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A CHARACTERIZATION OF m-DEPENDENT STATIONARY
INFINITELY DIVISIBLE SEQUENCES WITH APPLICATIONS

TO WEAK CONVERGENCE

BY D. HARRELSON AND C. HOUDRÉ1

Hope College, and Université Paris XII and Georgia Institute of Technology

m-dependent stationary infinitely divisible sequences are characterized
as a class of generalized finite moving average sequences via the structure of
the associated Lévy measure. This characterization is used to find necessary
and sufficient conditions for the weak convergence of centered and normal-
ized partial sums of m-dependent stationary infinitely divisible sequences.
Partial sum convergence for stationary infinitely divisible sequences that can
be approximated by m-dependent ones is then studied.

1. Introduction. The literature on the Central Limit Theorem (CLT) contains
many extensions of the classical i.i.d. results to stationary sequences {Xj }j∈Z such
that Var(X0) < ∞. These extensions show that under various weak dependence
assumptions

Sn − ESn√
Var(Sn)

⇒ N(0,1).(1.1)

One of the first dependent result of this type is due to Diananda (1955) who showed
that m-dependence is sufficient for the Central Limit Theorem to hold. Later work
further extends the CLT to stationary mixing sequences, and the reader is referred
to Ibragimov and Linnik (1971) and Peligrad (1986) for overviews of these results.
Typically, these theorems require Var(Sn) → ∞, a mixing condition and either
a sufficiently fast rate at which the mixing coefficients converge to zero or the
existence of a higher order moment.

In recent times heavy-tailed data have been collected from a variety of different
sources, and with this in mind, it is imperative to study limit theorems for
stationary sequences of random variables with possibly infinite variance. For an
i.i.d. sequence {Xj }j∈Z, if the sequence of (centered and normalized) partial
sums converges, then the limiting distribution is necessarily stable. The stable
distributions are indexed by four parameters. In particular, α ∈ (0,2] is called
the index of stability. The distribution of X0 is said to belong to the domain of
attraction of an α-stable distribution if the partial sums, properly centered and
normalized, converge to that α-stable random variable.
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When studying partial sum convergence to a stable limit for weakly dependent
stationary sequences, the main objective considered to date has been, by fixing
an asymptotic independence condition, to find additional requirements on the
distribution of the sequence which are sufficient for the stable limit to hold.
LePage, Woodroofe and Zinn (1981) used order statistics to give an alternative
proof of partial sum convergence for an i.i.d. sequence {Xj }j∈Z such that the
distribution of X0 is in the domain of attraction of a nonnormal stable distribution.
This type of argument has been further extended using point processes techniques
to obtain corresponding results for weakly dependent sequences. Davis and
Resnick (1985) showed partial sum convergence for the moving average of an i.i.d.
sequence {Xj }j∈Z such that the distribution of X0 is in the domain of attraction of
a stable random variable. Heinrich (1985, 1987) gave sufficient conditions for the
convergence of the partial sums of both m-dependent and ψ-mixing sequences.
Heinrich’s results include rates of convergence, but his proofs require technical
assumptions that are not minimal. Davis (1983) showed partial sum convergence
for sequences {Xj }j∈Z satisfying dependence conditions typically used in extreme
value theory (distributional mixing and negligible local dependence) and with the
distribution of X0 in the domain of attraction of a nonnormal stable distribution.
Jakubowski and Kobus (1989) showed partial sum convergence for m-dependent
sequences {Xj }j∈Z such that (X0,X1, . . . ,Xm) is in the domain of attraction
of a multivariate stable distribution. The most general known formulation for
m-dependent sequences is as follows:

THEOREM 1.1. Assume {Xj }j∈Z is a stationary m-dependent sequence, let
Sn = ∑n−1

j=0 Xj and let 0 < α ≤ 2 be fixed. Assume Sm+1 is in the domain of
attraction of a nondegenerate α-stable distribution with characteristic function
ϕm+1, and assume Sm is in the domain of attraction of a nondegenerate α-stable
distribution with characteristic function ϕm, with the same normalizing sequence.
Then Sn appropriately centered and normalized converges in distribution to X

where X is an α-stable random variable with characteristic function

EeitX = ϕm+1(t)

ϕm(t)
.

With the additional assumption that VarX0 < ∞, Theorem 1.1 recovers the
result of Diananda (1955). Theorem 1.1 is conjectured and proved in the case
0 < α < 2 under slightly stronger assumptions in Jakubowski and Kobus (1989). It
is proved by Szewczak (1988) when α = 2 and by Kobus (1995) when 0 < α < 2.
A one-dependent stationary sequence {Xj }j∈Z such that X1 is in the domain of
attraction of an α-stable random variable, but X1 + X2 is not in the domain of
attraction of any nondegenerate α-stable law is constructed by Jakubowski (1994).
For this example, there is no normalizing sequence {Bn} such that the partial sums
centered and normalized converge to a nondegenerate α-stable random variable.
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The present paper continues the study of partial sum convergence for
m-dependent stationary sequences, but considers the problem for stationary in-
finitely divisible (SID) sequences, that is stationary sequences such that all their
finite-dimensional marginals are infinitely divisible random vectors. In Section 2
we show that any such m-dependent sequence is equal in distribution to a certain
finite generalized moving average sequence. Partial sum convergence is considered
in Section 3. While Theorem 1.1 gives sufficient conditions for partial sum con-
vergence of m-dependent stationary sequences, using the characterization theorem
given in Section 2, it is easy to find necessary and sufficient conditions for such
convergence in the case of m-dependent stationary infinitely divisible sequences.
Partial sum convergence for a class of stationary infinitely divisible sequences that
can be approximated by m-dependent ones is briefly discussed in Section 3. Sec-
tion 4 concludes the paper with some final remarks.

We remind the reader that a sequence {Xj }j∈Z is m-dependent if any finite-
dimensional marginals (Xj1,Xj2, . . . ,Xjn) and (Xk1 ,Xk2, . . . ,Xkn′ ), such that
k1 − jn > m, are independent. In particular, a (stationary) sequence is 0-dependent
if and only if it is formed of independent (identically distributed) random variables.

The technique of proof that will be used throughout this paper involves
analyzing the Lévy measure of infinitely divisible vectors and sequences. Recall
that a vector X is infinitely divisible if its characteristic function admits the
representation

lnEei〈t,X〉 = i〈b, t〉 − 1
2〈�t, t〉 +

∫
Rd\{0}

(
ei〈t,x〉 − 1 − i〈t,x〉1‖x‖≤1

)
Q(dx),

where b is a d-dimensional vector, � is a d × d positive definite matrix, and Q is
a Borel measure on Rd such that∫

Rd\{0}
min(1,‖x‖2) Q(dx) < ∞.

This representation is unique, (b,�,Q) is called the characterizing triplet of X,
and Q is its Lévy measure. Furthermore, if a triplet (b,�,Q) satisfies the
restrictions given above, then it is the characterizing triplet of some infinitely
divisible vector [see, e.g., Sato (1999)].

For b ∈ R; � : R → R, a positive definite function; and Q, a Borel measure
on RZ; we say that (b,�,Q) is the characterizing triplet of a stationary infinitely
divisible sequence {Xj }j∈Z if, for any � ⊂ Z,(

(b, b, . . . , b), {�(i − j)}i,j∈�,Q|R�

)
is the characterizing triplet of {Xj }j∈�. It is implicit that each of the one-
dimensional marginals of Q are equivalent measures on R integrating min(1, x2).
Q is then called the Lévy measure of {Xj }j∈Z. Maruyama (1970) proves the
existence of a characterizing triplet for all stationary infinitely divisible sequences.
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2. Characterization of m-dependent SID sequences. Throughout this sec-
tion, by a finite moving average sequence, we mean a sequence of the form
{∑m

k=0 ak ηj−k}j∈Z, where {ηj }j∈Z is any i.i.d. sequence and (a0, a1, . . . , am) is
a vector of reals. It is then clear that a finite moving average sequence is station-
ary and m-dependent. Moreover, as detailed below, the Riesz factorization lemma
[see Pólya and Szegő (1978)] implies that all m-dependent stationary Gaussian
sequences are (up to a location parameter) finite moving average sequences. This
well known result is presented next for the sake of completeness.

PROPOSITION 2.1. If {Xj }j∈Z is a stationary m-dependent Gaussian se-
quence with EX0 = µ, then there exists {ak}mk=0 such that

{Xj }j∈Z

L=
{
µ +

m∑
k=0

akηj−k

}
j∈Z

where {ηj }j∈Z are i.i.d. standard normal random variables.

PROOF. Let R(j) = Cov(X0,Xj ), for j ∈ Z. R(j) is a positive definite
function on Z and R(j) = 0 for |j | > m. The Riesz factorization lemma implies
that there exists {ak}mk=0 such that

m∑
j=−m

R(j)eijθ =
∣∣∣∣∣

m∑
j=0

aj e
ijθ

∣∣∣∣∣
2

.

