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PREDICTION OF WEAKLY STATIONARY SEQUENCES
ON POLYNOMIAL HYPERGROUPS

BY VOLKER HÖSEL AND RUPERT LASSER

GSF-National Research Center for Environment and Health

We investigate random sequences (Xn)n∈N0 with spectral representation
based on certain orthogonal polynomials, that is, random sequences that
are weakly stationary with respect to polynomial hypergroups. We present
various situations where one meets this kind of sequence. The main topic
is on the one-step prediction. In particular, it is examined when the mean-
squared error tends to zero. For many cases we present a complete solution
for the problem of (Xn)n∈N0 being asymptotically deterministic.

1. Introduction. The study of stochastic processes indexed by hypergroups
was mainly motivated by the fact that averages of weakly stationary random
sequences are in general not weakly stationary and thus classical theory does
not apply. But, for a large class of averaging procedures one gets sequences of
Karhunen type [cf. (10) below] and a covariance structure which allows stochastic
analysis.

For example, certain statistical estimates Xn = ∑n
k=−n an,kYk , n ∈ N0, of the

constant mean M of a weakly stationary random sequence (Yn)n∈Z fulfill

E
(
(Xn − M)(Xm − M)

) = cov(Xn,Xm) =
n+m∑

k=|n−m|
g(n,m; k) cov(Xk,X0)

for all n,m ∈ N0 = {0,1,2,3, . . .}. The coefficients g(n,m; k) are linearization
coefficients of orthogonal polynomial systems depending on the choice of the
averaging coefficients an,k. More precisely [see Hösel and Lasser (1992)], if
we select an,k = an,−k for k = −n, . . . , n with

∑n
k=−n an,k = 1 such that the

trigonometric polynomials

Rn(cos t) =
n∑

k=−n

an,ke
ikt

form an orthogonal polynomial sequence (Rn)n∈N0, and if the coefficients
g(n,m; k) in

Rn(x)Rm(x) =
n+m∑

k=|n−m|
g(n,m; k)Rk(x)
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94 V. HÖSEL AND R. LASSER

are nonnegative, the sequence (Xn)n∈N0 is weakly stationary with respect to the
polynomial hypergroup induced by (Rn)n∈N0 .

The idea of studying random fields over hypergroups goes back to Lasser and
Leitner (1989). Further contributions on this topic are contained in Leitner (1991),
Lasser and Leitner (1990), Hösel and Lasser (1992), Bloom and Heyer [(1995),
pages 546–552], Kakihara [(1997), pages 237–241], Rao (1989), Blower (1996),
Heyer (1991, 2000) and Hösel (1998).

We start by recalling the precise definition of weak stationarity with respect to
(Rn)n∈N0 . Then we present further situations where we meet stochastic sequences
of such type. Our main purpose is to extend the results of Hösel and Lasser (1992)
considerably, dealing with prediction problems. In this paper we present for many
cases a complete solution of (Xn)n∈N0 being asymptotically deterministic.

Note how our results could be applied in the scenario of classical weakly
stationary processes (Yn)n∈Z: the error of predicting Yn+1 from Y0, . . . , Yn may
not tend to zero with growing n. But, a variety of averages of this process are
asymptotically deterministic (the prediction error tends to zero) and we even know
the respective convergence orders.

2. Basic facts on polynomial hypergroups. Throughout this paper (Rn)n∈N0

is a fixed polynomial sequence that induces a polynomial hypergroup on N0; that
means that (Rn(x))n∈N0 is a polynomial sequence with degree (Rn) = n, that is
orthogonal with respect to a probability measure π ∈ M1(R). We assume that
Rn(1) = 1 and that all the linearization coefficients g(m,n; k), defined by

Rm(x)Rn(x) =
n+m∑

k=|n−m|
g(m,n; k)Rk(x)(1)

are nonnegative. Then we denote the convex combination of point measures εk

on N0 by

εm ∗ εn :=
n+m∑

k=|n−m|
g(m,n; k)εk

and call εm ∗ εn the convolution of n ∈ N0 and m ∈ N0. With ∗ as convolution,
the identity map as involution and 0 as unit element, N0 becomes a commutative
hypergroup that is called a polynomial hypergroup; see Bloom and Heyer (1995).
Section 3.3 of Bloom and Heyer (1995) contains a long list of polynomial
hypergroups. Every character on the polynomial hypergroup N0 is given by
αx : N0 → R, αx(n) = Rn(x), where x ∈ Ds with

Ds = {
x ∈ R : {Rn(x) :n ∈ N0} is bounded

}
.(2)

The character space N̂0 is homeomorphic to Ds ; see Bloom and Heyer (1995).
In particular Ds is a compact subset of R.
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The orthogonal polynomials Rn(x) are determined by their three-term recur-
rence relation

R0(x) = 1, R1(x) = 1

a0
(x − b0)

and for n ∈ N,

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x),(3)

where (an)n∈N, (bn)n∈N, (cn)n∈N are three real-valued sequences with an, cn > 0,
bn ≥ 0 and an + bn + cn = 1. For a0, b0 ∈ R we assume a0 > 0 and a0 + b0 = 1.

The linearization coefficients g(m,n; k) can be directly calculated from the
recurrence coefficients an, bn, cn; see Lasser (1983). The Haar measure h on
the (discrete) polynomial hypergroup is given by h(n) = g(n,n; 0)−1 and also
determined by the weights

h(0) = 1, h(1) = 1/c1, h(n) =
∏n−1

k=1 ak∏n
k=1 ck

, n = 2,3, . . . .(4)

The support of the orthogonalization measure π is contained in Ds . In fact we have

suppπ ⊆ Ds ⊆ [1 − 2a0,1](5)

and π is the Plancherel measure on Ds , that is,

∫
Ds

Rn(x)Rm(x) dπ(x) =


0, if n �= m,

1

h(n)
, if n = m.

