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INFORMATION PROCESSES FOR SEMIMARTINGALE
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In this paper we give explicit representations for Kullback–Leibler
information numbers between a priori and a posteriori distributions, when the
observations come from a semimartingale. We assume that the distribution of
the observed semimartingale is described in terms of the so-called triplet of
predictable characteristics. We end by considering the corresponding notions
in a model with a fractional noise.

1. Introduction. We study a statistical experiment with a filtration. About
the parameter space of the experiment we make the assumption that a prior
distribution can be defined on it. On this abstract parameter space the Kullback–
Leibler information between a posterior and a prior distribution is defined. We
begin with modelling observations by a filtration and discuss some results of a
general nature; afterward we specify observations that come to us either in the
form of a semimartingale or in the form of a fractional Brownian motion. Given
these observations we define the posterior distribution on the parameter space and
we study various information notions, specifically the information in the posterior
given the prior and vice versa (in Bayesian terminology known as the information
from data) between these two distributions on the parameter space.

Using the notions of arithmetic mean measure and geometric mean measure as
they were developed in [4] (the latter generalizes a probability measure introduced
by Grigelionis in [5]) we are going to express explicitly the density process of the
posterior distribution on the parameter space with respect to the prior distribution
as a certain density process on the observation space. Consequently, relying on
the general theory of processes (cf. [14]), we are able to use the machinery of
stochastic calculus to obtain representations of the information processes, such as
a Doob–Meyer decomposition.

First it is necessary to extend the notions of Hellinger integrals and Hellinger
processes for an arbitrary family of probability measures. The study of Hellinger
integrals and Hellinger processes started for binary experiments in the series
of papers [10–12, 16]. This theory took a complete form in [8], where the
notions of Hellinger integrals and Hellinger processes were fully exploited. In
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the consequent papers [6, 7] some of the results were generalized to a filtered
experiment with a finite number of probability measures. In [5] some additional
aspects of the latter experiment are discussed. These results were extended to
an arbitrary parameter space in [4]. It turns out that properties of the Hellinger
process are of fundamental importance to understanding the Kullback–Leibler
information processes between a posterior and a prior distribution on the parameter
space. Therefore a considerable part of the present paper is devoted to Hellinger
processes. To make the present paper self-contained we have included some
necessary results from [4].

The paper is organized as follows. In Section 2 we summarize and further de-
velop some notions and results from [4]. In Section 3 we present explicit ver-
sions of results by assuming that we observe a semimartingale. In particular, we
compute the Hellinger process for a given prior distribution and the triplet of pre-
dictable characteristics under both the arithmetic mean measure and the geomet-
ric mean measure. In Section 4 we define the different information measures and
show how we can use the results of Section 3 to compute multiplicative and addi-
tive (Doob–Meyer) decompositions of the information processes. Finally, in Sec-
tion 5 we investigate the precise form of the results of Section 4 further for a
number of examples involving discrete time independent processes, multivariate
point processes, diffusions and processes driven by fractional Brownian motion.
In the latter case we show how an experiment with fractional Brownian motion as
a noise can be transformed to a new expriment with a Gaussian martingale as a
noise. Thereto we use a representation of fractional Brownian motion as a sto-
chastic integral with respect to ordinary Brownian motion with a deterministic
kernel. It turns out that our formulas are closely related to results in [15] for the
Shannon information that is contained in a received signal about the transmitted
signal for both the case of diffusion observations and counting process observa-
tions.

2. Randomized experiments.

2.1. Basic setup. We consider a filtered statistical experiment (�,F ,F,

{Pθ }θ∈�) under the following assumptions. There exists an equivalent probability
measure Q for this experiment, so

{Pθ }θ∈� ∼ Q,(2.1)

the right continuous filtration F = {Ft}t≥0 starts from F0 = {∅,�} Q-a.s.,
F0 contains all the Q-null sets of F , and

∨
t Ft = F∞ = F .

For an F -stopping time T consider now the optional projections QT and Pθ,T

of the probability measures Q and Pθ to the sub-σ -field FT . Since by (2.1) these
projections are equivalent, we may define the density process z(θ,Q) = z(Pθ,Q)

by

zT (θ,Q) = dPθ,T

dQT

.
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We have dPθ/dQ = z∞(θ), since
∨

t Ft = F . The density process possesses
the following properties (see [8], Proposition III.3.5, for more details), for each
θ ∈ �:

(i) inft zt (θ,Q) > 0,Q-a.s.;
(ii) supt zt (θ,Q) < ∞,Q-a.s.;

(iii) the density process z(θ,Q) is a (Q,F )-uniformly integrable martingale
with EQ{zt (θ,Q)} = 1, for all t ∈ [0,∞].

Due to these properties, for each θ ∈ � the process

m(θ,Q) = z−(θ,Q)−1 · z(θ,Q)(2.2)

is a (Q,F )-local martingale, so that the density process is represented as the
Doléans exponential z(θ,Q) = E(m(θ,Q)) of this martingale.

We endow the parameter space � with a σ -algebra A and the measurable
space (�,A) with a probability measure α. Define Q as the product measure
Q = Q × α on F .= F ⊗ A, the product σ -algebra on � = � × �, and the so-
called mixture measure P on F by

P(B) =
∫

B
z∞(ω, θ)Q(dω)α(dθ)

for any set B ∈ F. The Kullback–Leibler information in P with respect to Q is by
definition I (P|Q) = EQ log{dQ/dP}. In the sequel we assume that

0 < I (P|Q) < ∞.(2.3)

For brevity, we denote by ϑ a random element of the parametric space (�,A)

distributed according to the measure α. In these terms, we may also write
I (P|Q) = EαI (Pϑ |Q) = ∫

� I (Pθ |Q)α(dθ), where I (Pθ |Q) is the Kullback–
Leibler information in Pθ with respect to Q.

In the Bayesian setup this measure is called the prior (or a priori) probability. By
means of the Bayes formula we may define at each stopping time T the posterior
(or a posteriori) probability αT , which for each A ∈ A is

αT (A) =
∫
A zT (θ,Q)α(dθ)∫
� zT (θ,Q)α(dθ)

.(2.4)

We will return to this subject in Section 4.

2.2. The arithmetic and geometric mean measures. The notions of arithmetic
mean measure P̄α and geometric mean measure Gα are basic for the present theory.
They are defined on the aforementioned filtered space (�,F ,F ). For B ∈ F we
set

P̄α(B)
.=

∫
�

Pθ(B)α(dθ).

The following simple lemma allows us to use P̄α as a measure equivalent to whole
family {Pθ }θ∈�:
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LEMMA 2.1. Assume (2.1). Then the measures P̄α and Q are equivalent and
dP̄α

dQ
= a(α,Q).

PROOF. Obviously we have P̄α � Q; therefore we concentrate on the other
part of the equivalence. Suppose P̄α(B) = 0; then there is at least one θ for which
Pθ(B) = 0 and hence Q(B) = 0, in view of Pθ ∼ Q. �

The corresponding density process z(P̄α,Q) is referred to as the arithmetic
mean process and denoted by a(α,Q) = z(P̄α,Q). This term is explained by the
simple fact that a(α,Q) = ∫

� z(θ,Q)α(dθ).
Notice that, for the special choice of Q = P̄α , we have a(α, P̄α) = 1.

Consequently, (2.4) is equivalent to

dαT

dα
(θ) = zT (θ, P̄α).(2.5)

Parallel to statements (i)–(iii) of Section 2.1 on the density processes, the
following properties of the arithmetic mean process can be stated:

PROPOSITION 2.2. Assume (2.1). The arithmetic mean process a = a(α,Q)

possesses the following properties:

(i) inft at > 0,Q-a.s.;
(ii) supt at < ∞,Q-a.s.;

(iii) a is a (Q,F )-uniformly integrable martingale with EQat = 1 for all t ≥ 0.

PROOF. In view of Lemma 2.1 it suffices to refer again to [8], Section III.3,
Proposition 3.5. �

Due to these properties, the arithmetic mean process a(α,Q), viewed as a den-
sity process, may be represented as a Doléans exponential of a certain (Q,F )-local
martingale. We postpone this till Section 3.2, in which this martingale will be given
the form (3.6) involving certain posterior characteristics of observations.