By expanding the square and grouping the coefficients of eijθ , one sees that

R(j) =
m−j∑
k=0

akak+j for 0 ≤ j ≤ m.(2.1)

Since the RHS of (2.1) is also the covariance function of the finite moving average
sequence {

m∑
k=0

akηj−k

}
j∈Z,

the proposition is verified. �

Although all m-dependent stationary Gaussian sequences are finite moving
average sequences, it is next shown that there are m-dependent stationary infinitely
divisible sequences that do not have the same distribution as any finite moving
average of i.i.d. infinitely divisible random variables.
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EXAMPLE 2.1. Let Q̂ be the Lévy measure of a two-dimensional infinitely
divisible vector ξ = (ξ0, ξ1) and suppose that there exists an open set B ⊂ R2

such that Q̂ is nonzero on B . Consider the sequence

{Xj }j∈Z

L={ξ0
j + ξ1

j−1}j∈Z

where {ξj }j∈Z are independent copies of ξ . Note that {Xj }j∈Z is a one-dependent
stationary sequence with infinitely divisible marginals, and the Lévy measure of
(X0,X1) is equal to (

Q̂1 × δ{0}
)+ Q̂ + (

δ{0} × Q̂0
)
,

where Q̂0 and Q̂1 denote the one-dimensional marginal distributions of Q̂.
Therefore, the Lévy measure of (X0,X1) is nonzero on B . Next, if

{Xj }j∈Z

L={a0ηj + a1ηj−1}j∈Z

for some i.i.d. sequence of infinitely divisible random variables {ηj }j∈Z and
a0, a1 ∈ R, then

(X0,X1)
L= (0, a0η1) + (a0η0, a1η0) + (a1η−1,0).

Since the three pairs are independent, the Lévy measure of (X0,X1) is equal to the
sum of the Lévy measures of the three vectors. The Lévy measure of the first vector
is supported on one axis and the Lévy measure of the third vector is supported on
the other axis. The Lévy measure of the middle vector is supported on the line
a1x0 + a0x1 = 0 in R2. Therefore, the Lévy measure of (X0,X1) is supported on
three lines in R

2 and is zero at some point in B . It must be that {Xj }j∈Z does not
have the same distribution as any finite moving average sequence.

In an effort to characterize m-dependent stationary infinitely divisible se-
quences, we introduce the following definition.

DEFINITION 2.1. A sequence {Xj }j∈Z is called a finite generalized moving
average sequence (of length m + 1) if

{Xj }j∈Z

L=
{

m∑
k=0

ξk
j−k

}
j∈Z

,(2.2)

where {ξj = (ξ0
j , ξ1

j , . . . , ξm
j )}j∈Z is some i.i.d. sequence of (m + 1)-dimensional

vectors. The sequence {Xj }j∈Z is then said to be generated by ξ .

If ξ is a symmetric α-stable vector, then the sequence generated by ξ according
to (2.2) is a particular case of the generalized moving average sequence introduced
by Surgailis, Rosiński, Mandrekar and Cambanis (1993). Also, it is clear that
finite generalized moving average sequences, as defined here, are m-dependent and
stationary. In addition, it is next shown that all m-dependent stationary Gaussian
sequences are generated by some (m + 1)-dimensional Gaussian vector.
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PROPOSITION 2.2. Let {Xj }j∈Z be an m-dependent stationary Gaussian se-
quence with parameters µ = EX0 and covariance sequence R(j) = Cov(X0,Xj ).
Then, {Xj }j∈Z is a finite generalized moving average sequence generated by an
(m + 1)-dimensional Gaussian vector ξ = (ξ0, . . . , ξm) with parameters

Eξk = µ

m + 1
for 0 ≤ k ≤ m(2.3a)

and

Cov(ξk, ξ l) = akal for 0 ≤ k, l ≤ m,(2.3b)

where {ak}mk=0 is given in Proposition 2.1.

The proposition is clear since the generalized finite moving average sequence
has the same mean and covariance function as the finite moving average sequence
defined in Proposition 2.1.

One of the main results of this paper is that all m-dependent stationary infinitely
divisible sequences are generated by an (m + 1)-dimensional infinitely divisible
vector.

THEOREM 2.1. {Xj }j∈Z is an m-dependent stationary infinitely divisible se-
quence if and only if {Xj }j∈Z is a finite generalized moving average sequence gen-
erated by an (m + 1)-dimensional infinitely divisible vector ξ = (ξ0, ξ1, . . . , ξm).

We showed in Proposition 2.2 that if the m-dependent stationary sequence
is Gaussian, then the generating vector can also be taken Gaussian. There are
other classes of m-dependent stationary infinitely divisible sequences where the
generating vector ξ can be taken from the corresponding class of the infinitely
divisible vectors. Some of these additional cases are given in Corollary 2.1.

COROLLARY 2.1. Let X = {Xj }j∈Z be an m-dependent stationary infinitely
divisible sequence. All finite-dimensional marginals of X are α-stable (or com-
pound Poisson) if and only if the generating vector ξ has distribution in the re-
spective class. All one-dimensional marginals of X are Poisson if and only if the
generating vector ξ is infinitely divisible and all the one-dimensional marginals
of ξ are Poisson.

The proofs of Theorem 2.1 and its corollary are presented in Section 2.2.
Preliminary results on m-dependent stationary infinitely divisible sequences are
given in Section 2.1. However, we first point out that Theorem 2.1 is not
necessarily true (for m > 0) if the hypothesis of infinite divisibility is omitted.
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EXAMPLE 2.2. Let {Yj }jεZ be an independent and identically distributed
sequence of Bernoulli random variables with

P (Y0 = 1) = P (Y0 = 0) = 1
2 ,

and let Xj = Yj−1Yj . Then {Xj }j∈Z is a stationary one-dependent sequence but
is not a generalized finite moving average sequence of length 2. Indeed, for this
{Xj }j∈Z,

[Eeit(X0+X1)]2 − [EeitX0][Eeit(X0+X1+X2)] = 1
64(1 − eit )3.(2.4)

Now, suppose there exists an i.i.d. sequence {ξj = (ξ0
j , ξ1

j )}j∈Z such that

{Xj }j∈Z

L={ξ0
j + ξ1

j−1}j∈Z.

Let ϕ(s, t) be the characteristic function of ξj . Then

Eei(t0X0+t1X1+t2X2) = Eei(t0(ξ
0
0 +ξ 1−1)+t1(ξ

0
1 +ξ 1

0 )+t2(ξ
0
2 +ξ 1

1 ))

= Eei(t0ξ
1−1)Eei(t0ξ

0
0 +t1ξ

1
0 )Eei(t1ξ

0
1 +t2ξ

1
1 )Eei(t2ξ

0
2 )

= ϕ(0, t0)ϕ(t0, t1)ϕ(t1, t2)ϕ(t2,0).

Thus EeitX0 = ϕ(0, t)ϕ(t,0), Eeit(X0+X1) = ϕ(0, t)ϕ(t, t)ϕ(t,0) and
Eeit(X0+X1+X2) = ϕ(0, t)(ϕ(t, t))2ϕ(t,0). Therefore, for all t ∈ R,

[Eeit(X0+X1)]2 − [EeitX0][Eeit(X0+X1+X2)] = 0

which contradicts (2.4). It must be that no such i.i.d. sequence {ξj }j∈Z exists.

2.1. Preliminary results. It is well known that if {Xj }j∈Z is independent
and infinitely divisible, then its Lévy measure is supported on the axes in RZ

[see, e.g., Sato (1999), page 67]. Lemma 2.1, given below, is the corresponding
result for m-dependent infinitely divisible sequences. The proof of Lemma 2.1
uses the result for independent sequences. Actually, the proof only uses pairwise
independence of random variables more than m apart; however, for infinitely
divisible sequences,m-dependence and pairwise independence are equivalent
[this is given as an exercise in Sato (1999), page 67]. Lemma 2.2 shows that
the distribution of an m-dependent stationary infinitely divisible sequence is
uniquely determined by the distribution of an (m + 1)-dimensional marginal.
After presenting these two lemmas and their proofs, we conclude the section by
introducing some useful notation.

LEMMA 2.1. Let {Xj }j∈Z be an m-dependent infinitely divisible sequence
(not necessarily stationary). Let Q be the Lévy measure of {Xj }j∈Z. Then{

(R \ {0})A × {0}Z\A}
A∈Am

is a disjoint partition of the support of Q, where Am denotes the collection of
subsets of Z such that the distance between any two elements is no more than m.
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PROOF. The sets are pairwise disjoint. It remains to show that Q(Sc) = 0,
where

S = ⋃
A∈Am

(R \ {0})A × {0}Z\A.

Let

Ta,b = {
x ∈ R

Z | xa �= 0, xb �= 0
}
.