We essentially use a Bochner theorem for polynomial hypergroups; see Theo-
rem 4.1.6 of Bloom and Heyer (1995) which states that for each bounded positive
definite sequence (d(n))n∈N0 there exists a unique µ ∈ M+(Ds) such that

d(n) =
∫
Ds

Rn(x) dµ(x).(6)

Hereby positive definiteness stands for

n∑
i,j=1

λiλj εmi
∗ εmj

(d) ≥ 0(7)

for all λ1, . . . , λn ∈ C and m1, . . . ,mn ∈ N0.
To clarify we note that

εl ∗ εm(d) =
m+l∑

k=|m−l|
g(l,m; k) d(k).
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DEFINITION 2.1. A sequence (Xn)n∈N0 of square integrable (complex-
valued) random variables on a probability space (�,P ) is called weakly stationary
on the polynomial hypergroup N0 induced by (Rn)n∈N0 provided the function
d(m,n) := E(XmXn) is bounded and fulfills

d(m,n) =
m+n∑

k=|m−n|
g(m,n; k)d(k,0).(8)

We will write d(m) instead of d(m,0). Notice that we do not make any
assumptions on the mean values E(Xn). Obviously d(m,n) is the usual covariance
only if E(Xn) = 0 for all n ∈ N0. Now it is easily shown that (d(n))n∈N0 is a
bounded positive definite sequence in the sense of (7). Hence there exists a unique
bounded positive Borel measure µ on Ds such that for all n ∈ N0,

E(XkX0) = d(k) =
∫
Ds

Rk(x) dµ(x), k ∈ N0.(9)

We call µ the spectral measure of (Xn)n∈N0 . Combining (1) and (8) we get
from (9), for all n,m ∈ N0,

E(XmXn) = d(m,n) =
∫
Ds

Rm(x)Rn(x) dµ(x),(10)

showing that (Xn)n∈N0 belongs to the Karhunen class. Moreover, a Cramér repre-
sentation theorem is valid. A straightforward modification of known arguments
yields an orthogonal stochastic measure Z :B → L2(P ), B being the Borel
σ -algebra on Ds such that

Xk =
∫
Ds

Rk(x) dZ(x),(11)

where ‖Z(A)‖2
2 = µ(A) for all A ∈ B .

In fact, the following characterizations of weak stationarity hold.

THEOREM 2.1. For (Xn)n∈N0 ⊂ L2(�,P ) the following statements are
equivalent:

(i) (Xn)n∈N0 is weakly stationary on the polynomial hypergroup N0 induced
by (Rn)n∈N0 .

(ii) E(XmXn) = ∫
Ds

Rm(x)Rn(x) dµ(x) for every n,m ∈ N0, where µ is a
bounded positive Borel measure on Ds .

(iii) Xk = ∫
Ds

Rk(x) dZ(x) for every k ∈ N0, where Z is an orthogonal
stochastic measure on Ds .

PROOF. (i) ⇒ (ii) has already been shown. (ii) ⇒ (iii) is based on the
isometric isomorphism � between L2(Ds,µ) and H = span{Xn :n ∈ N0}− ⊆
L2(�,P ) determined by �(Rn) = Xn. The stochastic measure is defined by
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Z(A) = �(χA), A being a Borel subset of Ds . The construction parallels the
classical case [see Shiryayev (1984), pages 395–403].

Finally, assuming (iii) we get for every m,n ∈ N0,

E(XmXn) =
∫
Ds

Rm(x)Rn(x) dµ(x),

where µ is defined by µ(A) = ‖Z(A)‖2
2, A ∈ B . The linearization of Rm(x)Rn(x)

gives

E(XmXn) =
m+n∑

k=|n−m|
g(m,n; k)E(XkX0). �

3. Occurrence of weakly stationary sequences on polynomial hypergroups.
In Lasser and Leitner (1989) and Hösel and Lasser (1992) we have shown that
statistical estimates Xn of the constant mean of a weakly stationary random
sequence form a weakly stationary sequence on a polynomial hypergroup N0. We
shall now describe further situations where one meets such random sequences.

3.1. Real and imaginary parts. Let (Yn)n∈Z be a weakly stationary complex-
valued process with symmetry, that is Y−n = Yn. The random sequence (Un)n∈N0

of the real parts Un = Re Yn = 1
2(Yn +Y−n), n ∈ N0, is no longer weakly stationary

in the usual sense. However, one can easily check that

E(UmUn) = 1
2E(Un+mU0) + 1

2E(U|n−m|U0).

That means (Un)n∈N0 is a weakly stationary random sequence on the polynomial
hypergroup N0 induced by the Chebyshev’s polynomials Tn(x) of the first kind.
Tn(x) are orthogonal on [−1,1] with respect to dπ(x) = π−1(1 − x2)−1/2 dx.
They belong to the class of Jacobi polynomials R

(α,β)
n (x); see Bloom and Heyer

[(1995), 3.3.1], α = −1
2 , β = −1

2 .
Denote the imaginary part of Yn by

Vn = ImYn = 1

2i
(Yn − Y−n).

Since V0 = 0 we have

E(UnU0) + iE(VnU0) = E(YnY0) =
∫ π

−π
cos(nt) dµ(t) + i

∫ π

−π
sin(nt) dµ(t),

where µ ∈ M+(]−π,π ]) is the spectral measure of (Yn)n∈Z.
The random sequence (Un)n∈N0 is weakly stationary with respect to Tn(x) =

cos(nt), where x = cos t for x ∈ [−1,1], t ∈ [0, π ]. Hence we have a unique
spectral representation

E(UnU0) =
∫ π

0
cos(nt) dν(t),
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ν ∈ M+([0, π ]). Now it is clear that ν = µ|[0, π ] + µ1|]0, π [, where µ1 is the
image measure of µ under the mapping t → −t . Further we observe that

E(UmUn) + E(VmVn) = Re E(YmYn)

=
∫ π

−π
cos((m − n)t) dµ(t) =

∫ π

0
cos((m − n)t) dν(t)

=
∫ π

0
cos(mt) cos(nt) dν(t) +

∫ π

0
sin(mt) sin(nt) dν(t).

Since E(UmUn) = ∫ π
0 cos(mt) cos(nt) dν(t), it follows that

E(VmVn) =
∫ π

0
sin(mt) sin(nt) dν(t).