To define the geometric mean measure we introduce yet another process
g(α,Q) called the geometric mean process and associated with the density
process z(θ,Q) by

g(α,Q) = eEα logz(ϑ,Q).(2.6)

By Jensen’s inequality the geometric mean process is dominated by the a-mean
process identically, that is,

g(α,Q) ≤ a(α,Q)(2.7)

so that the geometric mean process also possesses property (ii) of Proposition 2.2.
As for the lower bound, we have assumed (2.3) in order to guarantee that the
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geometric mean process has property (i) of Proposition 2.2 as well. It will be
shown in the next proposition that under the present conditions the geometric mean
process is a (Q,F )-supermartingale of class (D).

PROPOSITION 2.3. Assume (2.1) and (2.3). The geometric mean process
g = g(α,Q) possesses the following properties:

(i) inft gt > 0,Q-a.s.;
(ii) supt gt < ∞,Q-a.s.;

(iii) g is a (Q,F )-supermartingale of class (D) with g0 = 1.

PROOF. Property (i) is an immediate consequence of (2.3) and Jensen’s
inequality and (ii) follows from (2.7).

As for property (iii) we have that the g-mean process is indeed of class (D),
since it is dominated by a process of class (D), a (Q,F )-uniformly integrable
martingale a [see (2.7)]. It remains to show that EQ{gt |Fs} ≤ gs for s ≤ t . To this
end apply first the Jensen inequality and then interchange the integration order: on
the set {gs > 0} of full Q-measure

EQ

{
gt

gs

∣∣∣Fs

}
= EQ

{
eEα log[zt (ϑ,Q)/zs(ϑ,Q)]∣∣Fs

} ≤ EQ

{
Eα

zt(ϑ,Q)

zs(ϑ,Q)

∣∣∣Fs

}

= Eα

{
EQ

zt(ϑ,Q)

zs(ϑ,Q)

∣∣∣Fs

}
= 1. �

These properties of g(α,Q) allow us to characterize, in the next theorem, its
compensator. In this theorem we define the Hellinger process of order α, denoted
traditionally by h(α).

THEOREM 2.4. Assume (2.1) and (2.3). There exists a (unique up to
Q-indistinguishability) predictable finite-valued increasing process h(α) starting
from the origin h0(α) = 0, so that

M(α,Q) = g(α,Q) + g−(α,Q) · h(α)(2.8)

is a (Q,F )-uniformly integrable martingale. Moreover, two Hellinger processes
h(α) determined under two different dominating measures Q and Q′ are
Q- and Q′-indistinguishable.

PROOF. By the Doob–Meyer decomposition there exists a (unique up to
Q-indistinguishability) increasing finite-valued predictable process A such that
g − A is a (Q,F )-uniformly integrable martingale. By Proposition 2.3 (ii), on the
set {supt gt < ∞} we can put h(α) = (1/g−) · A, which satisfies the requirements
of the theorem.
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We show the uniqueness of the Hellinger process as follows. Assume Q � Q′
and put Z = dQ

dQ′ . From g(α,Q′) = Zg(α,Q) and (2.8), we get

g(α,Q′) = Zg(α,Q) = Z{M(α,Q) − g−(α,Q) · h(α)}
so that by the Itô formula,

g(α,Q′) = ZM(α,Q) − {g−(α,Q) · h(α)} · Z − Z−g−(α,Q) · h(α).

The latter equation implies the desired result as the first two terms are
Q′-martingales and the last term equals g−(α,Q′) ·h(α), by g(α,Q′) = Zg(α,Q).
Thus, similarly to (2.8),

g(α,Q′) + g−(α,Q′) · h(α)

is a Q′-martingale. The proof is complete by the same reasoning as before. �

The notions of the Hellinger process and the Hellinger integral of order α are
closely related (see Corollary 3.13 below). At an F -stopping time T , the Hellinger
integral of the family of probability measures {Pθ,T }θ∈� is defined according to
[8], Section IV.1, as the Q-expectation of the g-mean process evaluated at T :

HT (α) = EQ{gT (α,Q)}.(2.9)

This is called the Hellinger integral of order α. Its definition is independent of the
dominating measure Q.

We are now in a position to define the geometric mean measure Gα with the
help of the ratio

ζ(α,Q) = g(α,Q)

E(−h(α))
(2.10)

as a density process, where E(−h(α)) is the Doléans–Dade exponential of −h(α).

THEOREM 2.5. Assume (2.1) and (2.3). Then the ratio (2.10) is a local
martingale under Q and, with M(α,Q) as in (2.8), the following relations are
valid:

ζ(α,Q) = 1 + 1

E(−h(α))
· M(α,Q)(2.11)

and

ζ(α,Q) = E

(
1

(1 − 	h)g−
· M(α,Q)

)
.(2.12)

PROOF. Apply Theorem 2.5.1 of [17] to the positive supermartingale g(α,Q)

with the Doob–Meyer decomposition as in (2.8). This also yields (2.12). Expres-
sion (2.11) is a direct consequence of the Itô formula applied to g(α,Q)/E(−h(α))

and the definition of h(α). It is now clear that ζ(α,Q) is a Q-local martingale. �
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It is our purpose to use ζ(α,Q) as a density process, for which it is necessary
that ζ(α,Q) is a martingale under Q. Since it is a nonnegative process, it is also a
supermartingale; hence a sufficient condition for ζ(α,Q) to become a martingale
is EQζ(α,Q) ≡ 1. In [5] this equality is assumed to hold.

As is well known, in general a positive local martingale is not necessarily a
martingale. However, in a discrete time setting more can be said. Indeed, it is
shown in [9] that in this case a nonnegative local martingale is in fact a martingale.
So working in discrete time one obtains EQζ(α,Q) ≡ 1. Other cases will be
treated in the examples of Section 5.

If we assume that ζ(α,Q) is uniformly integrable, then there is a nonnegative
random variable ζ∞(α,Q) with expectation 1 such that EQ{ζ∞(α,Q)|Ft } =
ζt (α,Q). We will often need this property, and therefore we will state this, in
the same spirit as in [5], as an assumption. Since the nonnegative supermartingale
ζ(α,Q) has a limit a.s. for t → ∞, call it ζ∞(α,Q), we may use it as a Radon–
Nikodym derivative to define a new measure Gα on (�,F ). For all B ∈ F we put
Gα(B) = EQ1Bζ∞(α,Q). Alternatively, in terms of a density we have

dGα

dQ
= g∞(α,Q)

E(−h(α))∞
,(2.13)

with g∞(α,Q) the Q-a.s. limit of g∞(α,Q) for t → ∞ and likewise E(−h(α))∞
the Q-a.s. limit of E(−h(α))t for t → ∞. Clearly, both limits exist due to the
uniform integrability of the process ζ(α,Q).

Notice that Gα is independent of the choice of the underlying measure Q and
that in general Gα is a subprobability measure. When Gα is a probability measure,
we call it the geometric mean measure.

LEMMA 2.6. Assume (2.3). Then the measure Gα is equivalent to Q.

PROOF. We have Gα � Q by construction. It follows from the first assertion
of Proposition 2.3 that Q � Gα . �

A sufficient condition for existence of Gα as a probability measure is given
in the next proposition. It is in terms of the Hellinger process and we will return
to it in Section 5 when we treat examples. Notice that the sufficient condition is
satisfied if h∞(α) is P̄α(or Q)-a.s. bounded and in particular if it is deterministic
and finite.

PROPOSITION 2.7. Assume that EP̄α
{1/E(−h(α))∞} < ∞. Then the process

ζ(α,Q) is a uniformly integrable martingale under Q and hence Gα is a
probability measure.

PROOF. If we use P̄α as the dominating measure, then the geometric mean is
bounded above by the arithmetic mean a(α, P̄α), which equals 1. Hence ζ(α, P̄α)



INFORMATION PROCESSES 223

is dominated by the P̄α-integrable random variable 1/E(−h(α))∞ and is therefore
P̄α-uniformly integrable. The conclusion now follows. �

Let us now agree upon the following notation. If {X(θ)}θ∈� is a certain
parametric family of processes, then a(X) = EαX(ϑ) and (for a nonnegative
family) g(X) = eEα log X(ϑ) denote its arithmetic and geometric mean processes,
respectively. Denote by φ(X) = a(X) − g(X) the difference of the arithmetic and
geometric process and note that this difference process is homogeneous in the
sense that if C is a process independent of θ , then

φ(CX) = Cφ(X).(2.14)

Note also that if the continuous part X(ϑ)c possesses the variance process

v(Xc)
.= varα X(ϑ)c = Eα|X(ϑ)c|2 − |EαX(ϑ)c|2(2.15)

that is a (Q,F )-submartingale of class (D), then the compensator of v(Xc) is given
by

ṽ(Xc)
.= a(〈Xc〉) − 〈a(Xc)〉.(2.16)

In these terms the following general statement can be made.