When |a − b| > m,

Q(Ta,b) = Q|R{a,b}
(
(R \ {0}) × (R \ {0}))= 0,

since Xa and Xb are independent, and thus the Lévy measure of (Xa,Xb) is
supported on the axes. Now

Sc = ⋃
|a−b|>m

Ta,b.

Thus

Q(Sc) ≤ ∑
|a−b|>m

Q(Ta,b) = 0.
�

LEMMA 2.2. Let {Xj }j∈Z and {Yj }jεZ be two m-dependent stationary
infinitely divisible sequences. If

{Xj }mj=0
L={Yj }mj=0,

then

{Xj }j∈Z

L={Yj }j∈Z.

PROOF. If {Xj }j∈Z is an m-dependent Gaussian sequence, then the dis-
tribution of both {Xj }j∈Z and {Xj }mj=0 are uniquely determined by EX0 and
Cov(X0,Xj ) for 0 ≤ j ≤ m. Thus, the result is clear in the Gaussian case. There-
fore, assume that {Xj }j∈Z and {Yj }jεZ are infinitely divisible without Gaussian
component, and let Am be as defined in Lemma 2.1.

Let QX be the Lévy measure of {Xj }j∈Z, and let QY be the Lévy measure of
{Yj }j∈Z. For each A ∈ Am, let QX(A) and QY(A) denote the restrictions of QX

and QY to (R \ {0})A × {0}Z\A, respectively. By Lemma 2.1, the Lévy measure of
{Xj }j∈A is

QX|RA = ∑
B∈Am,
A⊂B

QX(B)|RA.

The Lévy measure of {Yj }j∈A is similarly given, and since {Xj }j∈Z and {Yj }j∈Z

are stationary with {Xj }mj=0
L={Yj }mj=0, the Lévy measure of {Xj }j∈A restricted
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to (R \ {0})A is equal to the Lévy measure of {Yj }j∈A restricted to (R \ {0})A.
Symbolically, ∑

B∈Am,
A⊂B

QX(B)|RA = ∑
B∈Am,
A⊂B

QY (B)|RA.(2.5)

Note that the B’s in the summation index are either B = A or |B| > |A| where | · |
denotes cardinality. Thus, for A with |A| = m + 1, the above equation reduces to

QX(A)|RA = QY (A)|RA.(2.6)

Furthermore, if (2.6) holds for k < |A| ≤ m, then (2.5) reduces to (2.6) for |A| = k.
Thus, it is inductively shown that (2.6) holds for all A ∈ Am. Finally, it is clear
that QX(A) = QX(A)|RA ×{0}Z\A and QY (A) = QY(A)|RA ×{0}Z\A. Therefore,
(2.6) implies that QX(A) = QY (A), for all A ∈ Am; and thus QX = QY . �

We now introduce some notation that will be used in the proof of Theorem 2.1.
In the following J is an interval subset of Z and P denotes the class of Borel
measures on RJ .

DEFINITION 2.2. For k ∈ Z, let T k : RJ → RJ be defined by

[T k(x)]j =
{

xj−k, if j − k ∈ J,

0, otherwise,

for each j ∈ J and x = {xj }j∈J , where xj ∈ R.

If J = Z, then T and T −1 are inverse functions and T k+l = T k ◦ T l .

DEFINITION 2.3. For k ∈ R, let τ k :P → P be defined by

τ kP (A) = P
({x|T k(x) ∈ A}),

for each measure P ∈ P and A ∈ B(RJ ).

2.2. Proof of the characterization theorem. In this section, we prove
Theorem 2.1 and Corollary 2.1. We start with the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. It is easy to check that if ξ is an infinitely divisible
vector and {Xj }j∈Z is generated by ξ according to (2.2), then {Xj }j∈Z is neces-
sarily m-dependent, stationary, and infinitely divisible. Conversely, Proposition 2.2
implies that all m-dependent stationary Gaussian sequences are generated by some
Gaussian vector ξ . Now consider a general m-dependent stationary infinitely di-
visible sequence {Xj }j∈Z with characterizing triplet (b,�,Q). We will show that
this sequence is generated by ξ = ξG + ξP where ξG generates the Gaussian part
[the infinitely divisible sequence with characterizing triplet (b,�,0)], and ξP is
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the infinitely divisible vector with characterizing triplet (0,0, Q̂|R{0,...,m}), where
Q̂ is the Lévy measure of {Xj }2m

j=0 restricted to

R
{0,...,m−1} × (R \ {0}){m} × {0}{m+1,...,2m}.

To complete the proof of Theorem 2.1, we only need to prove the following:

LEMMA 2.3. The sequence generated by ξP has Lévy measure Q.

PROOF. As a consequence of Lemma 2.2, it is sufficient to show that

Q|R{0,1,...,2m} =
2m∑

k=−m

τkQ̂,(2.7)

where the RHS is the Lévy measure of a (2m + 1)-dimensional marginal of ξP .
�

The proof that (2.7) holds is most clear when m = 1. Lemma 2.1 shows that the
support of Q|R{0,1,2} can be partitioned into five subsets. Each subset is rectangular
with all cross sections equal to {0} or R\ {0}.P (0),P (1),P (2),R(1) and R(2) are
the Lévy measure of {X0,X1,X2} restricted to each of these subsets. This division
is illustrated in Figure 1.

Since the sequence is stationary, the Lévy measures of {X0,X1} and {X1,X2}
are the same. These two Lévy measures are the projections of Q|R{0,1,2} onto
R{0,1} and R{1,2} respectively. Figure 2 shows where each of the sub-measures
of Q|R{0,1,2} is projected to. Thus,

R(2)|R{1,2} = R(1)|R{0,1} = [τR(1)]|R{1,2} ,

where the first equality is clear (see Figure 2) and the second equality follows
from the definition of τ . Since R(2) and τR(1) are supported on {0}{0} × R{1,2}, it
follows that

R(2) = τR(1).(2.8)

FIG. 1. Lévy measure of {X0,X1,X2}.
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FIG. 2. Lévy measures of {X0,X1} and {X1,X2}.

Similarly,

P (2)|R{1,2} = [P (1) + R(2)]|R{0,1}

= [τP (1) + τR(2)]|R{1,2}

= [τP (1) + τ 2R(1)]|R{1,2},

where the last equality follows from (2.8). Since P (2), τP (1) and τ 2R(1) are
supported on {0}{0} × R{1,2}, it follows that

P (2) = τP (1) + τ 2R(1).(2.9)

Finally,

P (0)|R{0,1} = [P (1) + R(1)]|R{1,2}

= [
τ−1P (1) + τ−1R(1)

]∣∣
R{0,1} ,

and since P (0), τ−1P (1), and τ−1R(1) are supported on R{0,1} × {0}{2}, it follows
that

P (0) = τ−1P (1) + τ−1R(1).(2.10)

In conclusion,

Q|R{0,1,2} = P (0) + P (1) + P (2) + R(1) + R(2)

=
1∑

k=−1

τ kP (1) +
2∑

k=−1

τ kR(1)

=
2∑

−1

τ kQ̂,

where the second equality follows from (2.8)–(2.10). The last equality holds since
Q̂ = P (1) + R(1). Thus (2.7) is verified for m = 1.

For arbitrary values of m, (2.7) is verified by the same method as in the case
m = 1. Lemma 2.1 shows that the support of Q|R{0,1,...,2m} is partitioned into
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rectangular subsets, the cross sections of which are either {0} or R \ {0}. The
subsets are indexed in such a way that it is clear which subsets are shifts of each
other and so that Q̂ can be easily identified. These facts are formally presented in
the following.

Let X be the collection of x = {xj }2m
j=0 such that xj is 0 or 1, for 0 ≤ j < m,

xm = 1, and xj = 0, for m < j ≤ 2m. Define

L(x) = m − min{j | xj = 1}.
For x ∈ X and k ∈ {L(x) − m, . . . ,m}, let A(x, k) be the rectangular sub-

set of R{0,...,2m} such that the projection of A(x, k) onto R{j } is R \ {0} if
[T k(x)]j = 1 and {0} if [T k(x)]j = 0, where T k is given in Definition 2.2.
{A(x, k)}x∈X,k∈{L(x)−m,...,m} is a disjoint partition of the support of Q|R{0,1,...,2m} ,
and {A(x,0)}x∈X is a disjoint partition of the support of Q̂. Let Q(x, k) be the re-
striction of Q|R{0,1,...,2m} to A(x, k). Using this notation, in order to show (2.7), one
must show that

∑
x∈X

m∑
k=L(x)−m

Q(x, k) = ∑
x∈X

2m∑
k=−m

τkQ(x,0).(2.11)

The above equality holds if and only if for each A(x, k), the measure on the
LHS restricted to A(x, k) is equal to the measure on the RHS restricted to A(x, k).
Therefore, (2.11) holds if and only if

Q(x, k) = ∑
(x′,k′)∈X×Z,

T k′ (x′)=T k(x)

τ k′
Q(x′,0),

for x ∈ X and L(x)−m ≤ k ≤ m. More precisely stated, equality holds in (2.11) if
and only if for each x ∈ X,