Define, for n ∈ N0,

Xn := 1

n + 1
Vn+1 = 1

n + 1
Im Yn+1.

Then

E(XmXn) =
∫ π

0

sin((m + 1)t)

(m + 1) sin t

sin((n + 1)t)

(n + 1) sin t
(sin t)2 dν(t).

By Theorem 2.1 we see that (Xn)n∈N0 is a weakly stationary random sequence on
the polynomial hypergroup N0 induced by the Chebyshev’s polynomials Un(x) of
the second kind. Notice that Un(x) = R

(1/2,1/2)
n (x) = sin((n+1)t)

(n+1) sin t
, x = cos t .

3.2. Stationary increments. A random sequence (Yn)n∈Z is called a sequence
with stationary increments if all E(Yn+k − Yk) depend only on n ∈ Z and
E((Yn1+k − Yk)(Y n2+k − Yk)) depend only on n1, n2 ∈ Z; see Yaglom [(1987),
Section 23]. It is readily seen [cf. Yaglom (1987), equation (4.227)] that

Yn+k − Yk =
∫ π

−π
eikt e

int − 1

eit − 1
dZ(t),

where Z is an orthogonal stochastic measure on ]−π,π ]. Hence we get for
arbitrary n ∈ N0,

Yn+1 − Y−n =
∫ π

0

sin((2n + 1)(t/2))

sin(t/2)
dZ̃(t),

where Z̃ is the orthogonal stochastic measure on [0, π ] defined by Z̃ = Z|[0, π ]+
Z1, Z1(]a, b]) = Z([−b,−a[) for ]a, b] ⊆ ]0, π ] and Z1({0}) = 0. Putting

Xn := 1

2n + 1
(Yn+1 − Y−n),

we have a weakly stationary sequence (Xn)n∈N0 on the polynomial hypergroup N0

induced by the Jacobi polynomials R
(1/2,−1/2)
n (x) = sin((2n+1)(t/2))

(2n+1) sin(t/2)
, x = cos t .
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3.3. Coefficients of random orthogonal expansions for density estimation.
Suppose that the distribution of a random variable X is absolutely continu-
ous with respect to a positive Borel measure π on the interval [−1,1]; that is,
P (X ∈ A) = ∫

A f (x) dπ(x), where f ∈ L1([−1,1], π), f ≥ 0. Consider the se-
quence (pn)n∈N0 of polynomials that are orthonormal with respect to π , and let
as before Rn(x) = pn(x)/pn(1). Further, assume that (Rn)n∈N0 induces a poly-
nomial hypergroup on N0. Given independent random variables X1,X2, . . . ,XN

equally distributed as X, the unknown density function f (x) can be estimated by
the random orthogonal expansion

fN(ω;x) :=
q(N)∑
k=0

aN,kcN,k(ω)pk(x).

Here q(N) is the truncation point and aN,k are numerical coefficients to be chosen
in an appropriate manner; see Lasser, Obermaier and Strasser (1993) and Devroye
and Györfi (1985). The random coefficients are given by

cN,k(ω) := 1

N

N∑
j=1

pk

(
Xj(ω)

)
.

Define Ck := cN,k/pk(1) for each k ∈ N0. The random sequence (Ck)k∈N0 is
weakly stationary on the polynomial hypergroup N0 induced by (Rk)k∈No . In fact,
we have

Cn = 1

N

N∑
j=1

Rn(Xj )

and hence

E(CmCn) = 1

N2

N∑
i,j=1

E
(
Rm(Xi)Rn(Xj )

)

= 1

N2

N∑
i,j=1

∫ 1

−1
Rm(x)Rn(x)f (x) dπ(x)

=
∫ 1

−1
Rm(x)Rn(x)f (x) dπ(x)

=
n+m∑

k=|n−m|
g(m,n; k)

∫ 1

−1
Rk(x)R0(x)f (x) dπ(x)

=
n+m∑

k=|n−m|
g(n,m; k)E(CkC0).

Estimating the density function f by random orthogonal expansion is hence
strongly related to estimating the spectral measure fπ of the random sequence
(Ck)k∈N0 , where (Ck)k∈N0 is weakly stationary with respect to Rk = pk/pk(1).
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3.4. Stationary radial stochastic processes on homogeneous trees. We denote
by T a homogeneous tree of degree q ≥ 1 with metric d . Let G be the isometry
group of T, t0 ∈ T an arbitrary but fixed knot of T and let H be the stabilizer of t0
in G. We identify T with the coset space G/H and call a mapping on T radial if
it depends only on |t| = d(t, t0). A square integrable stochastic process (Xt )t∈T is
called stationary, if there exists a function φ : N0 → R such that

E(XsXt) = φ(d(s, t))

for all s and t in T [cf. Arnaud (1994)]. It is known [Arnaud (1994)] that the
following spectral representation is true:

E(XsXt) =
∫ 1

−1
Rd(s,t)(x) dµ(x),

where (Rn(x))n∈N0 are the orthogonal polynomials (also called Cartier–Dunau
polynomials) corresponding to homogeneous trees of degree q . The polynomials
Rn(x) are determined by

R0(x) = 1, R1(x) = x

and

R1(x)Rn(x) = q

q + 1
Rn+1(x) + 1

q + 1
Rn−1(x), n ∈ N.

They induce a polynomial hypergroup on N0 [see Lasser (1983)].
We assume, moreover, that the stationary stochastic process (Xt )t∈T is radial;

that is, Xt = Xs if |t| = |s|. Putting Xn := Xt whenever |t| = n we get a well-
defined random sequence. We have∫

H
Rd(h(s),t)(x) dβ(h) = R|s|(x)R|t|(x) =

|s|+|t|∑
k=||s|−|t||

g(|s|, |t|, k)Rk(x),

where β is the Haar measure on the compact stabilizer H , h(s) the action of h ∈ H

on T = G/H , and the explicit form of the linearization coefficients g(|s|, |t|, k) for
m,n ∈ N,m ≤ n given by

g(m,n,n − m) = 1

(q + 1)qm−1
,

g(m,n,n + m) = q

q + 1
,

g(m,n,n + m − 2k) = q − 1

(q + 1)qk
for k ∈ {1,2, . . . ,m − 1},

g(m,n,n + m − k) = 0 for k ∈ {1,3, . . . ,2m − 1}
[cf., e.g., Lasser (1983), Voit (1990), Cowling, Meda and Setti (1998)].
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From the above spectral representation we can derive

E(XmXn) =
∫ 1

−1
Rm(x)Rn(x) dµ(x).