PROPOSITION 2.8. Let {X(θ)}θ∈� be a parametric family of (Q,F )-semi-
martingales with 	X(θ) > −1 for all θ . Let its arithmetic mean process a(X) =
EαX(ϑ) be a (Q,F )-semimartingale and let a−(X) = EαX−(ϑ). Suppose that
the increasing processes a(〈Xc〉) and a(

∑
s≤·(	Xs − log(1 + 	Xs))) are finite-

valued.
Then the g-mean process g(E) = expEα{logE(X(ϑ))} of the family of the

Doléans exponentials {E(X(θ))}θ∈� is well defined and

g(E) = E

{
a(X) − 1

2 ṽ(Xc) − ∑
s≤·

φs(1 + 	X)

}
,(2.17)

where ṽ(·) = a(〈·〉) − 〈a(·)〉 and φ(·) = a(·) − g(·).
See [4], Proposition 4.5 for the proof.
Throughout we will use common notions and facts of the general theory of

stochastic processes as developed, for example, in [8] or [17]. To describe, for
instance, the discontinuous parts of processes in question, we associate with the
jumps of a càdlàg process X an integer-valued random measure µX defined on
R+×E precisely following this theory, where R+ is the domain of the time
component and E that of the space component (the range of the jumps of X),
usually taken to be R\{0}. The same is applied to the notion of the compensator of
the random measure µX with respect to an underlying measure. When this measure
is the dominating measure Q, it is denoted as usual by ν. The latter occurs already
in the beginning of the next section, together with ν(θ) and ν̄ the compensators
with respect to the measure Pθ , θ ∈ �, and the arithmetic mean measure P̄α ,
respectively.
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3. Semimartingale observations.

3.1. Characteristics with respect to the arithmetic mean easure. Suppose that
we observe a semimartingale X defined on (�,F ,F,Q), that is, a (Q,F )-
semimartingale, with the triplet of predictable characteristics T = (B,C, ν). This
and all the triplets considered in the present paper are related to a fixed truncation
function � : R → R, a bounded function with compact support so that �(x) = x

in a vicinity of the origin. By the Girsanov theorem for semimartingales (see [8],
Theorem III.3.24, or [17], Theorem IV.5.3) X is also a (Pθ ,F )-semimartingale
for each θ ∈ �. Denote by T (θ) = (B(θ),C(θ), ν(θ)) the corresponding triplet of
predictable characteristics. It is related to the triplet T as follows:

B(θ) = B + β(θ) · C + (
Y (θ) − 1

)
� · ν,

C(θ) = C,

ν(θ) = Y (θ) · ν,

(3.1)

with certain processes β(θ) = β(θ,Q) and Y (θ) = Y (θ,Q) so that |β(θ)|2 ·
Ct < ∞ and (Y (θ) − 1)� · νt < ∞, Q-a.s. for all t ≥ 0. In [17], Lemma IV.5.6,
page 231, one can find the relationship of these processes to the density
process z(θ,Q).

Under the present circumstances the observation of X constitute a semimartin-
gale with respect to the arithmetic mean measure P̄α , as well. The following theo-
rem, taken over from [4], Section 3.3 (a generalization of a result by Kolomiets [13]
that also can be found in [8], Theorem III.3.40, or [14], Theorem IV.5.4), relates
the triplet under P̄α to the triplets T (θ), θ ∈ �:

THEOREM 3.1. Assume (2.1). Let X be a (Pθ ,F )-semimartingale for each
θ ∈ � with the triplet T (θ) of predictable characteristics. Then it is a
(P̄α,F )-semimartingale as well, with the triplet T̄ = (B̄, C̄, ν̄), where

B̄ = Eα{z−(ϑ, P̄α) · B(ϑ)},
C̄ = C,

ν̄ = Eα{z−(ϑ, P̄α) · ν(ϑ)}.
(3.2)

See [4], Theorem 3.3, for the proof.
This theorem yields an important corollary.

COROLLARY 3.2. Under the conditions of Theorem 3.1 the process B̄ can
be represented as B̄ = B + β̄ · C + (Ȳ − 1)� · ν, where the local characteristics
β̄ and Ȳ with respect to the arithmetic mean measure P̄α are given by the posterior
expectations of β(ϑ) and Y (ϑ): for each t > 0,

β̄t = Eαt−βt (ϑ) and Ȳt = Eαt−Yt(ϑ).(3.3)
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PROOF. In view of the identity (2.5), the definitions (3.3) are equivalent to

β̄ = Eα{z−(ϑ, P̄α)β(ϑ)} and Ȳ = Eα{z−(ϑ, P̄α)Y (ϑ)}.(3.4)

By (3.1) and (3.2), B̄ = B + β̄ · C + (Ȳ − 1)� · ν with β̄ and Ȳ as in (3.4). This
confirms the desired assertion. �

Observe that the conditional expectations in (3.3) and (3.4) are precisely those
that one encounters in the innovations representation in problems of nonlinear
filtering. This is linked to the subject of this section by taking ϑ as the state
(process or random variable) and X as the observations process. See [17],
Section 4.10, for a treatment of the case with semimartingale observation and state
processes.

3.2. Arithmetic mean process as an exponential. Assume (2.1) and (2.3). For
each θ ∈ � let the density process be represented as the Doléans exponential
z(θ,Q) = E(m(θ,Q)) of the (Q,F )-local martingale m(θ,Q) given by (2.2).
Upon further specification of the randomized experiment in question, one can
assign to this martingale an explicit form in terms of the triplet of predictable
characteristics T = (B,C, ν) of the observed (Q,F )-semimartingale X. As-
sume therefore the setup of Section 3.1. In addition to (2.1), assume that all
(Q,F )-local martingales have the representation property relative to X. Then for
each fixed θ ∈ � the (Q,F )-local martingale (2.2) gets the form

m(θ,Q) = β(θ) · Xc +
{
Y (θ) − 1 + Ŷ (θ) − 1̂

1 − 1̂

}
∗ (µX − ν),(3.5)

where β(θ) = β(θ,Q) and Y (θ) = Y (θ,Q) are the same as in Section 3.1.
According to the usual “hat” notation the processes 1̂ = 1̂(Q) and Ŷ (θ) = Ŷ (θ,Q)

are associated with the third characteristics ν and ν(θ) [cf. (3.1)] so that

1̂t (ω) = ν(ω; {t} × E)

and

Ŷt (ω, θ) =
∫
E

Yt(ω, θ, x)ν(ω, {t}, dx) = ν(ω, θ; {t} × E),

usually with E = R \ {0}, as was noted in Section 2.2.
As we know, the arithmetic mean process is a certain density process,

namely a(α,Q) = z(P̄α,Q) with nice properties summarized in Proposition 2.2.
Departing from the representation property (3.5), we are now going to present this
density process as a Doléans exponential of a certain (Q,F )-local martingale and
to link it to that in (3.5).
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THEOREM 3.3. Assume (2.1), (2.3) and the representation property (3.5).
Then the arithmetic mean process is the Doléans exponential a(α,Q) = E(m̄) of
a (Q,F )-local martingale

m̄ = β̄ · Xc +
{
Ȳ − 1 +

ˆ̄Y − 1̂

1 − 1̂

}
∗ (µX − ν),(3.6)

where β̄ and Ȳ are given by (3.3).

PROOF. Since the density process a(α,Q) = z(P̄α,Q) possesses the prop-
erties given in Proposition 2.2, it is indeed representable as an exponential, say
a(α,Q) = E(m̄). A (Q,F )-local martingale m̄ involved has the presumed form
by the assumption of the representation property, like the one displayed in (3.6).
The only question remaining is how to identify β̄ and Ȳ in the integrands. How-
ever, from Section 3.1 we already know the answer: they must be of the form (3.3),
due to Girsanov’s transformation and the formula (3.2) for the triplet of predictable
characteristics T̄ under the arithmetic mean measure P̄α . The proof is complete.