Q(x, k) =



τ kQ(x,0), for 1 ≤ k ≤ L(x),

τ kQ(x,0) +
k−L(x)∑

j=1

( ∑
x′∈X,

T j+m(x′)=T k(x)

τm+jQ(x′,0)

)
,

for L(x) < k ≤ m,

(2.12)

and

Q(x, k) = ∑
x′∈X,

T k(x′)=T k(x)

τ kQ(x′,0) for L(x) − m ≤ k ≤ −1.(2.13)

Since the sequence is stationary, the Lévy measures of (Xk, . . . ,Xk+m) are
equal for 0 ≤ k ≤ m. These Lévy measures are the respective projections of
Q|R{0,1,...,2m} onto R

{k,...,k+m}.
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R{k,...,k+m} is partitioned into rectangular subsets with cross-sections either {0}
or R \ {0}. For x ∈ X and l ∈ {L(x) − m, . . . ,0}, let Bk(x, l) be a rectangular
subset of R{k,...,k+m} such that the projection of Bk(x, l) onto R{k+j } is R \ {0}
if [T l(x)]j = 1 and is {0} if [T l(x)]j = 0. Then, {Bk(x, l)}x ∈ X, l ∈ {L(x) −
m, . . . ,0} is a disjoint partition of R{k,...,k+m} \ {0}.

Note that Bk(x,0) ⊂ R
{k,...,k+m−1} × (R \ {0}){k+m}. When Q|R{0,1,...,2m} is

projected onto R{k,...,k+m}, the projection of the following is supported on Bk(x,0):

m−L(x)∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x, k + j)

 if 0 ≤ k ≤ L(x)(2.14a)

and

m−k∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x, k + j)

 if L(x) ≤ k ≤ m.(2.14b)

Also,Bk(x,L(x) − m) ⊂ (R \ {0}){k} × R{k+1,...,k+m}. When Q|R{0,1,...,2m} is
projected onto R{k,...,k+m}, the projection of the following is supported on
Bk(x,L(x) − m):∑

x′∈X,

L(x)≤L(x′ )≤L(x)+k,

T L(x)−m(x′)=T L(x)−m(x)

Q
(
x′,L(x) − m + k

)
if 0 ≤ k ≤ m − L(x)(2.15a)

and ∑
x′∈X,

L(x)≤L(x′ )≤m,

T L(x)−m(x′)=T L(x)−m(x)

Q
(
x′,L(x) − m + k

)
if m − L(x) ≤ k ≤ m.(2.15b)

Expressions (2.14) and (2.15) guarantee that (2.12) and (2.13) hold as shown
below in Lemmas 2.4 and 2.5, respectively. �

LEMMA 2.4. For each x ∈ X, the measures {Q(x, k)}1≤k≤m satisfy the
recursion equation

Q(x, k) =
{

τQ(x, k − 1), for 1 ≤ k ≤ L(x),

τQ(x, k − 1) + τQ(x′,m), for L(x) < k ≤ m,
(2.16)

where x′ is such that T m+1(x′) = T k(x). Furthermore, (2.12) solves this recursion
equation.
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PROOF. Lemma 2.4 is proven inductively. First, we show that (2.16) is
satisfied for x such that L(x) = m. When Q|R{0,1,...,2m} is projected onto R

{k,...,k+m}
only the projection of Q(x, k) is supported on Bk(x,0), for 0 ≤ k ≤ m [see (2.14)].
Since the sequence is stationary,

Q(x, k)|R{k,...,k+m} = Q(x, k − 1)|R{k−1,...,k−1+m} = [τQ(x, k − 1)]R{k,...,k+m} .

The second equality follows from the definition of τ . Since Q(x, k) and τQ(x,

k − 1) are supported in {0}{0,...,k−1} × R{k,...,k+m} × {0}{k+m+1,...,2m}, it follows
that

Q(x, k) = τQ(x, k − 1).(2.17)

Next, fix x arbitrary with L(x) < m. We show that if (2.16) is true for all x′ such
that L(x′) > L(x), then it is true for x. The assumption that (2.16) is true for all x′
such that L(x′) > L(x) will be referred to as the induction hypothesis.

For 0 ≤ k ≤ L(x), when Q|R{0,1,...,2m} is projected onto R{k,...,k+m}, (2.14) gives
that the restriction to Bk(x,0) is

m−L(x)∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x′, k + j)|R{k,...,k+m}

 .

Since the sequence is stationary, for 1 ≤ k ≤ L(x)

m−L(x)∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x′, k + j)|R{k,...,k+m}



=
m−L(x)∑

j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x′, k − 1 + j)|R{k−1,...,k−1+m}

 .

(2.18)

Since 1 ≤ k + j ≤ L(x) + j = L(x′), the induction hypothesis implies that the
LHS of (2.18) is

Q(x, k)|R{k,...,k+m}

+
m−L(x)∑

j=1

 ∑
x′∈X,

T m+j (x′)=T m(x)

[τQ(x′, k − 1 + j)]|R{k,...,k+m}

 .
(2.19)
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Moreover, the RHS of (2.18) is equal to

m−L(x)∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

[τQ(x′, k − 1 + j)]|R{k,...,k+m}

 .(2.20)

By canceling out the common terms in (2.19) and (2.20), the equation reduces to

Q(x, k)|R{k,...,k+m} = [τQ(x, k − 1)]|R{k,...,k+m}.

Since Q(x, k) and τQ(x, k − 1) are each supported on

{0}{0,...,k−1} × R
{k,...,k+m} × {0}{k+m+1,...,2m},

it follows that

Q(x, k) = τQ(x, k − 1).(2.21)

For L(x) ≤ k ≤ m, when Q|R{0,1,...,2m} is projected onto R{k,...,k+m}, (2.14) gives
that the restriction to Bk(x,0) is

m−k∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x′, k + j)|R{k,...,k+m}

 .

Since the sequence is stationary, for L(x) < k ≤ m,

m−k∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x, k + j)|R{k,...,k+m}



=
m−k+1∑

j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

Q(x, k − 1 + j)|R{k−1,...,k−1+m}

 .

(2.22)

Since k + j > L(x) + j = L(x′), the induction hypothesis implies that the LHS
of (2.22) is

Q(x, k) +
m−k∑
j=1


∑

(x′,x′′)∈X×X,

T m+j (x′)=T m(x),

T m+1(x′′)=T k+j (x′)

(
τQ(x′, k − 1 + j) + τQ(x′′,m)

)
(2.23)
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projected onto R{k,...,k+m}. The RHS of (2.22) is

m−k+1∑
j=0

 ∑
x′∈X,

T m+j (x′)=T m(x)

τQ(x′, k − 1 + j)

(2.24)

projected onto R{k,...,k+m}. By cancelling out the common terms in (2.23)
and (2.24), the equation reduces to

Q(x, k) +
m−k∑
j=1


∑

(x′,x′′)∈X×X,

T m+j (x′)=T m(x),

T m+1(x′′)=T k+j (x′)

τQ(x′′,m)


= τQ(x, k − 1) + ∑

x′∈X,

T 2m−k+1(x′)=T m(x)

τQ(x′,m),

(2.25)

where each side is projected onto R
{k,...,k+m}. Equation (2.25) is further simplified

by carefully comparing the terms in the sums on each side. Recall that x is a vector
of length 2m + 1 of the form

0 . . . 0
m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

where 1∗ · · · ∗ 1 denotes the pattern of 0’s or 1’s in x [if L(x) = 0, then this pattern
is a single 1]. For the terms in the LHS of (2.25), x′ is a vector of the form

0 . . . 0
m − L(x) − j

1 ∗ · · · ∗ 1
L(x) + 1

0’s or 1’s
j − 1

1
1

0 . . . 0
m

and x′′ is a vector of the form
0 . . . 0

k − L(x) − 1
1 ∗ · · · ∗ 1
L(x) + 1

0’s or 1’s
j − 1

1
1

0 . . . 0
m − k − j

1
1

0 . . . 0
m

.

For the terms on the RHS of (2.25), x′ is a vector of the form

0 . . . 0
k − L(x) − 1

1 ∗ · · · ∗ 1
L(x) + 1

0’s or 1’s
m − k

1
1

0 . . . 0
m

.

Therefore, the terms on each side are the same except for the additional term on
the RHS where x′ is

0 . . . 0
k − L(x) − 1

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m − k

1
1

0 . . . 0
m

.

Thus (2.25) further simplifies to

Q(x, k)|R{k,...,k+m} = [
τQ(x, k − 1) + τQ(x′,m)

]∣∣
R{k,...,k+m},
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where x′ is such that T m+1(x′) = T k(x). Since Q(x, k), τQ(x, k − 1), and
τQ(x′,m) are each supported on

{0}{0,...,k−1} × R
{k,...,k+m} × {0}{k+m+1,...,2m},

it follows that

Q(x, k) = τQ(x, k − 1) + τQ(x′,m).(2.26)

Equations (2.17), (2.21) and (2.26) complete the proof of (2.16). It remains to
show (by induction) that since {Q(x, k)}1≤k≤m satisfy (2.16), {Q(x, k)}1≤k≤m also
satisfy (2.12).