By Theorem 1.1 we obtain that (Xn)n∈N0 is weakly stationary on the polynomial
hypergroup N0 induced by the Cartier–Dunau polynomials (Rn)n∈N0 .

4. One-step prediction. Having presented situations where we meet random
sequences that are weakly stationary on the polynomial hypergroup n ∈ N0 we
now study the prediction problem. In the sequel fix an orthogonal polynomial
sequence (Rn)n∈N0 which induces a polynomial hypergroup on N0. Let (Xn)n∈N0

be a weakly stationary random sequence on N0 induced by (Rn)n∈N0 . The
problem in one-step prediction can be formulated as follows. Given n ∈ N0
denote the linear space generated by X0, . . . ,Xn by Hn := span{X0, . . . ,Xn} ⊆
span{Xk :k ∈ N0}− ⊆ L2(P ). We want to characterize the prediction X̂n+1 ∈ Hn

of Xn+1 with the minimum property

‖X̂n+1 − Xn+1‖2 = min{‖Y − Xn+1‖2 :Y ∈ Hn}.(12)

It is well known that X̂n+1 = PHnXn+1, where PHn is the orthogonal projection
from L2(P ) to Hn. The problem is to determine the coefficient bn,k, k = 0, . . . , n,
in the representation

X̂n+1 =
n∑

k=0

bn,kXk(13)

and to decide whether the prediction error

δn := ‖X̂n+1 − Xn+1‖2(14)

converges to zero as n tends to infinity. We call (Xn)n∈N0 asymptotically
Rn-deterministic if δn → 0 as n → ∞.

From Hilbert space theory we know that X̂n+1 can be characterized by the
property

E
(
(Xn+1 − X̂n+1)Y

) = 〈Xn+1 − X̂n+1, Y 〉 = 0(15)

for all Y ∈ Hn. From (15) we get for b = (bn,0, . . . , bn,n)
T the linear equation

�T b = ϕ,(16)

where ϕ = (E(Xn+1X0 ),E(Xn+1X1), . . . ,E(Xn+1Xn ))T and � is the (n + 1)

× (n + 1)-matrix � = (E(XiXj ))0≤i,j≤n. Matrices structured like � can be seen
as generalizations of Toeplitz-matrices with regard to the orthogonal polynomial
sequence (Rn)n∈N0 . The dependency of the i, j -entry on i − j in the Toeplitz case
is substituted by the condition

�i,j = εi ∗ εj (d) =
i+j∑

k=|i−j |
g(i, j; k) d(k) with d(k) = E(XnX0 ).
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Methods of fast inversion of matrices of this type are not studied in the numerical
literature, as far as the authors know. A method resembling the Durbin–Levinson
algorithm [cf. Brockwell and Davies (1991)] will be investigated at another place.
Here we stress the theory of prediction.

In Hösel and Lasser (1992) we showed that

δn = σn+1

ρn+1
,(17)

where σn = σn(π) is the leading coefficient of Rn(x) = σnx
n+· · · and ρn = ρn(µ)

is the positive leading coefficient of the polynomials qn(x) = ρnx
n + · · · , that

are orthonormal with respect to the spectral measure µ. If the orthogonalization
measure π satisfies the Kolmogorov–Szegö property, we can give a rather
complete characterization when δn → 0 holds.

4.1. Kolmogorov–Szegö class. To each polynomial sequence (pn)n∈N0 ortho-
normal with respect to a probability measure ν ∈ M1([−1,1]) one can associate a
unique polynomial sequence (ψn)n∈N0 on [−π,π ] orthonormal with respect to a
measure α given by

dα(t) = | sin t|dν(cos t), t ∈ [−π,π ].(18)

Denote the positive leading coefficients of ψn(t) by ρn(α) and those of pn(t) by
ρn(ν). We apply some important results on orthogonal polynomials on the unit
circle. The original references are Geronimus (1960) and Szegö (1975); see also
Lubinsky (1987).

If the Radon–Nikodym derivative α′ of α fulfils the Kolmogorov–Szegö
property, that is, ln(α′) ∈ L1([−π,π ]) or equivalently∫ π

−π
ln(α′(t)) dt > −∞,(19)

then ρn(α) converges monotonically increasingly towards the geometric mean

ρ(α) := exp
(
− 1

4π

∫ π

−π
ln(α′(t)) dt

)
(20)

[see Lubinsky (1987), Theorem 3.4]. If the Kolmogorov–Szegö property is not
valid we have limn→∞ ρn(α) = ∞. Transferring this result to [−1,1] we have
[see Geronimus (1960), Theorem 9.2] the following.

PROPOSITION 4.1. Let (pn)n∈N0 be an orthonormal polynomial sequence
with respect to a measure ν ∈ M1([−1,1]), (| suppν| = ∞). Then alternatively
we have:

(i) If
∫ 1
−1 ln(ν′(x))/

√
1 − x2 dx > −∞, then there exist positive constants

C1,C2 such that for all n ∈ N0,

C1 ≤ ρn(ν)

2n
≤ C2.

(ii) If
∫ 1
−1 ln(ν′(x))/

√
1 − x2 dx = −∞, then limn→∞ ρn(ν)

2n = ∞.
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PROOF. Consider the orthonormal polynomial sequence (ψn)n∈N0 on [−π,π ]
with leading coefficients ρn(α), where α is the measure as in (18). The coefficients
ρn(α) and ρn(ν) satisfy the inequalities [see Geronimus (1960), equation (9.9)]

ρ2n−1(α)

2
√

π
≤ ρn(ν)

2n
≤ ρ2n(α)√

π
.(21)

Moreover, we have ∫ π

−π
ln(α′(t)) dt = 2

∫ 1

−1

ln(ν′(x))√
1 − x2

dx,

and the assertions (i) and (ii) follow by the convergence of ρn(α) towards ρ(α) or
towards infinity, respectively. �

For the orthonormal version pn(x) of Rn(x) we have pn(x) = √
h(n)Rn(x).