�

Theorem 3.3 has an important consequence: it allows us to express the
density (2.5) of the posterior with respect to the prior as a Doléans exponential.

COROLLARY 3.4. Assume (2.1), (2.3) and assume the representation prop-
erty (3.5). Then at each stopping time T the density of the posterior αT with re-
spect to the prior α is a Doléans exponential at each θ ∈ �,

dαT

dα
(θ) = E

(
m(θ, P̄α)

)
T

with m(θ, P̄α) a (P̄α,F )-local martingale defined by

m(θ, P̄α) = (
β(θ) − β̄

) · Xc,P̄α +
{

Y (θ)

Ȳ
− 1 + Ŷ (θ) − ˆ̄Y

1 − ˆ̄Y

}
∗ (µX − ν̄),(3.7)

where Xc,P̄α = Xc − β̄ · C is the continuous local martingale part of X under P̄α .

PROOF. By (2.5) it is required to show z(θ, P̄α) = E(m(θ, P̄α)), that is,
to show E(m(θ,Q)) = E(m(θ, P̄α))E(m̄). Using the well-known multiplication
rule for Doléans exponentials, it suffices to verify m(θ,Q) = m(θ, P̄α) + m̄ +
[m(θ, P̄α), m̄]. For the continuous parts this is easily verified. It is then enough to
identify the jumps on both sides and to verify the relation

1 + 	m(θ, P̄α) = 1 + 	m(θ,Q)

1 + 	m̄
.(3.8)



INFORMATION PROCESSES 227

To this end, observe first that

1 + 	m(θ,Q) = 1 + {Y (θ; ·,	X) − 1}I{	X �=0} − Ŷ (θ) − 1̂

1 − 1̂
I{	X=0}

= Y (θ; ·,	X)I{	X �=0} + 1 − Ŷ (θ)

1 − 1̂
I{	X=0}

(3.9)

(basically, we only need to recall the definition of the stochastic integral
W ∗ (µX − ν): it is any purely discontinuous local martingale having the jumps
W(·, ·,	X)I{	X �=0} − Ŵ , cf. [8], Definition II.1.27, or [17], Theorem 3.5.1). Then
substitute θ for ϑ and on both sides take the expectation with respect to the
posterior α− to get

1 + 	m̄ = Ȳ (·; ·,	X)I{	X �=0} + 1 − ˆ̄Y
1 − 1̂

I{	X=0}(3.10)

[one may derive this directly from (3.6), of course]. Finally, apply this device
to (3.7). We get

1 + 	m(θ, P̄α) = Y (θ; ·,	X)

Ȳ (·; ·,	X)
I{	X �=0} + 1 − Ŷ (θ)

1 − ˆ̄Y
I{	X=0}.

The last three relations imply (3.8). The proof is complete. �

3.3. Representation of Hellinger processes. Assume again (2.1), (2.3) and the
representation (3.5) of a (Q,F )-local martingale m(θ,Q) for each θ ∈ �. By
applying to the latter martingale the notation upon which we agreed at the end
of Section 2.1, we may introduce the process

V = 1
2v(mc) + ∑

s≤·
φs(1 + 	m),(3.11)

assumed to be a (Q,F )-submartingale. We have written m as a shorthand notation
for m(ϑ,Q). Then the compensator Ṽ of V and the Hellinger process h(α) are
Q-indistinguishable. As is shown in [4], Section 4.5, this statement is an easy
consequence of the general Proposition 2.8 applied to m(ϑ,Q). Therefore we do
not dwell upon this here. Instead, we are going to present in the next theorem
the compensator Ṽ in terms of the triplet of predictable characteristics of the
observations (cf. [4], Theorem 5.3; the proof is reproduced below, since the basic
arguments are needed anew in the subsequent sections).

THEOREM 3.5. Along with the conditions (2.1) and (2.3) assume the
representation property (3.5). Then

h(α) = 1
2v(β) · C + φ(Y ) · ν + ∑

s≤·
φs(1 − Ŷ ).(3.12)
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PROOF. The first term in (3.11) is compensated as follows. The compen-
sator ṽ(mc) of the variance process v(mc) is ṽ(mc) = v(β) · C. This is easily seen
by applying (2.15) and (2.16) to m(θ,Q)c = β(θ) ·Xc . Next, we have to show that
the second term in (3.11) is compensated by the sum of the last two terms in (3.12),
that is, that

∑
s≤·

φs(1 + 	m) −
{
φ(Y ) · ν + ∑

s≤·
φs(1 − Ŷ )

}
(3.13)

is a (Q,F )-local martingale. But this claim holds true, in view of Lemma 3.6
below, upon noting that φ is homogeneous [see (2.14)]. �

Now we formulate a lemma with the computational tool that we needed in
the course of proving Theorem 3.5 and that we will also use in the proof of
Theorem 4.4.

LEMMA 3.6. Let m = m(θ,Q) be given by (3.5) and, for a certain function f ,
let the process

∑
s≤· f (1 + 	ms) be a special semimartingale. Then this process

has compensator

f (Y ) · ν + ∑
s≤·

f

(
1 − Ŷs

1 − 1̂s

)
(1 − 1̂s)

and the local martingale in its semimartingale decomposition takes the form{
f (Y ) − f

(
1 − Ŷ

1 − 1̂

)}
∗ (µX − ν).(3.14)

PROOF. The jumps 	m(θ,Q) satisfy (3.9), as we have seen. Apply the
function f to both sides of this equation and take the sum to obtain∑

s≤·
f (1 + 	ms) = ∑

s≤·
f

(
Y (θ; s,	Xs)

)
I{	Xs �=0}

+ ∑
s≤·

f

(
1 − Ŷs(θ)

1 − 1̂s

)
I{	Xs=0}.

(3.15)

Therefore, by the same considerations as in [8], Lemma IV.3.22, the compensator
of

∑
s≤· f (1+	ms) has the asserted form. To check that the local martingale part

can be written as the given stochastic integral with respect to µX − ν of (3.14) one
proceeds along the same lines that were followed to arrive at (3.9). �

REMARK 3.7. The explicit expression for the (Q,F )-local martingale (3.13)
is then (again use Lemma 3.6 and the fact that φ is homogeneous){

φ(Y ) − φ(1 − Ŷ )

1 − 1̂

}
∗ (µX − ν).(3.16)
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3.4. Characteristics with respect to the geometric mean measure. In this
section we compute the predictable characteristics of the observed process
under the geometric mean measure and we give an explicit expression for the
multiplicative decomposition of the geometric mean process g(α,Q).

Suppose once more that the observations constitute a semimartingale X that
possesses the triplet of predictable characteristics T = (B,C, ν) with respect
to the probability measure Q and the triplet T (θ) = (B(θ),C(θ), ν(θ)) with
respect to the probability measure Pθ , θ ∈ � [cf. (3.1)]. In the next theorem
a characterization is given for the density process z(Gα,Q) which is defined
at each t ≥ 0 by zt (Gα,Q) = EQ{dGα

dQ
|Ft }, provided that Gα is a probability

measure.

THEOREM 3.8. Assume (2.1), (2.3) and the representation property (3.5).
Let the geometric mean measure Gα be a probability measure. Then the density
process z(Gα,Q) may be presented as a Doléans exponential

z(Gα,Q) = E

(
1

1 − 	h(α)
· N(α,Q)

)
,(3.17)

where

N(α,Q) = a(β) · Xc +
{
g(Y ) − g(1 − Ŷ )

1 − 1̂

}
∗ (µX − ν)(3.18)

is a (Q,F )-local martingale that is simply related to M(α,Q) defined by (2.8):

M(α,Q) = g−(α,Q) · N(α,Q).(3.19)

PROOF. Relation (3.17) follows from (2.12) and (3.19).
Next we verify that N(α,Q) has the representation (3.18). Since the martingale

M(α,Q) in Theorem 2.4 can be expressed as

M = g−(z) · {
a(m) + 1

2{v(mc) − ṽ(mc)} − (V − Ṽ )
}
,

it follows that N is the difference of a(m) = a(mc)+{a(Y )− a(1 − Ŷ )/(1 − 1̂)} ∗
(µX−ν) and the local martingale in (3.13) that is, according to Remark 3.7,
given by {φ(Y ) − φ(1 − Ŷ )/(1 − 1̂)} ∗ (µX−ν) [cf. (3.16)]. Since φ = a − g,
the difference results in a(mc) + {g(Y ) − g(1 − Ŷ )/(1 − 1̂)} ∗ (µX−ν), which
coincides with the right-hand side of (3.18). �

REMARK 3.9. Of course the decomposition (3.17) is also valid for the process
ζ(α,Q) of (2.10) without condition (3.5). We only needed it to specify the
martingale in (3.18).