For pairs Q(x, k) with 1 ≤ k ≤ L(x), the implication is clear. Fix k > L(x)

and assume that Q(x, k − 1) and Q(y,m) satisfy (2.12) for y ∈ X such that
T m+1(y) = T k(x). Note that L(y) = L(x) + m − k + 1 = m.

If k = L(x) + 1, then

Q(x, k) = τQ(x, k − 1) + τQ(y,m) = τ kQ(x,0) + τm+1Q(y,0),

which is equivalent to Q(x, k) satisfying (2.12). The first equality is the recursion
equation. The second equality comes from the induction assumption.

If L(x) + 1 < k ≤ m, then

Q(x, k) = τQ(x, k − 1) + τQ(y,m)

= τ kQ(x,0) +
k−L(x)∑

j=2

 ∑
x′′∈X,

T j−1+m(x′′)=T k−1(x)

τm+jQ(x′′,0)



+ τm+1Q(j,0) +
k−L(x)∑

j=2

 ∑
y′′∈X,

T j−1+m(y′′)=T m(y)

τm+jQ(y′′,0)



= τ kQ(x,0) +
k−L(x)∑

j=1

 ∑
x′∈X,

T j+m(x′)=T k(x)

τm+jQ(x′,0)

 .

The first equality is the recursion equation. The second equality comes from the
induction assumption, and the change of variable j + 1 → j . The last equality is
verified by comparing the terms in each sum. �

Lemma 2.4 verifies (2.12). The proof of (2.13) is now presented.
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LEMMA 2.5. For each x ∈ X with L(x) < m, the measures
{Q(x, k)}L(x)−m≤k≤−1 satisfy the recursion equation

Q(x, k)=τ−1Q(x, k + 1)+τ−1Q(x′, k +1) for L(x)−m≤ k ≤−1,(2.27)

where x′ is such that T k(x′) = T k(x) and L(x′) = k + m + 1. Furthermore, (2.13)

solves this recursion equation.

PROOF. Lemma 2.5 is also proven inductively. First, we show (2.27) for x
such that L(x) = m−1. When Q|R{0,1,...,2m} is projected onto R{0,...,m}, (2.15) gives
that only the projection of Q(x,−1) is supported on B0(x,−1). When Q|R{0,1,...,2m}
is projected onto R

{1,...,1+m}, (2.15) gives that the projections of both Q(x,0) and
Q(x′,0) are supported on B1(x,−1) where x′ is such that T −1(x′) = T −1(x) and
L(x′) = m. Since the sequence is stationary,

Q(x,−1)|R{0,...,m} = [Q(x,0) + Q(x′,0)]|R{1,...,1+m}

= [
τ−1Q(x,0) + τ−1Q(x′,0)

]∣∣
R{0,...,m}.

The second inequality follows from the definition of τ . Since Q(x,−1),
τ−1Q(x,0) and τ−1Q(x′,0) are supported in R

{0,...,m} × {0}{m+1,...,2m},
Q(x,−1) = τ−1Q(x,0) + τ−1Q(x′,0).(2.28)

Next, fix x arbitrary with L(x) < m − 1. We show that if (2.27) is true for all x′
such that L(x) < L(x′) < m, then (2.27) is true for x. The assumption that (2.27)
is true for all x′ such that L(x) < L(x′) < m will be referred to as the induction
hypothesis.

For L(x) − m ≤ k ≤ 0, (2.15) gives that∑
x′∈X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)≤L(x′ )≤k+m

Q(x′, k)|R{k−L(x)+m,...,k−L(x)+2m}

is supported on Bk−L(x)+m(x,L(x)− m). By stationarity, for L(x) − m ≤ k ≤ −1,∑
x′∈X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)≤L(x′ )≤k+m

Q(x′, k)|R{k−L(x)+m,...,k−L(x)+2m}

= ∑
x′∈X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)≤L(x′ )≤k+1+m

Q(x′, k + 1)|R{k+1−L(x)+m,...,k+1−L(x)+2m} .
(2.29)

The induction hypothesis implies that the LHS of (2.29) is

Q(x, k) + ∑
(x′,x′′)∈X×X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)<L(x′ )≤k+mT k(x′′)=T k(x′),
L(x′′)=k+m+1,

τ−1Q(x′, k + 1) + τ−1Q(x′′, k + 1),(2.30)
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projected onto R{k−L(x)+m,...,k−L(x)+2m}. The RHS of (2.29) is∑
x′∈X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)≤L(x′ )≤k+1+m

[
τ−1Q(x′, k + 1)

]∣∣
R{k−L(x)+m,...,k−L(x)+2m} .(2.31)

By canceling out the common terms in (2.30) and (2.31), the equation reduces to

Q(x, k) + ∑
(x′,x′′)∈X×X,

T L(x)−m(x′)=T L(x)−m(x),

L(x)<L(x′ )≤k+m,

T k(x′′)=T k(x′),
L(x′′)=k+m+1

τ−1Q(x′′, k + 1)

= τ−1Q(x, k + 1) + ∑
x′∈X,

T L(x)−m(x′)=T L(x)−m(x),

L(x′)=k+m+1

τ−1Q(x′, k + 1),

(2.32)

where each side is projected onto R
{k−L(x)+m,...,k−L(x)+2m}. The sum is further

simplified by carefully comparing the terms on each side. Recall that x is a vector
of length m + 1 of the form

0 . . . 0
m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

.

For the terms on the LHS of (2.32),x′ is a vector of the form

0 . . . 0
−k

at least one 1
k + m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

and x′′ is a vector of the form

0 . . . 0
−k − 1

1
1

at least one 1
k + m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

.

For the terms on the RHS of (2.32),x′ is a vector of the form

0 . . . 0
−k − 1

1
1

0’s or 1’s
k + m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

.

Therefore, the terms in the sums on each side are the same except for the additional
term on the RHS where x′ is

0 . . . 0
−k − 1

1
1

0 . . . 0
k + m − L(x)

1 ∗ · · · ∗ 1
L(x) + 1

0 . . . 0
m

.

Hence (2.32) further simplifies to

Q(x, k)|R{k−L(x)+m,...,k−L(x)+2m}

= [
τ−1Q(x, k + 1) + τ−1Q(x′, k + 1)

]∣∣
R{k−L(x)+m,...,k−L(x)+2m},
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where x′ is such that T k(x′) = T k(x) and L(x′) = k + m + 1. Since Q(x, k),
τ−1Q(x, k + 1) and τ−1Q(x′, k + 1) are each supported on

{0}{0,...,k−L(x)+m−1} × R
{k−L(x)+m,...,k−L(x)+2m} × {0}{k−L(x)+2m+1...,2m},

it follows that

Q(x, k) = τ−1Q(x, k + 1) + τ−1Q(x′, k + 1).(2.33)

Equations (2.28) and (2.33) complete the proof of (2.27). It remains to
show that since {Q(x, k)}L(x)−m≤k≤−1 satisfy (2.27), {Q(x, k)}L(x)−m≤k≤−1 also
satisfy (2.13). Once more, this is done by induction.

For pairs Q(x, k) with k = −1, the implication is clear. Fix L(x)−m ≤ k < −1
and assume that Q(x, k + 1) and Q(y, k + 1) satisfy (2.13) for y ∈ X such that
T k(y) = T k(x). Note that L(y) = k + m + 1 > L(x).

Then

Q(x, k) = τ−1Q(x, k + 1) + τ−1Q(y, k + 1)

= ∑
x′′∈X,

T k+1(x′′)=T k+1(x)

τ kQ(x′′,0) + ∑
y′′∈X,

T k+1(y′′)=T k+1(y)

τ kQ(y′′,0)

= ∑
x′∈X,

T k(x′)=T k(x)

τ kQ(x′,0).

The first equality is the recursion equation. The second equality comes from the
induction assumption. The last equality is verified by comparing the terms in each
sum.

This concludes the proof of Theorem 2.1. �

REMARK 2.1. In the proof of Theorem 2.1, a ξ with a particular Lévy
measure Q̂ is shown to generate {Xj }j∈Z. Instead, let Q̂1 be the Lévy measure
of {Xj }mj=−m restricted to

{0}{−m,...,−1} × (R \ {0}){0} × R
{1,...,m}

and let ξ1 be the infinitely divisible vector with characterizing triplet (0,

0, Q̂1|R{0,...,m}). Then ξ1 also generates {Xj }j∈Z.

We now come to the proof of Corollary 2.1.

