ − ln(K1) − ln(n) + K2

n∑
i=0

i2/na
(n)
i

= − ln(K1) − ln(n) + K2/nEµ∗nl2(g) ≥ C/nEµ∗nl2(g) − ln(n).

The last inequality follows from the fact that, for some C2 > 0, H(n) ≥ C2.
(ii) This follows from the first part of the lemma, since H(n) ≤ ln(v(n)). �

As a corollary from the two previous lemmas we get the following theorem.

THEOREM 2. Let Gi be the groups defined in Theorem 1. Then for some
random walk on Gi , we have

K1n/ ln
(
ln · · · ln︸ ︷︷ ︸

i

(n) · · · )2 ≤ HGi
(n) ≤ K2n/ ln

(
ln · · · ln︸ ︷︷ ︸

i

(n) · · · )

for some positive constants K1 and K2. In particular, all Gi have different
asymptotics of the entropy.

Moreover, using arguments from [8] one can show that HGi
(n) in Theorem 2 is

asymptotically equivalent to the right-hand term of the second inequality, that is,
for some K3 > 0,

HGi
(n) ≥ K3n/ ln

(
ln · · · ln︸ ︷︷ ︸

i

(n) · · ·).
APPENDIX

PROOF OF THE AUXILIARY LEMMA. In this Appendix we give the proof of
Lemma 1.

(i) First we consider the case α = 1. Let mk(x) = (ln(ln · · · ln(x) · · ·)︸ ︷︷ ︸
k

). We

want to prove that x/mk(x) is concave on [Tk,∞). Note that(
x

mk

)′′
(x) = −xm′′

k(x)m2
k(x) − 2m′

k(x)m2
k(x) + 2xmk(x)(m′

k(x))2

m4
k(x)

.
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Since mk(x) > 0 on [Tk,∞), it suffices to prove that

2x
(
m′

k(x)
)2 − xmk(x)m′′

k(x) ≤ 2m′
k(x)mk(x).

To prove this we will show that

2x
(
m′

k(x)
)2

< 1/2mk(x)m′
k(x)

and that

mk(x)
(−m′′

k(x)
)
x ≤ 3

2m′
k(x)mk(x).

Note that

m′
k(x) = 1

x ln(x) ln(ln(x)) · · · ln(ln(· · · ln(x) · · ·))︸ ︷︷ ︸
k−1

.

We see that 0 < m′
k(x) < 1/x and we know that mk(x) > 4, x ∈ [Tk,∞). This

proves the first inequality. Now let

rk(x) = 1

m′
k(x)

= x ln(x) ln(ln(x)) · · · ln
(
ln(· · · ln(x) · · ·))︸ ︷︷ ︸

k−1

.

Note that

r ′
k(x) = m1(x)m2(x) · · · mk−1(x) +

k−1∑
i=1

rk(x)
m′

i (x)

mi(x)
.

Note that for 1 ≤ i ≤ k it holds that m′
i (x) ≤ 1/x. Since mk(x) ≥ 2k and, for

1 ≤ i ≤ k − 1, mi(x) ≥ 2k, we get

r ′
k(x)x ≤ 1.5rk(x).

This implies that

(−m′′
k(x)

)
x = xr ′

k(x)

r2
k (x)

≤ 3

2rk(x)
= 3

2
m′

k.

So we have proven the second inequality.
Now consider 0 < α ≤ 1. We have already proven that

hk(x) = x

(ln(ln · · · ln(x) · · ·)︸ ︷︷ ︸
k

)

is concave on [Tk,∞).
Let

gk(x) = xhk

(
1

x

)
.
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Since g′′
k (x) = x−3h′′

k(1/x) we get that gk(x) is concave on (0,1/Tk].
Note that if f is an increasing function and both f and g are concave, then f (g)

is concave. In fact, in this case, for any 0 ≤ t ≤ 1, it holds that

f
(
g(tx + (1 − t)y)

) ≤ f
(
tg(x) + (1 − t)g(y)

) ≤ tf (g(x)) + (1 − t)f (g(y)).

Note that f (x) = xα is concave and increasing on [0,∞) for 0 < α ≤ 1 and that
gk(x) is positive on (0,1/Tk]. Therefore f (gk(x)) is concave on (0,1/Tk]. But
this implies that

x

(ln(ln · · · ln(x) · · ·)︸ ︷︷ ︸
k

)α
= xf

(
gk

(
1

x

))

is concave on [Tk,∞).
(ii) Let βk,α = L̃k,α(Tk)/(2Tk). Consider the function yk,α(x) = βk,αx. Note

that yk,α(Tk) < L̃k,α(Tk) and that there exists Nk,α > 0 such that yk,α(x) >

L̃k,α(x) for any x > Nk,α . Take maximal z such that yk,α(z) = L̃k,α(z). Let
Lk,α(x) = yk,α(x) if 0 ≤ x ≤ z and Lk,α(x) = L̃k,α(x) if x ≥ z. Note that yk,α(x)

is concave for x ∈ [0, z], that L̃k,α(x) is concave if x ≥ z and that L̃′
k,α(z) ≤

y′
k,α(z). This implies that Lk,α is concave. �
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