230 K. DZHAPARIDZE, P. SPREIJ AND E. VALKEILA

THEOREM 3.10. Assume (2.1), (2.3) and the representation property (3.5).
If the geometric mean measure Gα is a probability measure, then the triplet of
predictable characteristics T Gα = (BGα,CGα, νGα ) of X with respect to Gα is

BGα = a(B) + (
YGα − a(Y )

)
� · ν,

CGα = C,

νGα = YGα · ν with YGα = g(Y )

1 − 	h(α)
.

(3.20)

PROOF. We use Theorem 3.8 and focus first on the third characteristic νGα .
By Girsanov’s theorem for random measures (see [8], Theorem III.3.17) we need
to calculate the so-called conditional MP

µ -expectation of 	N(α,Q), because it
yields YGα . The definition of this operation is given prior to the aforementioned
theorem [8, page 157] and the rule for calculations in Theorem 4.20 [8,
page 170]. According to this rule YGα has to be related to the integrand
g(Y ) − g(1 − Ŷ )/(1 − 1̂) in the discontinuous part of N(α,Q) as follows: g(Y )−
g(1 − Ŷ )/(1 − 1̂) = U + Û/(1 − 1̂) with YGα − 1 = U

1−	h(α)
. All we need then

is to verify that the postulated YGα = g(Y )
1−	h(α)

indeed satisfies this relationship.
This is accomplished by means of simple algebra upon noting that by (3.12) and
by φ = a − g we have

1 − 	h(α) = ĝ(Y ) + g(1 − Ŷ ).(3.21)

Observe that the latter identity yields 1 − 	h(α) + 	N(α,Q) = g(Y (·, ·,	X));
hence by (3.17) we have for m(Gα,Q)

.= z−(Gα,Q)−1 · z(Gα,Q) that
1 +	m(Gα,Q) = g(Y (·,·,	X))

1−	h(α)
. Since the second equality in (3.20) is trivial, we fi-

nally prove the first one. According to Girsanov’s theorem in [8], Theorem III.3.24,
we have

BGα = B + a(β) · C + (YGα − 1)� · ν,(3.22)

since 〈N(α,Q),Xc〉 = a(β) · C. On the other hand, from (3.1) we obtain a(B) =
B + a(β) · C + (a(Y ) − 1)� · ν. We get the desired result by subtracting the two
expressions. �

REMARK 3.11. Application of the Girsanov theorem to the change of mea-
sure from Q to Gα yields [as in (3.1)] that BGα is given by BGα = B + βGα · C +
(YGα − 1)� · ν. Comparing this to (3.22), we obtain that the local characteristic
βGα is the arithmetic mean of the β(θ), that is, βGα · C = a(β) · C.

By (3.17), the multiplicative decomposition of the geometric mean process
g(α,Q) resulting from (2.10), can be given a specific form.
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COROLLARY 3.12. Assume (2.1), (2.3) and the representation property (3.5).
Then the geometric mean process possesses the multiplicative decomposition

g(α,Q) = E

(
1

1 − 	h(α)
· N(α,Q)

)
E

(−h(α)
)
,(3.23)

with N(α,Q) as in (3.18).
If Gα is taken as the dominating measure, then the above identity can be

replaced with

g(α,Gα) = E
(−h(α)

)
.(3.24)

PROOF. Combine (2.10) and Theorem 3.8 to get (3.23), whereas (3.24)
immediately follows from (2.10). �

Another important consequence is the following useful representation of the
Hellinger integral that has been defined by (2.9).

COROLLARY 3.13. Assume (2.1), (2.3) and the representation property (3.5).
Then at a stopping time T the Hellinger integral and the Hellinger process are
related as follows:

HT (α) = EGαE
(−h(α)

)
T .

PROOF. Substitute Q in (2.9) by Gα and apply (3.24). �

4. Information quantities.

4.1. Information in the posterior given the prior. Let us turn back to the
Bayes formula (2.4). Recall that, using the arithmetic mean measure P̄α as a
dominating measure, we may present this formula as identity (2.5) of Section 2.2.
This representation proves to be useful, since the process z(θ, P̄α) is a martingale
with respect to P̄α .

Define at a stopping time T > 0 the Kullback–Leibler information in the
posterior probability measure αT with respect to the prior α by

I (αT |α) = Eα log
dα

dαT
(ϑ),(4.1)

which is a nonnegative quantity by the Jensen inequality. It is simply related to the
arithmetic and geometric mean processes as follows:

e−I (αT |α) = gT (α,Q)

aT (α,Q)
= gT (α, P̄α).(4.2)

Observe that the information I (αT |α) depends only on the prior α but not on the
choice of a dominating measure Q. By (2.5) we have

EP̄α
I (αT |α) = EαI (Pϑ,T |P̄α,T ).(4.3)

In view of Propositions 2.2 and 2.3 we have the following.
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PROPOSITION 4.1. Assume (2.1) and (2.3). Let I (α·|α) be the information
process starting from zero, I (α0|α) = 0, and at t > 0 defined by (4.1). Then it
possesses the following properties:

(i) inft I (αt |α) > 0 Q-a.s.;
(ii) supt I (αt |α) < ∞ Q-a.s.;

(iii) e−I (α·|α) is a (P̄α,F )-supermartingale of class (D).

PROOF. In view of relationship (4.2), this is a direct consequence of
Propositions 2.2 and 2.3. �

4.2. Information in the prior given the posterior. The previous considerations
rely on the condition (2.3) concerning the Kullback–Leibler information I (P|Q)

in P given Q. Now we need to look at I (Q|P), sometimes called the relative
entropy in P given Q (the term used in the theory of large deviations to characterize
this quantity as the average relative entropy in the experiment given a dominating
measure Q; cf., e.g., [3], Section 1.4; for a different, statistical context, see,
e.g., [14]). Contrary to (2.3), we then will need the condition 0 < I (Q|P) < ∞.
Actually, we only apply this to the particular dominating measure P̄α , so it suffices
to require

0 < I (P̄α|P) < ∞,(4.4)

where P̄α is the product measure P̄α × α on �. The latter condition is indeed
implied by the former, since I (Q|P) = I (Q|P̄ ) + I (P̄|P).

At a stopping time T > 0 define the relative entropy in the prior given the
posterior with

I (α|αT )
.= EαT log

dαT

dα
(ϑ).(4.5)

In Bayesian statistics this quantity is called information from data (see [2],
Definition 2.26). The expression EP̄α

I (α|αT ) is called expected utility from data.
By taking (2.5) into consideration, we get the following representation:

I (α|αT ) = Eα

{
zT (ϑ, P̄α) log zT (ϑ, P̄α)

}
so that the expected utility from data at the stopping time T equals to

EP̄α
I (α|αT ) = EαI (P̄α,T |Pϑ,T ).(4.6)

Notice that also the information from data process I (α|α·) is a
(P̄α,F )-submartingale. Indeed this follows from the fact that z(θ, P̄α) is
a (P̄α,F )-martingale and that I (α|α·) = Eα(z(ϑ, P̄α)), where (x) = x log x, is a
convex function of x ∈ R+.

It is easily seen that at T = ∞ the expected utility from data is nothing else but
the relative entropy in (4.4); this clarifies its necessity in the present context.
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4.3. Representation of posterior information. We recall the multiplicative
decomposition of the geometric mean process given by (3.23) in conjunction
with (3.17):

g(α,Q) = z(Gα,Q)E
(−h(α)

)
.(4.7)

The information I (αT |α) in the posterior αT with respect to the prior α satisfies
identity (4.2); therefore we have the following.