Hence σn(π) = ρn(π)√
h(n)

and by (17) we obtain immediately the theorem.

THEOREM 4.2. Let (Xn)n∈N0 be a weakly stationary random sequence
on the polynomial hypergroup N0 induced by (Rn)n∈N0 . Suppose that the
orthogonalization measure π of (Rn)n∈N0 has support contained in [−1,1] and
fulfils the Kolmogorov–Szegö property on [−1,1], that is,∫ 1

−1

ln(π ′(x))√
1 − x2

dx > −∞.(22)

Then (Xn)n∈N0 is asymptotically Rn-deterministic if and only if

lim
n→∞

√
h(n)ρn(µ)

2n
= ∞.(23)

In particular we have:

(i) If limn→∞ h(n) = ∞, then (Xn)n∈N0 is asymptotically Rn-deterministic
without any assumption on the spectral measure µ. For the prediction errors we
have

δn = O

(
1√

h(n + 1)

)
as n → ∞.

(ii) If {h(n) :n ∈ N0} is bounded, then (Xn)n∈N0 is asymptotically Rn-deter-
ministic if and only if µ does not fulfil the Kolmogorov–Szegö property on [−1,1].

(iii) If {h(n) :n ∈ N0} is unbounded, then (Xn)n∈N0 is asymptotically Rn-deter-
ministic provided µ does not fulfil the Kolmogorov–Szegö property on [−1,1].

PROOF. We know that δn = σn+1(π)
ρn+1(µ)

= ρn+1(π)√
h(n+1)ρn+1(µ)

.
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By the Kolmogorov–Szegö property for π and Proposition 4.1 there exist
positive constants C1,C2 such that

C1 ≤ ρn+1(π)

2n+1 ≤ C2 for n ∈ N0

and hence

C1 ≤ √
h(n + 1)

ρn+1(µ)

2n+1 δn ≤ C2 for n ∈ N0.

Now applying Proposition 4.1 again, every statement follows. �

From the preceding theorem we know that (Xn)n∈N0 shows a prediction
behavior similar to classical weakly stationary processes provided {h(n) :n ∈ N0}
is bounded and the orthogonalization measure π fulfils the Kolmogorov–Szegö
condition. We now prove for the case Ds = [−1,1] that if (h(n))n∈N0 does not
converge to infinity, the Kolmogorov–Szegö property of π is valid.

PROPOSITION 4.3. Let (Rn)n∈N0 induce a polynomial hypergroup on N0, and
suppose that Ds = [−1,1]. If π does not fulfil the Kolmogorov–Szegö property,
then limn→∞ h(n) = ∞.

PROOF. Consider the representation of Rn(x) by Chebyshev’s polynomials of
the first kind,

Rn(x) =
n∑

k=0

an,kTk(x),(24)

where Tk(x) = cos(k arccosx) = 2k−1xk + · · · . Since |Rn(x)| ≤ 1 for every
x ∈ Ds , n ∈ N0, we obtain, by applying the orthogonalization measure dν(x) =
1
π

dx√
1−x2

of (Tk)k∈N0 ,

1 ≥
∫ 1

−1
R2

n(x) dν(x) ≥ a2
n,n

∫ 1

−1
T 2

n (x) dν(x) = a2
n,n

2
.

Comparing the leading coefficients in (24), we get

an,n = σn(π)

2n−1 = ρn(π)√
h(n)2n−1

,

and hence 2h(n) ≥ (
ρn(π)/2n−1)2

.
By Proposition 4.1 we have limn→∞ ρn(π)/2n = ∞ and hence

limn→∞ h(n) = ∞. �

Many examples of orthogonal polynomial sequences (Rn)n∈N0 inducing a
polynomial hypergroup can be found in Bloom and Heyer (1995); see also Lasser
(1983, 1994). We consider a few more examples to determine the asymptotic
behavior of the prediction error.
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1. We consider R
(α,β)
n , the Jacobi polynomials with α ≥ β > −1 and α + β +

1 ≥ 0. The orthogonalization measure is dπ(x) = cαβ(1 − x)α(1 + x)β dx. The
Haar weights (4) are

h(n) = (2n + α + β + 1)(α + β + 1)n(α + 1)n

(α + β + 1)n!(β + 1)n
.

Evidently π satisfies the Kolmogorov–Szegö property. If α �= −1
2 we have

limn→∞ h(n) = ∞. Hence every weakly stationary random sequence on
the polynomial hypergroup N0 induced by (R

(α,β)
n )n∈N0 is asymptotically

R
(α,β)
n -deterministic.
For the prediction error we have

δn = O(n−α−1/2) as n → ∞.

If α = −1
2 , then R

(−1/2,−1/2)
n (x) = Tn(x) are the Chebyshev’s polynomials

of the first kind. The Haar weights are h(0) = 1, h(n) = 2 for n ∈ N, and
Theorem 4.2(ii) can be utilized.

2. Next is R
(ν)
n (x;α), the associated ultraspherical polynomials with α > −1

2 ,
ν ≥ 0. These polynomials are studied in detail in Lasser [(1994), (3)]. The Haar
weights (4) are

h(n) = (2n + 2α + 2ν + 1)

4α2(2α + 2ν + 1)(ν + 1)n(2α + ν + 1)n

(
(2α + ν)n+1 − (ν)n+1

)2

and the orthogonalization measure π on [−1,1],
dπ(x) = cανg(x)(1 − x2)α dx

with

g(cos t) = ∣∣
2F1

(1
2 − α, ν; ν + α + 1

2; e2it
)∣∣−2

, x = cos t.