PROOF OF COROLLARY 2.1. The classes of α-stable and compound Poisson
vectors are closed under linear combinations. The class of infinitely divisible
vectors such that all the one-dimensional marginals are Poisson is also closed
under linear combinations. Therefore, if ξ is in one of these classes, all of the finite-
dimensional marginals of the sequence generated by ξ (and thus the sequence
itself) are in the same class of distributions.
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To prove the converse, we assume that the stationary m-dependent sequence
{Xj }j∈Z is α-stable, compound Poisson, or infinitely divisible with Poisson one-
dimensional marginals, and we show that there exists a ξ from the same class of
distributions such that ξ generates {Xj }j∈Z.

If {Xj }j∈Z is α-stable, then {Xj }2m
j=0 has characterizing triplet (µ1,0,Q) where

µ is the location parameter of X0,1 = (1,1, . . . ,1), and Q is a Borel measure on
R2m+1 given by

Q(dx) = 1

r1+α
�(ds),

where � is a measure on the unit sphere in S2m+1 [see, e.g., Samorodnitsky and
Taqqu (1994)]. Let

Q̂(dx) = 1

r1+α
�̂(ds),

where

�̂(ds) =
{

�(ds), for s ∈ S2m+1 ∩ (
Rm × (R \ {0}) × {0}m),

0, otherwise.

Then (0,0, Q̂) is the characterizing triplet of (ξ0, . . . , ξ2m) where (ξ0, . . . , ξm)

is an α-stable random vector in Rm+1 and (ξm+1, . . . , ξ2m) ≡ 0. Lemma 2.3
shows that (ξ0, . . . , ξm) generates an m-dependent stationary infinitely divisible
sequence with characterizing triplet (0,0,Q). It thus follows that the α-stable
vector (ξ0 + µ,ξ1, . . . , ξm) generates {Xj }j∈Z.

If {Xj }j∈Z is compound Poisson, then {Xj }2m
j=0 has characteristic function

exp
(
λ(ϕ(t) − 1)

)
,

where λ > 0 and ϕ(t) is the characteristic function of a vector Y with P ({Y =
0}) = 0. Moreover, {Xj }2m

j=0 has characterizing triplet (b1,0,Q) where Q is given
by

Q(A) = λP (Y ∈ A),

b =
∫

R2m+1\{0}
x11‖x‖≤1Q(dx)

and 1 = (1,1, . . . ,1). Let Ŷ be (Y0, Y1, . . . , Ym) conditioned on{
Ym �= 0,

Yk = 0, for m + 1 ≤ k ≤ 2m,

and let

Q̂ = λP
(
Y ∈ R

m × (R \ {0}) × {0}m)P (Ŷ ∈ A).
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Then (0,0, Q̂) is the characterizing triplet of a vector (ξ0, . . . , ξm) in Rm+1.
Lemma 2.3 shows that (ξ0, . . . , ξm) generates an m-dependent stationary infinitely
divisible sequence with characterizing triplet (0,0,Q). Thus, the compound Pois-
son vector with Lévy measure Q̂ generates a stationary m-dependent compound
Poisson sequence. Hence, this sequence is {Xj }j∈Z, since a compound Poisson
sequence is uniquely determined by its Lévy measure.

If {Xj }j∈Z is infinitely divisible and all the one-dimensional marginals are
Poisson, then {Xj }j∈Z is compound Poisson where the Lévy measure of {Xj }2m

j=0

is supported on the points {0,1}2m+1. In this case Q̂ is the restriction of Q to
{0,1}m × {1}× {0}m, and the unique infinitely divisible vector with Lévy measure
Q̂ generates {Xj }j∈Z. All of the one-dimensional marginals of this vector are
Poisson. �

3. Weak convergence of partial sums for stationary infinitely divisible se-
quences. Partial sum convergence for m-dependent stationary infinitely divisible
sequences is studied next. These results are extended to stationary infinitely divis-
ible sequences having a form of asymptotic independence in Section 3.2.

3.1. m-dependent sequences. Let {Xj }j∈Z be an m-dependent stationary se-
quence with partial sums Sn = ∑n−1

j=0 Xj . While Theorem 1.1 gives sufficient con-
ditions for the distributional convergence of the partial sums properly centered and
normalized, the following theorem provides necessary and sufficient conditions.

THEOREM 3.1. Let {Xj }j∈Z be an m-dependent stationary infinitely divisible
sequence with generating vector ξ and partial sums Sn. Then the characteristic
function of

∑m
k=0 ξk

0 is equal to

EeitSm+1

EeitSm
.

Moreover, there exists a centering sequence {An} and a normalizing sequence {Bn}
with Bn → ∞ such that Sn−An

Bn
converges in distribution to a nondegenerate

Sα(σ,β,µ) random variable if and only if
∑m

k=0 ξk
0 is in the domain of attraction

of the same Sα(σ,β,µ) distribution.

PROOF. Let ξ be the generating vector of {Xj }j∈Z. Then

Sm+1
L=

m∑
j=0

m∑
k=0

ξk
j−k

=
−1∑

i=−m

m∑
k=−i

ξ k
i +

m∑
k=0

ξk
0 +

m∑
i=1

m−i∑
k=0

ξk
i .
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The sum of the first and third term is equal in distribution to

Sm
L=

m−1∑
j=0

m∑
k=0

ξk
j−k =

−1∑
i=−m

m∑
k=−i

ξ k
i +

m−1∑
i=0

m−1−i∑
k=0

ξk
i

and is independent of the second term. Thus,

EeitSm+1

EeitSm

is the characteristic function of
∑m

k=0 ξk
0 .

Let {X̃j }j∈Z be an i.i.d. sequence with X̃0
L= ∑m

k=0 ξk
0 and partial sums S̃n.

Then, for n ∈ N,

Sn
L=

n−1∑
j=0

m∑
k=0

ξk
j−k

=
−1∑

i=−m

m∑
k=−i

ξ k
i +

n−1∑
i=0

m∑
k=0

ξk
i −

n−1∑
i=n−m

m∑
k=n−i

ξ k
i

L=
−1∑

i=−m

m∑
k=−i

ξ k
i + S̃n −

n−1∑
i=n−m

m∑
k=n−i

ξ k
i

and
Sn − An

Bn

L= 1

Bn

−1∑
i=−m

m∑
k=−i

ξ k
i + S̃n − An

Bn

− 1

Bn

n−1∑
i=n−m

m∑
k=n−i

ξ k
i .

If Bn → ∞, then

P

( −1∑
i=−m

m∑
k=−i

ξ k
i > εB−1

n

)
→ 0,

P

(
m∑

i=1

m∑
k=m−i+1

ξk
i+n−1−m > εB−1

n

)

= P

(
m∑

i=1

m∑
k=m−i+1

ξk
i−1−m > εB−1

n

)
→ 0

and therefore
Sn − An

Bn

⇒ Sα(σ,β,µ)

if and only if
S̃n − An

Bn

⇒ Sα(σ,β,µ),

which is equivalent to
∑m

k=0 ξk
0 being in the domain of attraction of the Sα(σ,β,µ)

distribution. Since the limiting distribution is nondegenerate, the classical theory
implies that Bn → ∞ as n → ∞. �
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REMARK 3.1. It follows from Theorem 2.1 that the ratio EeitSm+1

EeitSm
is a

characteristic function. This is not necessarily true for noninfinitely divisible
sequences of stationary m-dependent random variables.

REMARK 3.2. It is easy to check that the assumptions of Theorem 1.1 imply

that the random variable with characteristic function EeitSm+1

EeitSm
is in the domain of

attraction of a Sα(σ,β,µ) distribution. An example of an m-dependent stationary
infinitely divisible sequence that satisfies the assumptions of Theorem 3.1 but does
not satisfy the assumptions of Theorem 1.1 has not been constructed.

3.2. Approximation of infinitely divisible sequences by m-dependent ones. We
extend the weak convergence results of the previous section to a larger class of
stationary infinitely divisible sequences. In particular, we study the class of such
sequences that can be weakly approximated by m-dependent ones in a particular
way.

Note that all stationary infinitely divisible sequences can be approximated
weakly by m-dependent stationary infinitely divisible sequences as shown in the
following proposition.

PROPOSITION 3.1. Let {Xj }j∈Z be a stationary infinitely divisible sequence.
Let

ϕn : Rn+1 → R

denote the characteristic function of (X0,X1, . . . ,Xn). Let

{Xj(m)}j∈Z

be the m-dependent stationary infinitely divisible sequence generated by the
(m + 1)-dimensional vector with characteristic function (ϕm)1/m. Then

{Xj(m)}j∈Z ⇒ {Xj }j∈Z,

as m → ∞.