THEOREM 4.2. Assume (2.1), (2.3), the representation property (3.5) and that
Gα is a probability measure. Then the information I (αT |α) at a stopping time
T > 0 may be presented as follows:

e−I (αT |α) = zT (Gα, P̄α)E
(−h(α)

)
T ,(4.8)

where the density process z(Gα, P̄α) of the geometric mean measure Gα with
respect to the arithmetic mean measure P̄α is the Doléans exponential

z(Gα, P̄α) = E

(
1

1 − 	h(α)
· N(α, P̄α)

)
with

N(α, P̄α) = (
a(β) − β̄

) · Xc,P̄α +
{
g

(
Y

Ȳ

)
− g

(
1 − Ŷ

1 − ˆ̄Y

)}
∗ (µX − ν̄),(4.9)

where β̄ , Ȳ and ν̄ are predictable characteristics of the observed process X with
respect to the arithmetic mean measure P̄α and Xc,P̄α is the continuous local
martingale in the semimartingale decomposition of X under P̄α [cf. (3.7)].

PROOF. Equation (4.8) follows from (4.7) and (4.2). Then, it suffices to
substitute Q in (3.18) by P̄α and to verify that N(α, P̄α) indeed has the asserted
form, which we will do by following the same arguments as in the course of
proving Corollary 3.4. First, the multiplication rule for Doléans exponentials
is applied, according to which the following identity has to hold: N(α,Q) =
N(α, P̄α) + (1 − 	h(α)) · m̄ + [N(α, P̄α), m̄]. The comparison of the continuous
parts is simple. As for the discontinuous parts, it suffices to equate the jumps and
to verify that

1 + 	N(α, P̄α)

1 − 	h(α)
= 1 + 	N(α,Q)/(1 − 	h(α))

1 + 	m̄

as in (3.8). To this end use (3.10) and (3.21) and determine 	N(α,Q)/(1−	h(α))

and 	N(α, P̄α)/(1 −	h(α)) from (3.18) and (4.9), respectively, by following the
same device as in the course of proving Corollary 3.4. �

REMARK 4.3. Under the conditions of Theorem 4.2, we have

EP̄α
I (αT |α) = EαI (Pϑ,T |P̄α,T ) = I (Gα,T |P̄α,T ) − EP̄α

log E
(−h(α)

)
T .(4.10)

The first identity is (4.3). The second one follows from (4.8).
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4.4. Representation of the information from data. Suppose that the observed
process X is a (Q,F )-semimartingale with the triplet of predictable characteristics
T = (B,C, ν). As in Section 3.3, assume the representation property for the
density processes z(θ,Q).

Denote by L(x, y) the function L(x, y) = x log x
y

. The function L may be
used to compute Kullback–Leibler information with respect to a dominating
measure; for example, if for two equivalent measures P and Q the information
I (P |Q) is needed to be calculated in terms of a certain measure Q′ that
dominates both P and Q, then the following relation is applied: I (P |Q) =
EQ′L(z(Q,Q′), z(P,Q′)).

In the next theorem we will use the following notation, in the spirit of
Section 3.1: for a quantity f free of θ and g possibly depending on θ we write
L̄(g, f ) = Eα−L(g(ϑ), f ) (assuming of course the appropriate measurability and
integrability conditions). Besides, we will use the posterior variance of β(ϑ)

that is defined as in (2.15) as follows: v̄(β) = Eα−(β(ϑ) − β̄)2. In the present
circumstances we get the Doob–Meyer decomposition of the of the information
from data process.

THEOREM 4.4. Assume (2.1), (4.4) and that (Q,F )-local martingales have
the representation property relative to X. Then the nondecreasing finite-valued
predictable process

1
2 v̄(β) · 〈Xc〉 + L̄(Y, Ȳ ) · ν + ∑

s≤·
L̄

(
1 − Ŷs ,1 − ˆ̄Y s

)
(4.11)

compensates the information from data process I (α|α·) [cf. (4.5)] to a
(P̄α,F )-martingale.

PROOF. It will be seen below that the (P̄α,F )-local martingale just mentioned
is in fact the sum of two terms

Eα

{
z−(ϑ, P̄α) log z−(ϑ, P̄α) · m(ϑ, P̄α)

}
(4.12)

and (
L̄(Y, Ȳ )

Ȳ
− L̄(1 − Ŷ ,1 − ˆ̄Y )

1 − ˆ̄Y

)
∗ (µX − ν̄).(4.13)

It is not hard to see that I (α|α·) is the sum of three terms: the local mar-
tingale (4.12) plus the first term in (4.11) and the expression

∑
s≤· Eαs−(1 +

	ms(ϑ, P̄α)) with (x) = x logx. It is therefore sufficient to decompose the
process in this third summand and to show that its martingale part is just (4.13),
while the compensator may be identified with the last two terms in (4.11). To this
end apply Lemma 3.6—substitute f in its assertion by  to see that this compen-

sator is given by Eα−(Y (ϑ)/Ȳ ) · ν̄ +∑
s≤·Eαs−((1 − Ŷs(ϑ))/(1 − ˆ̄Y s))(1 − ˆ̄Y s),



INFORMATION PROCESSES 235

equal indeed to the sum of the last two terms in (4.11). As for the martingale part,
by the same lemma we get Eα−{(Y (ϑ)/Ȳ )− ((1 − Ŷ (ϑ))/(1 − ˆ̄Y))} ∗ (µX − ν̄)

that yields (4.13). The proof is complete. �

REMARK 4.5. We obtain from Theorem 4.4 that the expected utility from data
at the stopping time T equals

EP̄α
I (α|αT ) = EαI (P̄α,T |Pϑ,T )

= EP̄α

{
1
2 v̄(β) · 〈Xc〉T + L̄(Y, Ȳ ) · νT + ∑

s≤T

L̄
(
1 − Ŷ ,1 − ˆ̄Y )}

.

The first identity is already known [see (4.6)]. The second one follows from (4.11).

5. Examples.

5.1. Discrete observations. As confined to the special case of a discrete-time
filtered space (�,F ,F = {Fn}n∈N), the present theory is quite straightforward.
Let us therefore briefly review the results. Suppose that the present space is
endowed with the family of probability measures {Pθ }θ∈� that are all equivalent
to a certain probability measure Q. Denote their restrictions to Fn by {Pθ,n}θ∈�

and Qn. Often the nth experiment is described by its outcomes, say vectors
(X1, . . . ,Xn) that generate the σ -algebra Fn, and the above restrictions are
viewed as their distributions. For each n and θ ∈ � denote by zn(θ,Q) the
density of Pθ,n with respect to Qn. The sequence of densities {zn(θ,Q)}n∈N

is related to the martingale sequence {mn(θ,Q)}n∈N according to (2.2), that is,
	mn(θ,Q) = 	zn(θ,Q)/zn−1(θ,Q) with the convention z0(θ,Q) ≡ 1. Within
this setup, condition (2.1) is equivalent to

∞∑
n=1

EQ

((√
1 + 	mn(θ,Q) − 1

)2∣∣Fn−1

)
< ∞, Pθ + Q-a.s.(5.1)

(see [8], Theorem IV.2.36). The arithmetic mean sequence a(α,Q) =
{an(α,Q)}n∈N is defined by an(α,Q) = Eαzn(ϑ,Q). This is in fact the density
(with respect to Qn) of the restriction P̄α,n to Fn of the arithmetic mean mea-
sure, that is, an(α,Q) = zn(P̄α,Q). The geometric mean sequence g(α,Q) =
{gn(α,Q)}n∈N is defined by gn(α,Q) = ∏n

i=1 γi(α,Q), the product of the geo-
metric means

γi(α,Q) = eEα log(1+	mi(ϑ,Q)) = eEα log[zi (ϑ,Q)/zi−1(ϑ,Q)].(5.2)

Condition (2.3) is equivalent to
∞∑

n=1

EαEQ log
(
1 + 	mn(ϑ,Q)

)
> −∞(5.3)
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since the sum on the left-hand side is identical to −I (P|Q). Compare this with
condition (4.4), which now reads

∞∑
n=1

EαEPϑ
log

(
1 + 	mn(ϑ, P̄α)

)
< ∞.(5.4)

Obviously, the geometric mean sequence g(α,Q) has the multiplicative decom-
position (3.23) in discrete time, with the Hellinger sequence of order α defined
by

hn(α) =
n∑

i=1

EQ{1 − γi(α,Q)|Fi−1}.

Note that EQh∞(α) ≤ −EQ

∑∞
n=1 logγn(α,Q) < ∞ by (5.3).