To show that π fulfils the Kolmogorov–Szegö property it is convenient to look
at the leading coefficients. From Lasser [(1994), equation (3.10)] we have

ρn(π) = 2n

(
(ν + α + 3

2 )n(ν + α + 1
2)n

(ν + 1)n(ν + 2α + 1)n

)1/2

and the asymptotic properties of the Gamma function yield

lim
n→∞

ρn(π)

2n
=

(
�(ν + 1)�(ν + 2α + 1)

�(ν + α + 3
2 )�(ν + α + 1

2 )

)1/2

.

Proposition 4.1 yields the Kolmogorov–Szegö property of π . Using once more
the asymptotic properties of the Gamma function we see that h(n) = O(n2α+1)

and hence we have for the prediction error

δn = O(n−α−1/2) as n → ∞.

Note that we enlarge the domain of α compared to Hösel and Lasser [(1992),
Corollary 2].
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3. Finally, we have Rn(x; ν, κ), the Bernstein–Szegö polynomials with ν, κ ≥ 0,
κ − 1 < ν < 1. The polynomials under consideration are orthogonal with
respect to the measure on [−1,1],

dπ(x) = cνκ

dx

g(x)
√

1 − x2
,

where g(x) = |νe2it + κeit + 1|2, x = cos t , is a polynomial with g(x) > 0
for all x ∈ [−1,1]. By Szegö (1975) these polynomials can be represented
explicitly by Chebyshev’s polynomials of the first kind:

Rn(x; ν, κ) = 1

ν + κ + 1

(
Tn(x) + κTn−1(x) + νTn−2(x)

)
, n ≥ 2,

R1(x; ν, κ) = 1

ν + κ + 1

(
(ν + 1)T1(x) + κT0(x)

)
,

R0(x; ν, κ) = 1.

An easy calculation shows

R1(x; ν, κ)Rn(x; ν, κ) = ν + 1

2(ν + κ + 1)
Rn+1(x; ν, κ)

+ κ

ν + κ + 1
Rn(x; ν, κ)(25)

+ ν + 1

2(ν + κ + 1)
Rn−1(x; ν, κ)

for n ≥ 3. It is straightforward to calculate the linearization coefficients and to
check directly that (Rn(x; ν, κ))n∈N0 induces a polynomial hypergroup on N0
provided ν, κ ≥ 0 and κ − 1 < ν < 1. Since the recurrence coefficients in (25)
are constant for n ≥ 3 the Haar weights are bounded, and Theorem 4.2(ii) can
be applied.

4.2. The general case. There are important orthogonal polynomial sequences
inducing a polynomial hypergroup but not belonging to the Kolmogorov–Szegö
class [e.g., the Cartier–Dunau polynomials of Section 3.4]. Often it is not possible
or at least very difficult to decide the membership to the Kolmogorov–Szegö
class. Throughout this subsection we suppose on π only that the corresponding
orthogonal polynomials induce a polynomial hypergroup on N0. (Xn)n∈N0 will be
a weakly stationary random sequence on this polynomial hypergroup with spectral
measure µ.

A standard procedure in the Hilbert space L2(Ds,µ) yields

δ2
n = �(X0, . . . ,Xn+1)

�(X0, . . . ,Xn)
,(26)



PREDICTION OF POLYNOMIAL HYPERGROUPS 107

where

�(Xn, . . . ,Xn+m) = det

 〈Xn,Xn〉 · · · 〈Xn,Xn+m〉
...

...

〈Xn+m,Xn〉 · · · 〈Xn+m,Xn+m〉

 .

Notice that �(X0, . . . ,Xn) > 0 for all n ∈ N0 if and only if suppµ is infinite. We
assume further on that | suppµ| = ∞.

The following sequence of upper bounds holds for δn:

δ2
n = �(X0, . . . ,Xn+1)

�(X0, . . . ,Xn)
≤ �(X1, . . . ,Xn+1)

�(X1, . . . ,Xn)
≤ · · ·

(27)

≤ �(Xn,Xn+1)

�(Xn)
≤ �(Xn+1);

see Mitrinović [(1970), page 46]. Because of Proposition 4.3 we concentrate on
the case h(n) → ∞. The following lemma is needed.

LEMMA 4.4. Let (Rn)n∈N0 induce a polynomial hypergroup on N0, and
assume that h(n) → ∞. Then for every k, l ∈ N0 holds g(n,n + l; k) → 0 as
n → ∞.

PROOF. For n ≥ k we have, with the Cauchy–Schwarz inequality,

g(n,n + l; k) = h(k)

∫
Ds

Rn(x)Rn+l(x)Rk(x) dπ(x)

≤ h(k)g(n,n; 0)1/2
(∫

Ds

(
Rn+l(x)Rk(x)

)2
dπ(x)

)1/2

.

Since |Rn+l(x)Rk(x)| ≤ 1 for x ∈ Ds we see that g(n,n + l; k) → 0 as
n → ∞. �

THEOREM 4.5. Let (Xn)n∈N0 be a weakly stationary random sequence on
the polynomial hypergroup N0 induced by (Rn)n∈N0 . Assume that h(n) → ∞ as
n → ∞. If d(n) = E(XnX0) tends to zero, the random sequence (Xn)n∈N0 is
asymptotically Rn-deterministic.

PROOF. We have E(XnXn) = ∑2n
k=0 g(n,n; k) d(k). Since

∑2n
k=0 g(n,n; k) = 1

and g(n,n; k) → 0 as n → ∞ by Lemma 4.4, Toeplitz’s Lemma [see Knopp
(1922), page 377] yields �(Xn) = E(XnXn) → 0, and by (27) we have
δn → 0. �

REMARK 1. Theorem 4.5 improves Theorem 2 of Hösel and Lasser (1992),
where we had to assume that the recurrence coefficients an, bn and cn are
convergent.
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REMARK 2. If the spectral measure µ is absolutely continuous with respect
to the measure π , we can deduce that d(n) → 0 [see Bloom and Heyer (1995),
Theorem 2.2.32(vi)].

We apply (27) further on to deal also with spectral measures µ that contain
discrete or singular parts.