PROOF. Fix n ∈ N and (t0, t1, . . . , tn) ∈ Rn arbitrary. Then

Eei(t0X0(m)+t1X1(m)+···+tnXn(m)) =
n∏

j=−m

ϕ1/m
m (tj , tj+1, . . . , tj+m),(3.1)

where tj = 0 for j /∈ {0,1, . . . , n}. Since {Xj }j∈Z is stationary, when m > n (3.1)
reduces to

n−m−1∏
j=−m

ϕ
1/m
m+j (t0, . . . , tj+m)

0∏
j=n−m

ϕ1/m
n (t0, . . . , tn)

n∏
j=1

ϕ
1/m
n−j (tj , . . . , tn).(3.2)
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Note that (
n−m−1∏
j=−m

ϕm+j (t0, . . . , tj+m)

)1/m

→ 1,

since the product does not depend on m, does not vanish and its absolute value
is bounded by 1. Hence the first product in (3.2) goes to 1 as m → ∞. The third
product in (3.2) goes to 1 as m → ∞ by a similar argument. The second product
in (3.2) simplifies to (ϕn(t0, . . . , tn))

(m−n+1)/m which converges to ϕn(t0, . . . , tn),
as m → ∞. Thus

lim
m→∞Eei(t0X0(m)+t1X1(m)+···tnXn(m)) = ϕn(t0, t1, . . . , tn),

which completes the proof. �

This proposition does not really help in the study of partial sum convergence for
the original sequence {Xj }j∈Z. Thus, we turn our attention to stationary infinitely
divisible sequences that can be approximated by m-dependent sequences in such a
way that the results of Section 3.1 can be extended.

We assume that

{Xj }j∈Z

L=
∞∑

m=0

{Yj (m)}j∈Z,

where for each m ∈ N, {Yj(m)}j∈Z is an m-dependent stationary infinitely
divisible sequence and the collection is independent in m.

For each m, let ξ(m) = (ξ0(m), . . . , ξm(m)) be the infinitely divisible vector
that generates {Yj(m)}j∈Z according to Theorem 2.1. Suppose that ξ(m) has
characterizing triplet (b̂m, �̂m, Q̂m), where

b̂m = (
b̂m(0), b̂m(1), . . . , b̂m(m)

)
,

�̂m = { σ̂m(k, l)}k,l∈{0,1,...,m},
and Q̂m is a Lévy measure on R

{0,1,...,m}. The characterizing triplet of {Yj(m)}j∈Z

is given by

bm =
m∑

k=0

b̂m(k),

�m(j) =


m−j∑
k=0

σ̂m(k, j + k), for 0 ≤ j ≤ m,

0, for j > m,

and the Lévy measure Qm on RZ is defined by

Qm =
∞∑

k=−∞
τ kQ̂m,∞,
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where Q̂m,∞ is a Lévy measure on RZ given by

· · · ⊗ δ{0} ⊗ Q̂m ⊗ δ{0} ⊗ · · · .
Note that

∞∑
k=−∞

(∫
RZ\{0}

min(1, x2
0)τ kQ̂m,∞(dx)

)
=

m∑
k=0

(∫
Rm+1\{0}

min(1, x2
k )Q̂m(dx)

)
.

Thus the sequence {Xj }j∈Z is well defined if and only if

∞∑
m=0

m∑
k=0

b̂m(k) < ∞,(3.3a)

∞∑
m=0

m∑
k=0

σ̂m(k, k) < ∞(3.3b)

and
∞∑

m=0

m∑
k=0

(∫
Rm+1\{0}

min(1, x2
k )Q̂m(dx)

)
< ∞.(3.3c)

Although all stationary infinitely divisible sequences can be approximated
weakly by m-dependent ones, not all stationary infinitely divisible sequences can
be approximated by m-dependent ones in the cumulative manner just described. In
fact, sequences that can be approximated this way are strongly mixing in the sense
of ergodic theory.

THEOREM 3.2. For each m ∈ N, let ξ(m) be an (m+1)-dimensional infinitely
divisible vector with characterizing triplet (b̂m, �̂m, Q̂m). Let the sequence of
characterizing triplets satisfies the conditions (3.3). Also let

{Xj }j∈Z

L=
∞∑

m=0

{Yj(m)}j∈Z,

where {Yj(m)}j∈Z is the m-dependent stationary infinitely divisible sequence
generated by ξ(m), and the sequences {Yj(m)}j∈Z are taken to be independent
in m. Then {Xj }j∈Z is strongly mixing in the sense of ergodic theory.

PROOF. Assume that the Lévy measure of X0 has no atoms in 2πZ. This
assumption is without loss of generality since there exists a ∈ R such that the
Lévy measure of aX0 has no atoms in 2πZ, and {Xj }j∈Z is mixing if and only if
{aXj }j∈Z is mixing. Rosiński and Żak (1996) showed that a stationary infinitely
divisible sequence is strongly mixing if and only if Cod(X0,Xj ) → 0 as n → ∞,
where Cod denotes the codifference function, that is,

Cod(X0,Xj ) = lnEei(X0−Xj) − ln EeiX0 − ln Ee−iXj ,
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To show that this last condition is verified, note that

Cod(X0,Xj ) = Cod

( ∞∑
m=0

Y0(m),

∞∑
m=0

Yj(m)

)

=
∞∑

m=j

Cod
(
Y0(m),Yj (m)

)

=
∞∑

m=j

Cod

(
m∑

k=0

ξk−k(m),

m∑
k=0

ξk
j−k(m)

)
(3.4)

=
∞∑

m=j

m−j∑
k=0

Cod
(
ξk(m), ξj+k(m)

)

=
∞∑

m=j

m−j∑
k=0

σ̂m(k, j + k) +
∫

Rm+1\{0}
(eixk − 1)(eixj+k − 1)Q̂m(dx).

This is shown to go to zero in two steps. First,
m−j∑
k=0

|σ̂m(k, j + k)| ≤
m−j∑
k=0

((
σ̂m(k, k)

)1/2(
σ̂m(j + k, j + k)

)1/2
)

≤
(

m−j∑
k=0

σ̂m(k, k)

)1/2(m−j∑
k=0

σ̂m(j + k, j + k)

)1/2

≤
m∑

k=0

σ̂m(k, k),

where the first inequality holds since for each m, �̂m is a positive definite matrix,
while the second inequality is Cauchy–Schwarz. Thus,∣∣∣∣∣

∞∑
m=j

m−j∑
k=0

σ̂m(k, j + k)

∣∣∣∣∣ ≤
∞∑

m=j

m∑
k=0

σ̂m(k, k) → 0,(3.5)

as j → ∞ since
∑∞

m=j

∑m
k=0 σ̂m(k, k) is the tail end of the convergent sum

in (3.3b). Also, the Cauchy–Schwarz inequality implies that
m−j∑
k=0

(∫
Rm+1\{0}

∣∣(eixk − 1)(eixj+k − 1)
∣∣Q̂m(dx)

)

≤
(m−j∑

k=0

(∫
Rm+1\{0}

|(eixk − 1)|2Q̂m(dx)

)

×
m−j∑
k=0

(∫
Rm+1\{0}

|(eixj+k − 1)|2Q̂m(dx)

))1/2

.
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This last expression is no larger than

m∑
k=0

(∫
Rm+1\{0}

|(eixk − 1)|2 Q̂m(dx)

)
which is no larger than

4
m∑

k=0

(∫
Rm+1\{0}

min(1, x2
k ) Q̂m(dx)

)
.

Thus, ∣∣∣∣∣
∞∑

m=n

m∑
k=0

(∫
Rm+1\{0}

(eixk − 1)(eixj+k − 1) Q̂m(dx)

)∣∣∣∣∣
≤ 4

∞∑
m=j

m∑
k=0

(∫
Rm+1\{0}

min(1, x2
k )Q̂m(dx)

)
→ 0,

(3.6)

as j → ∞ since

∞∑
m=j

m∑
k=0

(∫
Rm+1\{0}

min(1, x2
k )Q̂m(dx)

)
,

is the tail end of the convergent sum in (3.3c). Now, (3.4) follows from (3.5)
and (3.6). �

In order to extend Theorem 3.1 to stationary infinitely divisible sequences
{Xj }j∈Z that can be cumulatively approximated by m-dependent ones, additional
restrictions on the sequence of characteristic triplets (b̂m, �̂m, Q̂m) are required.
These are as follows:

∞∑
m=0

(
m∑

k=0

b̂m(k)

+
∫

Rm+1\{0}

(
m∑

k=0

xk

)(
1(

∑m
k=0 xk)

2≤1 − 1‖x‖≤1
)
Q̂m(dx)

)
< ∞,

(3.7a)

∞∑
m=0

m∑
k,l=0

σ̂m(k, l) < ∞,(3.7b)

∞∑
m=0

∫
Rm+1\{0}

min

(
1,

(
m∑

k=0

xk

)2)
Q̂m(dx) < ∞(3.7c)
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and
∞∑

m=0

m∑
i=1

(
m∑

k=i

b̂m(k)

(3.8a)

+
∫

Rm+1\{0}

(
m∑

k=i

xk

)(
1(

∑m
k=i xk)

2≤1 − 1‖x‖≤1
)
Q̂m(dx)

)
< ∞,

∞∑
m=0

m∑
i=1

m∑
k,l=i

σ̂m(k, l) < ∞,(3.8b)

∞∑
m=0

m∑
i=1

∫
Rm+1\{0}

min

(
1,

(
m∑

k=i

xk

)2)
Q̂m(dx) < ∞.(3.8c)

While these conditions look intricate, they are exactly what is required so that
all the limiting random variables in Theorem 3.3, below, have a well-defined
characterizing triplet. Necessary and sufficient conditions for the partial sum
convergence of such sequences are now given.