The density (with respect to Qn) of the restriction Gα,n to Fn of the geometric
mean measure Gα is

zn(Gα,Q) =
n∏

i=1

γi(α,Q)

EQ{γi(α,Q)|Fi−1}
= En

(
1

1 − 	h(α)
· N(α,Q)

)
,

(5.5)

where Nn(α,Q) = ∑n
i=1(γi(α,Q) − EQ{γi(α,Q)|Fi−1}). Under conditions

(5.1) and (5.3) the geometric mean measure exists as a probability measure on
each finite time interval. Indeed, we can apply a result in [9] that implies that every
nonnegative discrete time local martingale is in fact a martingale.

There is associated with the nth experiment the posterior measure αn whose
density with respect to the prior α is defined for each θ ∈ � as follows:

dαn

dα
(θ) = zn(θ,Q)

an(θ,Q)
= zn(θ, P̄α)

=
n∏

i=1

(
1 + 	mi(ϑ, P̄α)

)

[cf. (2.5)]. Then the Kullback–Leibler information in the posterior αn with respect
to the prior α is

I (αn|α) = Eα log
dα

dαn
(ϑ) = −

n∑
i=1

logγi(α, P̄α);(5.6)

hence EP̄α
I (αn|α) = −∑n

i=1 EP̄α
log γi(α, P̄α). Finally, note that in the present
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case the expected utility from data of size n [cf. (4.10)] is

EP̄α
I (α|αn) =

n∑
i=1

EP̄α
Eαi−1

(
1 + 	mi(ϑ, P̄α)

)
,(5.7)

which is well defined, for condition (4.4) ensures the convergence of this series as
n → ∞.

Special case: independent observations. Let X1,X2, . . . be a sequence of
independent real-valued random variables. Suppose that under the measure Pθ for
θ ∈ � the random variable Xn possesses a probability density fn(·, θ) and under
the measure Q a density fn(·), all with respect to some σ -finite measure ρ. Then
condition (2.1) is equivalent to

∞∑
n=1

∫ ∞
−∞

(√
fn(x) − √

fn(x, θ)
)2

ρ(dx) < ∞ ∀ θ ∈ �

[cf. (5.1)]. Moreover, suppose 0 < �n(α)
.= ∫ ∞

−∞ γα,n(x)ρ(dx) < 1 for all n ∈ N,
where γα,n = exp{Eα logfn(·, ϑ)} (this is always less than or equal to 1 by
Jensen’s inequality but the equality is excluded by the assumption that ϑ is
nondegenerate under α). Condition (2.3) is equivalent to

∞∑
n=1

∫ ∞
−∞

Eα log
{

fn(x,ϑ)

fn(x)

}
fn(x)ρ(dx) > −∞

[cf. (5.3)]. In the present case the Hellinger integral and the Hellinger sequence
are given by H(α,n) = ∏n

i=1 �i(α) and hn(α) = ∑n
i=1(1 − �i(α)) with the

relationship H(α, ·) = E(−h(α)), since h(α) is deterministic [cf. (2.9)]. For a
sample of size n the posterior measure αn is so that its density with respect to
the prior α is

dαn

dα
(θ) = f1(X1, θ) · · ·fn(Xn, θ)/aα,n,

where the denominator aα,n = ∫
� f1(X1, θ) · · ·fn(Xn, θ)α(dθ) is the density with

respect to ρ⊗n of the arithmetic mean measure P̄α restricted to Fn. Note that
the observations are not independent relative to this measure and this causes con-
siderable computational complications. For instance, the information in αn given
α amounts to I (αn|α) = log{aα,n/gα,n}, where gα,n = γα,n(X1) · · ·γα,n(Xn). For
further calculations preceding formulas may be applied [for instance
(5.6) and (5.7)] by taking into consideration that in the present example 1 +
	mn(θ, P̄α) = fn(Xn, θ)/aα,n and γn(α, P̄α) = γα,n(Xn)/aα,n.

Calculations under the geometric mean measure Gα on the other hand are less
cumbersome, since under this measure the Xn keep on being independent with
densities with respect to ρ given by γα,n(·)/�n(α). This statement is evident
from (5.5).
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5.2. Point processes. Suppose that a d-dimensional counting process (N1,

. . . ,Nd) is observed. Under the probability measure Pθ for θ ∈ � the cumulative
intensity of the ith component Ni is �i(θ) and under the measure Q it is Ai , both
positive increasing processes so that the densities d�i(θ)/dAi = Y i(θ) exist for
all i = 1, . . . , d and θ ∈ �. Condition (2.1) is equivalent to

d∑
i=1

∫ ∞
0

(√
Y i

s (θ) − 1
)2

dAi
s + ∑

s∈R

(√
1 − 	�s(θ) − √

1 − 	As

)2
< ∞

Pθ + Q-a.s. for all θ ∈ � (see [8], Theorem IV.2.1). In the second term � =
�1 + · · · + �d and A = A1 + · · · + Ad . The expression for the corresponding
density process is well known:

zT (θ,Q) = e−�T (θ)c+Ac
T

∏
s≤T

(
1 − 	�s(θ)

1 − 	As

)1−	Ns d∏
i=1

Y i
s (θ)	Ni

s(5.8)

with N = N1 + · · · + Nd . Moreover, assume that each density Y i(θ) for i = 1,

. . . , d satisfies Eα log{Y i
s (ϑ)/(1 − 	�s(ϑ))} > −∞ for all s > 0. The Hellinger

process of order α is given by

h(α) =
d∑

i=1

∫ ·

0
φs(Y

i) dAi
s + ∑

s≤·
φs(1 − 	�).

Condition (2.3) holds if the expression

d∑
i=1

∫ T

0
as(Y

i − 1 − logY i) dAi
s

+ ∑
s≤T

as

(
1 − 	�

1 − 	A
− 1 − log

1 − 	�

1 − 	A

)
(1 − 	As),

(5.9)

evaluated at T = ∞, has a finite expectation with respect to Q.
The arithmetic mean measure P̄α assigns to the component Ni the intensity �̄i

that has the density Ȳ i with respect to Ai . This density is the predictable posterior
expectation of Y i(ϑ) as in (3.3).

The geometric mean measure Gα is a probability measure if EP̄α
{1/

E∞(−h(α))} < ∞ (see Proposition 2.7). According to (3.20) this measure assigns
to the component Ni the intensity density (with respect to the same Ai) of the form
g(Y i)/(1 − 	h(α)).

Making use of the formula (2.5) in conjunction with (5.8) we get the density of
the posterior αT with respect to the prior α:

dαT

dα
(θ) = e−�T (θ)c+�̄c

T

∏
s≤T

(
1 − 	�s(θ)

1 − 	�̄s

)1−	Ns d∏
i=1

(
Y i

s (θ)

Ȳ i
s

)	Ni
s

,
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which in turn yields the information I (αT |α). To get EP̄α
I (αT |α), for instance,

we have to take the expectation with respect to P̄α of expression (5.9) with Y i

substituted by Y i/Ȳ i and Ai by �̄i .
According to Remark 4.5, the expected utility from the present data equals

EP̄α
I (α|αT ) = EP̄α

{
d∑

i=1

∫ T

0
L̄(Y i

s , Ȳ
i
s ) dAi

s + ∑
s≤T

L̄(1 − 	�s,1 − 	�̄s)

}
.

Finiteness of this expression for T = ∞ is just condition (4.4). The special case
d = 1 with a continuous cumulative intensity process has been considered in [15].
In this special case the above expression for the expected utility from data reduces
to equation (19.132) in [15]. The latter expression was derived in [15] for the
Shannon information about a transmitted message ϑ that is contained in the
received signal N . In that book, ϑ had been taken as a certain random process,
a situation that is also covered in the present paper upon appropriate adjustments.

For the use of the arithmetic mean measure in model testing and for a discussion
on computational problems see [1].

5.3. Diffusion processes. Let the observed process X be defined so that under
each measure Pθ , θ ∈ �, the process X − ∫ ·

0 βs(θ) ds is a Wiener process W(θ)

with intensity σ 2 that is free of the parameter θ . Then condition (2.1) is equivalent
to

∫ ∞
0 β2

s (θ) ds < ∞, Pθ + Q-a.s. for all θ ∈ � (see [8], Theorem IV.2.1).
Suppose that at each instant t > 0 the drift βt(ϑ) has nonvanishing variance
with respect to α, denoted as above by v(βt). Then the Hellinger process is

h(α) = σ 2

2

∫ ·
0 v(βs) ds and condition (2.3) is equivalent to EQh∞(α) < ∞.