THEOREM 4.6. Let (Xn)n∈N0 be a weakly stationary random sequence on the
polynomial hypergroup N0 induced by (Rn)n∈N0, where h(n) → ∞ as n → ∞.
Assume that the spectral measure has the form

µ = fπ + µ0 + µ1,

where f ∈ L1(Ds,π), suppµ0 ⊆ Ds,0 := {x ∈ Ds :Rn(x) → 0 for n → ∞} and
suppµ1 ⊆ Ds\Ds,0 is a finite set or empty. If m = | suppµ1| > 0 and there is some
n0 ∈ N0 such that

inf
n≥n0

det

 〈Rn,Rn〉µ1 · · · 〈Rn,Rn+m−1〉µ1
...

...

〈Rn+m−1,Rn〉µ1 · · · 〈Rn+m−1,Rn+m−1〉µ1

 > 0,(28)

then the random sequence (Xn)n∈N0 is asymptotically Rn-deterministic.

PROOF. If µ1 = 0 we have �(Xn) = E(XnXn) = ∫
Ds

R2
n(x)f (x) dπ(x) +∫

Ds
R2

n(x) dµ0(x). By Theorem 4.5 (and Remark 2 above) and the theorem of
dominated convergence we have �(Xn) → 0 and the statement follows.

If m = | suppµ1| > 0, we consider the Gramian determinants �(Xn, . . . ,

Xn+m−1) and �(Xn, . . . ,Xn+m). Expanding the determinants we obtain

�(Xn, . . . ,Xn+k) = det

 〈Rn,Rn〉µ1 · · · 〈Rn,Rn+k〉µ1
...

...

〈Rn+k,Rn〉µ1 · · · 〈Rn+k,Rn+k〉µ1

 + ∑
σ∈Ik

ϕσ ,

where |Ik| is finite and independent of n, whereas the ϕσ ’s are products
of 〈Rn+i1,Rn+j1〉f π+µ0 and 〈Rn+i2,Rn+j2〉µ1 containing at least one factor
〈Rn+i,Rn+j 〉fπ+µ0 . Since all 〈Rn+i,Rn+j 〉fπ+µ0 tend to zero as n → ∞, we
conclude from the assumption that 1/�(Xn, . . . ,Xn+m−1) is bounded for n ≥ n0.
Since | suppµ1| = m, the (m + 1) × (m + 1)-determinant,

det

 〈Rn,Rn〉µ1 · · · 〈Rn,Rn+m〉µ1
...

...

〈Rn+m,Rn〉µ1 · · · 〈Rn+m,Rn+m〉µ1


has to be zero. Hence �(Xn, . . . ,Xn+m) tends to zero with n → ∞. By (27) we
get δn → 0. �
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A typical situation in which to use Theorem 4.6 is when π is even and
suppµ1 ⊆ Ds\Ds,0 = {−1,1}. Since Rn(1) = 1 and Rn(−1) = (−1)n we obtain,
for µ1 = αε1 + βε−1,

det

( 〈Rn,Rn〉µ1 〈Rn,Rn+1〉µ1

〈Rn+1,Rn〉µ1 〈Rn+1,Rn+1〉µ1

)
= 4αβ.

The part of the spectral measure contained in Ds,0 = {x ∈ Ds :Rn(x) → 0} is
easy to deal with, as we have already seen in the proof of Theorem 4.6. Hence we
want to derive results on the size of Ds,0.

We restrict ourselves from now on to the case that π is even, that is, bn = 0 for
all n ∈ N0. At first we consider the case of an → a as n → ∞, where 1

2 < a < 1.
The Cartier–Dunau polynomials Rn(x) with q ≥ 2 belong to this class.

We know then that suppπ = [−γ, γ ] is a proper subset of Ds = [−1,1] with
γ = 2

√
a(1 − a). Note that γ = 1 exactly when a = 1

2 . In fact, using theorems
of Blumenthal and Poincaré this is proved in Lasser [(1994), Theorem 2.2].
In addition we can obtain the following result. Compare also Voit [(1991),
Theorem 8.2(4)].

PROPOSITION 4.7. Assume that (Rn)n∈N0 is even and induces a polynomial
hypergroup on N0. Furthermore, let an → a with 1

2 < a < 1. Then Rn(x) → 0 as
n → ∞ for each x ∈]−1,1[.

PROOF. Fix α0 ∈]γ,1[. By the separating property of zeros of Rn(x) [see
Szegö (1975)], we get Rn(α0) > 0. Now Qn(x) = Rn(α0x)/Rn(α0) defines a
polynomial hypergroup on N0. The recurrence relation of the Qn(x) is given by

xQn(x) = ãnQn+1(x) + c̃nQn−1(x),

where

ãn = an

Rn+1(α0)

Rn(α0)α0
, c̃n = cn

Rn−1(α0)

Rn(α0)α0
.

By the Poincaré theorem [cf. the proof of Theorem 2.2 in Lasser (1994)], we have

lim
n→∞

Rn(α0)

Rn−1(α0)
< 1.

Since ãn is convergent, the dual space of the polynomial hypergroup induced by
(Qn)n∈N0 is [−1,1]. In particular,

|Rn(α0x)/Rn(α0)| ≤ 1

for all x ∈ [−1,1], n ∈ N0. That means limn→∞ |Rn(α0x)| ≤ limn→∞ Rn(α0) = 0
for all x ∈ [−1,1]. Since α0 ∈]γ,1[ can be chosen arbitrarily we have
limn→∞ Rn(x) = 0 for all x ∈]−1,1[. �



110 V. HÖSEL AND R. LASSER

COROLLARY 4.8. Let (Xn)n∈N0 be a weakly stationary random sequence on
the polynomial hypergroup N0 induced by (Rn)n∈N0 . Suppose that π is even and
an → a with 1

2 < a < 1. Then (Xn)n∈N0 is asymptotically Rn-deterministic.