THEOREM 3.3. For each m ∈ N, let ξ(m) be an (m+1)-dimensional infinitely
divisible vector with characterizing triplet (b̂m, �̂m, Q̂m). Let the sequence of
characterizing triplets {(b̂m, �̂m, Q̂m)}∞m=0 satisfy (3.3), (3.7) and (3.8). Let

{Xj }j∈Z

L=
∞∑

m=0

{Yj (m)}j∈Z,

where {Yj(m)}j∈Z is an m-dependent stationary infinitely divisible sequence
generated by ξ(m) and where the sequences {Yj(m)}j∈Z are taken to be
independent in m. Consider Sn = ∑n−1

j=0 Xj . There exists a centering sequence

{An} and a normalizing sequence {Bn} with Bn → ∞ such that Sn−An

Bn
converges

in distribution to a nondegenerate Sα(σ,β,µ) random variable if and only if∑∞
m=0

∑m
k=0 ξk(m) is in the domain of attraction of a Sα(σ,β,µ) distribution.

PROOF. Let S̃n be a random variable with the same distribution as the
sum of n independent copies of

∑∞
m=0

∑m
k=0 ξk(m). Note that (3.7) implies

that
∑∞

m=0
∑m

k=0 ξk(m) is a well defined random variable. Now consider the
convergence of

∞∑
m=0

( −1∑
i=−m

m∑
k=−i

ξ k
i (m),

n−1∑
i=0

m∑
k=0

ξk
i (m),

n−1∑
i=n−m

m∑
k=n−i

ξ k
i (m)

)
(3.9)

to an infinitely divisible vector in R3, say with characterizing triplet (b′,�′,Q′). It
is clear that b′ is finite if and only if each coordinate is finite. Also �′ = {σ ′

k,l}3
k,l=1
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is finite (and positive definite) if and only if σ ′
k,k < ∞ for each k ∈ {1,2,3}.

Finally,Q′ assigns values, possibly infinite, to each Borel set in R3. Thus Q′ is
a Lévy measure if and only if each one-dimensional marginal is a Lévy measure
on R. Therefore, (3.9) is a well defined infinitely divisible vector if and only if each
one-dimensional marginal is a well defined infinitely divisible random variable.

The marginal
∞∑

m=0

n−1∑
i=0

m∑
k=0

ξk
i (m)

converges since it is equal to n independent copies of
∑∞

m=0
∑m

k=0 ξk
0 (m), which

converges by (3.7). The marginals
∞∑

m=0

−1∑
i=−m

m∑
k=−i

ξ k
i (m)

and
∞∑

m=0

n−1∑
i=n−m

m∑
k=n−i

ξ k
i (m)

converge since each limit is equal in distribution to
∑∞

m=0
∑m

i=1
∑m

k=i ξ
k
i (m),

which converges by (3.8).
Therefore, (3.9) is a well-defined infinitely divisible vector. Moreover,

Sn
L=

∞∑
m=0

n−1∑
j=0

m∑
k=0

ξk
j−k(m)

L=
∞∑

m=0

[ −1∑
i=−m

m∑
k=−i

ξ k
i (m) +

n−1∑
i=0

m∑
k=0

ξk
i (m) −

n−1∑
i=n−m

m∑
k=n−i

ξ k
i (m)

]

L=
∞∑

m=0

−1∑
i=−m

m∑
k=−i

ξ k
i (m) +

n−1∑
i=0

∞∑
m=0

m∑
k=0

ξk
i (m) −

∞∑
m=0

n−1∑
i=n−m

m∑
k=n−i

ξ k
i (m)

L=
∞∑

m=0

−1∑
i=−m

m∑
k=−i

ξ k
i (m) + S̃n −

∞∑
m=0

n−1∑
i=n−m

m∑
k=n−i

ξ k
i (m).

(3.10)

The first and last terms have distributions that do not depend on n, thus for
Bn → ∞, those terms divided byBn converge to zero in probability. Thus

Sn − An

Bn

⇒ Sα(σ,β,µ)

if and only if

S̃n − An

Bn

⇒ Sα(σ,β,µ).
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Since the limiting distribution is nondegenerate, the classical theory implies that
Bn → ∞ as n → ∞. �

REMARK 3.3. It would be interesting to know conditions on the stationary
infinitely divisible sequence {Xj }j∈Z that are sufficient for the sequence to admit
a decomposition

{Xj }j∈Z

L=
∞∑

m=0

m∑
k=0

ξk
j−k(m),

that satisfies (3.3), (3.7) and (3.8). We point out that all three sets of conditions are
guaranteed by the following:

max

{ ∞∑
m=0

m∑
k=0

b̂m(k),

∞∑
m=0

m∑
k=0

kb̂m(k)

}
< ∞,(3.11a)

∞∑
m=0

m(m + 1)

m∑
k=0

σ̂m(k, k) < ∞(3.11b)

and

∞∑
m=0

m(m + 1)

∫
Rm+1\{0}

min

(
1,

(
m∑

k=0

xk

)2)
Q̂m(dx) < ∞.(3.11c)

4. Concluding remarks. A stationary sequence of the form

{f (Yj , Yj+1, . . . , Yj+m)}j∈Z,

where {Yj }j∈Z is i.i.d. and f : Rm+1 → R, is called an (m + 1)-block factor.
Sequences that are (m + 1)-block factors are clearly m-dependent and stationary.
Ibragimov and Linnik (1971) state that there exist m-dependent stationary
sequences that are not (m + 1)-block factors. Examples of one-dependent
sequences that are not two-block factors are constructed by Aaronson, Gilat,
Keane and de Valk (1989). Examples of one-dependent sequences that are not
k-block factors for any k are constructed by Burton, Goulet and Meester (1993).
It is then natural to try to characterize m-dependent stationary sequences which
are (m + 1)-block factors. Aaronson, Gilat and Keane (1992) show that every
one-dependent Markov chain of no more than four states is a two-block factor.
Theorem 2.1 is another result in this direction.

Many weak dependence conditions for stationary Gaussian sequences have
been characterized in terms of the covariance function or the spectral measure
of the sequence [see, e.g., Bradley (1986), Cornfeld, Fomin and Sinaı̆ (1982),
Ibragimov and Rozanov (1978)]. For Gaussian sequences, Theorem 2.1 follows
from the characterization of the spectral measure for m-dependent stationary
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Gaussian sequences and the Riesz factorization lemma. For infinitely divisible
sequences without Gaussian component, Theorem 2.1 is proven by a different
technique. However, it should be noted that Rosiński and Żak (1996, 1997)
characterized ergodic properties in terms of the positive definite codifference
function and its spectral measure. (For a stationary Gaussian sequence, the
codifference function and the covariance function coincide.) A direct consequence
of their work is that a stationary infinitely divisible sequence is m-dependent if
and only if Cod(X0,±Xj) = 0 for |j | > m. Characterizing the spectral measure of
the codifference function of m-dependent stationary infinitely divisible sequences
is an open problem. Also, the characterizations for mixing stationary Gaussian
sequences in terms of the spectral measure of their covariance function have not
been extended to the general infinitely divisible case. Since the codifference is
only a parameter and does not characterize an infinitely divisible distribution, it is
unclear if these extensions are possible.

Finally, we also remark that all the results of the present paper have natural
extensions to stationary sequences of d-dimensional infinitely divisible vectors.
The proofs follow from the same techniques as used here. However, extending the
results of this paper to stationary infinitely divisible random fields require different
techniques. We say that an infinitely divisible random field is generated by ξ if

{Xj }j∈Zd
L=
{ ∑

k∈{0,1,...,m}d
ξk

j−k

}
j∈Zd ,

(4.1)

where ξ = {ξk}k∈{0,1,...,m}d is an infinitely divisible vector and ξj = {ξk
j }k∈{0,1,...,m}d

are independent copies of ξ . It is clear that all random fields given by (4.1) are
stationary and m-dependent. Moreover, the techniques used in the present paper
can be extended to show that a stationary m-dependent infinitely divisible field
without Gaussian component is necessarily generated by some infinitely divisible
vector ξ without Gaussian component. However, in the absence of a multidimen-
sional Riesz factorization lemma, the stationary m-dependent Gaussian results of
Section 2.1 cannot be directly extended to fields. This problem deserves further
attention.
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ROSIŃSKI, J. and ŻAK, T. (1997). The equivalence of ergodicity and weak mixing for infinitely

divisible processes. J. Theoret. Probab. 10 73–86.
SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes.

Chapman and Hall, New York.
SATO, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press.
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