In the same vein it is easily seen that condition (4.4) in this context is satisfied
if EαEPϑ

∫ ∞
0 (βs(ϑ)− β̄s)

2 ds < ∞. By applying Theorem 4.4 we can rewrite this
last condition as EP̄α

∫ ∞
0 v̄(βs) ds.

As we know from Corollary 3.2, the arithmetic mean measure P̄α assigns to our
observations the posterior characteristic β̄ [see (3.3)]; that is, W̄

.= X − ∫ ·
0 β̄s ds is

a Wiener process. Assume now EP̄α
exp{σ 2

2

∫ ∞
0 v(βs) ds} < ∞. Then the geomet-

ric mean measure Gα is a probability measure (see Proposition 2.7) and under this
measure X − ∫ ·

0 as(β) ds is a Wiener process. Alternatively, under Novikov’s con-

dition EQ exp{σ 2

2

∫ ∞
0 as(β)2 ds} < ∞, the measure Gα is a probability measure.

A sufficient condition for this to hold is EαEQ exp{σ 2

2

∫ ∞
0 βs(ϑ)2 ds} < ∞, which

follows from Jensen’s inequality. The latter condition is appealing as it says that
the arithmetic mean of EQ exp{σ 2

2

∫ ∞
0 βs(θ)2 ds} is finite. Finiteness of the latter

expectation is just Novikov’s condition for absolute continuity of Pθ with respect
to Q, our basic condition (2.1).

According to Corollary 3.13 the Hellinger processes h(α) are related to
the Hellinger integrals evaluated at a certain stopping time T as follows:
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HT (α) = EGαET (−h(α)) = EGα exp{−σ 2

2

∫ T
0 v(βs) ds}. Combining (2.5) and

Corollary 3.2, we find that the density of the posterior αT with respect to the prior α

is given by

dαT

dα
(θ) = exp

{∫ T

0

(
βs(θ) − β̄s

)
dW̄s − σ 2

2

∫ T

0

(
βs(θ) − β̄s

)2
ds

}
.

Hence the information in αT with respect to the prior α is, according to (4.2), given
by

I (αT |α) = −
∫ T

0

(
a(βs) − β̄s

)
dW̄s + σ 2

2

∫ T

0
a
(
(βs − β̄s)

2)
ds

and EP̄α
I (αT |α) = σ 2

2 EP̄α

∫ T
0 a((βs − β̄s)

2) ds. Finally, by Theorem 4.4 the

expected utility from the data equals EP̄α
I (α|αT ) = σ 2

2 EP̄α

∫ T
0 v̄(βs) ds. For

related results see also [15, 19]. In fact, equation (16.65) of [15] is nothing else but
EP̄α

I (α|αT ), although the context is different. In [15] this formula was derived for
the Shannon information in the received signal X about the transmitted signal ϑ .
As in the counting process example of the previous section, this interpretation also
is covered in our general setup.

5.4. Fractional processes. It is said that X is a fractional Brownian motion
with self-similarity index H ∈ (0,1) if it is a continuous centered Gaussian process
with X0 = 0 and with covariance

EXtXs = 1
2

(
t2H + s2H − |t − s|2H

)
at s, t ≥ 0. For H �= 1

2 fractional Brownian motion is not a semimartingale and for
H = 1

2 it is the standard Brownian motion. H is also called the Hurst index.

Denote by cH the constant
√

2H�(3
2 − H)/�(H + 1

2 )�(2 − 2H), where � is

the gamma function, and let σ 2
H = c2

H/4H 2(2−2H). The following facts are taken
from [17]:

THEOREM 5.1. Under the conditions of the present section we have the
following:

(i) The process M defined by Mt = ∫ t
0 m(t, s) dXs is a continuous Gaussian

martingale with independent increments, where at each instant t > 0 the kernel
m(t, s) is nonzero only if s ∈ (0, t), when it equals s1/2−H(t − s)1/2−H/2HB(3

2 −
H,H + 1

2 ) with B(a, b) the beta coefficient. Furthermore the quadratic variation
of M is given by 〈M〉t = σ 2

H t2−2H .
(ii) The process X defined by Xt = ∫ t

0 z(t, s) dMs is a fractional Brownian
motion with self-similarity index H , where at each instant t > 0 the kernel z(t, s)
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is nonzero only if s ∈ (0, t), when it equals

2HtH−1/2(t − s)H−1/2 − H(2H − 1)

∫ t

s
uH−1/2(u − s)H−3/2 du.

See [18], Theorems 3.1 and 5.2, for the proof.
The integrals of the kernels z(·, ·) and m(·, ·) with respect to M and X,

respectively, are defined by integration by parts. Since the kernels are nonrandom,
we have the identity FX = FM between the basic filtration FX generated by the
observed fractional Brownian motion X on the one hand and the filtration FM

generated by the Gaussian martingale M of Theorem 5.1(i), on the other hand (we
refer to [18] for more details).

Consider the following parametric model. Take Q to be the probability measure
that makes X a fractional Brownian motion with self-similarity index H . Suppose
that under the probability measure Pθ with θ ∈ � the process X(θ) = X −∫ ·

0 βs(θ) ds for some progressive process β(θ) is a fractional Brownian motion
with self-similarity index H . Then the process M(θ) = ∫ ·

0 m(·, s) dXs(θ) is a
(Pθ ,F )-Gaussian martingale with the same quadratic variation process as M , so
that 〈M(θ)〉t = σ 2

H t2−2H .
Since the measures Pθ and Q are completely determined by the characteristics

of the corresponding Gaussian martingales M(θ) and M , the change of measure is
accomplished by an ordinary Girsanov transformation as in the diffusion case. So,
we have a density process z(θ,Q) = E(ρ(θ) · M), where the process ρ(θ) is such
that M(θ) = M − ∫ ·

0 ρs(θ) d〈M〉s . However, in view of Theorem 5.1 we must have∫ ·
0 ρs(θ) d〈M〉s = ∫ ·

0 m(·, s)βs(θ) ds. Therefore ρ(θ) satisfies the integral equation∫ ·

0
s1/2−H(· − s)1/2−Hβs(θ) ds

= (2 − 2H)B
( 3

2 − H, 3
2 − H

) ∫ ·

0
ρs(θ)s1−2H ds.

(5.10)

Suppose that the solution ρ to (5.10) is such that
∫ ∞

0 ρ2
s (θ) d〈M〉s < ∞,

Pθ + Q-a.s for all θ ∈ �. This condition is equivalent to (2.1) (see [8],
Theorem IV.2.1).

Switching to P̄α as the dominating measure, we likewise obtain

z(θ, P̄α) = E
(
(ρ(θ) − ρ̄) · M̄)

,(5.11)

where M̄ = ∫ ·
0 m(·, s) dXs − ∫ ·

0 ρ̄s d〈M〉s is a (P̄α,F )-Gaussian martingale with
angle bracket 〈M̄〉 = 〈M〉. Moreover, the Hellinger process of order α is similarly
obtained h(α) = 1

2

∫ ·
0 v(ρs) d〈M〉s, provided that the variance process v(ρ) is

nonvanishing. These formulas follow directly from the corresponding formulas
of the diffusion model. Note by the way that the process X − ∫ ·

0 β̄s ds is
(P̄α,F )-fractional Brownian motion with Hurst index H .

Condition (2.3) is equivalent to EQh∞(α) < ∞. Similarly, condition (4.4) is
equivalent to Eα

∫ ∞
0 ρs(ϑ)2 d〈M〉s < ∞. If, moreover, EP̄α

exp{h∞(α)} < ∞,
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then the geometric mean measure Gα is a probability measure in view of Propo-
sition 2.7. According to Corollary 3.13 the Hellinger integral of order α is eval-
uated at a stopping time T as follows: H(α,T ) = EGα exp{−1

2

∫ T
0 v(ρs) d〈M〉s}.

By virtue of (2.5), equation (5.11) gives the density of the posterior αT with re-
spect to the prior α. We get, in particular, that EP̄α

I (αT |α) = 1
2EP̄α

∫ T
0 a((ρs −

ρ̄s)
2) d〈M〉s. Finally, by Theorem 4.4 the expected utility from data equals

EP̄α
I (α|αT ) = 1

2EP̄α

∫ T
0 v̄(ρs) d〈M〉s.
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