PROOF. By Proposition 4.3 we get limn→∞ h(n) = ∞ and the statement
follows from Proposition 4.7. �

If an → 1
2 , the problem is much more involved. A sufficient condition for

Rn(x) → 0 for every x ∈]−1,1[ can be derived by making use of the Turan
determinant. Given the orthogonal polynomials (Rn)n∈N0 fulfilling (3), the
Turan determinant is defined by

θn(x) = h(n)

(
R2

n(x) − an

an−1
Rn−1(x)Rn+1(x)

)
.(29)

PROPOSITION 4.9. Assume that (Rn)n∈N0 is even and induces a polynomial
hypergroup on N0. Further let an → 1

2 as n → ∞. The following inequalities for
θn(x) are valid:

(i) θn(x)/h(n) ≤ C1(R
2
n−1(x) + R2

n(x) + R2
n+1(x)) for all x ∈ R, n ∈ N,

where C1 > 0 is a constant independent of x and n.
(ii) |θn(x) − θn−1(x)|/h(n) ≤ C2|an−1cn − an−2cn−1|(R2

n−1(x) + R2
n(x)) for

all x ∈ [−1,1], n ∈ N, where C2 > 0 is a constant independent of x and n.
(iii) Given some δ ∈]0,1[ there is N ∈ N such that θn(x)/h(n) ≥ C3

(R2
n−1(x) +R2

n(x)) for all x ∈ [−1 + δ,1 − δ], n ≥ N , where C3 > 0 is a constant
independent of x and n.

PROOF. (i) Since limn→∞(an/an−1) = 1 and 2|Rn−1(x)Rn+1(x)| ≤ R2
n−1(x)

+ R2
n+1(x), the inequality of (i) follows immediately.

(ii) By using the recurrence relation (3) we get

θn(x) = h(n)R2
n(x) + h(n − 1)R2

n−1(x) − x

an−1
h(n)Rn−1(x)Rn(x)(30)

and

θn(x) = h(n)R2
n(x) + h(n + 1)

ancn+1

an−1cn

R2
n+1(x)

(31)

− h(n)
anx

an−1cn

Rn(x)Rn+1(x).
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Employing (30) to θn and (31) to θn−1 gives

θn(x) − θn−1(x) = h(n)

(
1 − an−1cn

an−2cn−1

)
R2

n(x)

+
(
h(n − 1)

an−1

an−2cn−1
− h(n)

1

an−1

)
xRn−1(x)Rn(x)

= h(n)

(
an−2cn−1 − an−1cn

an−2cn−1
R2

n(x)

+ an−1cn − cn−1an−2

cn−1an−2an−1
xRn−1(x)Rn(x)

)
.

Since an → 1
2 , cn → 1

2 we obtain for |x| ≤ 1,

|θn(x) − θn−1(x)|/h(n) ≤ C2|an−1cn − an−2cn−1|(R2
n−1(x) + R2

n(x)
)
.

(iii) Applying (30) we have

θn(x) = h(n)

(
Rn(x) − x

2an−1
Rn−1(x)

)2

+
(

1 − x2

4cnan−1

)
h(n − 1)R2

n−1(x)

and

θn(x) = h(n − 1)

(
Rn−1(x) − x

2cn

Rn(x)

)2

+
(

1 − x2

4cnan−1

)
h(n)R2

n(x).

In particular it follows that

θn(x) ≥
(

1 − x2

4cnan−1

)
h(n − 1)R2

n−1(x)

and

θn(x) ≥
(

1 − x2

4cnan−1

)
h(n)R2

n(x).

Since x ∈ [−1 + δ,1 − δ] there is a constant C3 and N ∈ N such that

θn(x)/h(n) ≥ C3
(
R2

n−1(x) + R2
n(x)

)
for all n ≥ N. �

THEOREM 4.10. Assume that (Rn)n∈N0 is even and induces a polynomial
hypergroup on N0. Let an → 1

2 and h(n) → ∞ as n → ∞. Further, suppose that

∞∑
n=1

|ancn+1 − an−1cn| < ∞.(32)

Then every weakly stationary random sequence (Xn)n∈N0 on the polynomial
hypergroup N0 induced by (Rn)n∈N0 is asymptotically Rn-deterministic.
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PROOF. It suffices to prove that Rn(x) → 0 as n → ∞ for every x ∈]−1,1[.
Proposition 4.9(ii) and (iii) imply

|θn(x) − θn−1(x)| ≤ h(n)C2|an−1cn − an−2cn−1|(R2
n−1(x) + R2

n(x)
)

≤ C2

C3
|an−1cn − an−2cn−1|θn(x) = εnθn(x)

for all n ≥ N, where εn = C2
C3

|an−1cn − an−2cn−1|. Hence

1

1 + εn

θn−1(x) ≤ θn(x) ≤ 1

1 − εn

θn−1(x)

for every n ≥ N . Since
∑∞

n=2 εn is convergent, θn(x) is convergent, too. Applying
once more Proposition 4.9(iii) and h(n) → ∞, we get Rn(x) → 0. �

We conclude this paper with some further examples.

4. The Cartier–Dunau polynomials that are essential for the investigation of
stationary radial stochastic processes on homogeneous trees have the property
that an = q/(q + 1). Hence for q ≥ 2 we can use Corollary 4.8 and get that
δn → 0 for the corresponding random sequences (Xn)n∈N0 .

5. Rn(x;β|q) the (continuous) q-ultraspherical polynomials with −1 < β < 1 and
0 < q < 1. Their hypergroup structure is studied in Lasser (1983) [cf. also
Bressoud (1981)]. The recurrence coefficients an, cn are not given in explicit
form, but we know the asymptotic behavior; see Bloom and Heyer [(1995),
page 168]. In fact,

αn = 1

2
+ 1

n
+ o

(
1

n

)
and hence an → 1

2 as n → ∞. It now follows with elementary computations
from (4) that hn → ∞ with growing n.

To check property (32) of Theorem 4.10 we investigate the monotonicity of
the sequence (αn)n∈N. A direct calculation shows that (αn)n∈N is increasing
if β ≤ q and decreasing if q ≤ β . In both cases we have

∑∞
n=1 |αn+1 − αn| =

|1
4 −α1|. Now Theorem 4.10 implies that every corresponding random sequence

is asymptotically Rn(·;β|q)-deterministic.
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