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ON THE STRONG LIMITING BEHAVIOR OF LOCAL
FUNCTIONALS OF EMPIRICAL PROCESSES
BASED UPON CENSORED DATA
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We prove functional laws of the iterated logarithm for empirical
processes based upon censored data in the neighborhood of a fixed point.
We apply these results to obtain strong laws for estimators of local
functionals of the lifetime distribution. In particular, we describe the
pointwise strong limiting behavior of the kernel density estimator based
upon the Kaplan-Meier product-limit estimator.

1. Introduction. In this paper, we are concerned with nonparametric
estimators of the lifetime density function and related functionals based on
censored data. Let the lifetimes {X;, i > 1} and the censoring times {Y;, i > 1}
be independent sequences of independent and identically distributed nonneg-
ative random variables. Set X =X, Y=Y, F(x) = P(X < x) and G(x) =
P(Y < x). In the literature, the problem of estimating F from censored
samples has received much attention [see, e.g., Kalbfleisch and Prentice
(1980), Foldes, Rejté and Winter (1981), Gu and Lai (1990) and the references
therein]. In the random censorship from the right model, one observes the
pairs (Z;, §;) for i = 1,...,n, where Z; = min(X,, ¥)) and §; = Ly _y, with
15 denoting the indicator function of E. The nonparametric maximum likeli-
hood estimator of F(z) based on this data set is the product-limit estimator,
introduced by Kaplan and Meier (1958) and defined by

(N,,(Zi) -1 )

(1.1) F(z)=1- TI NZ

i:Z;<z,1<i<n

where N,(x) = X}, 1, . ,), and with the conventions that [ = 1 and 0° =
1. In many applications, one needs to estimate local functionals of F, typical
examples of which are the density f(z) of F, and the failure rate (or hazard
function) f(z)/(1 — F(z)), assuming that they exist. We refer to Foldes, Rejt6
and Winter (1981), Schifer (1986), Yandell (1983), Padgett and McNichols
(1984), Liu and Van Ryzin (1985) and Lo, Mack and Wang (1989) for
examples of nonparametric estimators of local functionals of this kind. In the
sequel, we will consider in more detail the kernel estimator f, of f which,
besides being of interest in itself, will illustrate our forthcoming more general
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results. Let {A,, n > 1} be positive constants, assumed to satisfy conditions
(H1) and (H2):

(H1) A,10, nh, 1o
(H2) nh,/log, n — «, where log, u := log(log max(u, 3)).

Let K be a function (or kernel) satisfying the following assumptions:

(K1) K(-) is of bounded variation on (— o, «);
(K2) for some 0 < M < =, K(u) = 0 for all |ul > M/2;
X3) 2, K(u) du = 1.

The kernel estimator of f(z) [Watson and Leadbetter (1964a, b), Tanner
and Wong (1983)] is

t—2z

(12) fol2) = f_wh,:lK( . ) dF,(t).

In this paper, we will obtain the almost-sure rate of consistency of f,(z) for a
fixed z. This will be shown to be a consequence of functional laws of the
iterated logarithm describing the local oscillations of F,, which constitute our
main results. The following notation and assumptions will be needed to state
the corresponding theorems. For any function R(x), we set

R_(x) = Ef% R(x—¢) and R, (x) = Ef% R(x + &),

whenever these limits exist. For any right-continuous distribution function
L(x)=L,(x), we set T, =sup{t: L(¢) <1}, L_(»)=1lim,_,, L(x) and
L _(x) =lim, , L(x — &). We assume that F_() = 1, but allow the distribu-
tion of Y to be defective with G_() = 1 — P(Y = ©) < 1. In particular, when
P(Y = o) =1, we have G(x) = 0, for all x < =, and obtain the uncensored
case, F, then being equal to the usual empirical distribution function based
upon X,..., X,.

Setting ® = min(Ty, T;), we assume that ® > 0 (when ® =0, F, is
degenerate with probability 1). We let

f-(x) = lim &7 (F(x — &) = F_(x))

[resp., f,(x) = lim, o ¢ "(F(x + &) — F(x))] and

g_(x) = lgi?(} e (G(x — &) —.G_(x))

[resp., g,(x) =1lim, , £ '(G(x + &) — G(x))] denote the values of the left
. derivatives of F_ and G_ (resp., right derivatives of F' and G) at x € (0, 0),
whenever these quantities exist. Note for further use that, with the defini-
tions above, the existence of f_(x) and f,(x) [resp., g_(x) and g,(x)] does
not imply the continuity of F (resp., G) at x. Whenever F (resp., G) is
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continuous at x, f_(x) and f,(x) [resp., g_(x) and g_(x)] become the usual
left and right derivatives of F (resp., G) at x. Set

= t—z
(1.3) Ef(2) = [ h,;lK( )dF(t)‘

. h,
With the exception of the uncensored case where Ef,(z) coincides with the
usual expectation Ef,(z) of f,(z), we have in general Ef,(2) # Ef,(2) (even
though both expressions may be very close to each other). The limiting
behavior of f,(z) is described in the following theorem.

THEOREM 1.1. Let z € (0, ®) be fixed. Assume that F is continuous in a
neighborhood of z and that the left derivative f_(x) and right derivative [, (x)
of F at x exist at x = z. Then, under (H1), (H2) and (K1)-(K3), we have

nh 172
lim sup + { : } (fu(2) — Ef,(2))

n—ox 210g2n

f(z) o,
— {___~1 6 (5 f_xK (¢) dt

(1.4)

fi(2) R Y
+I-:~G—(—z~')‘j(; K (t) dt} a.s.

REMARK 1.1. If we assume that the derivative f(x) = F'(x) of F at
x =2z € (0, ®) exists and that G is continuous at z, then (1.4) may be
rewritten as the simpler expression

nh 1/2
lim sup + { - } (ful2) — [Efn(z))

n—x
(1.5)

f(2) . e
={ G(z)[ K (t)dt} a.s.

REMARK 1.2. Let F be possibly discontinuous at x but such that the left
derivative f_(x) of F_ and right derivative f,(x) of F at x =z € (0, ©)
exist. Then, under (H1), (K1) and (K2),

lim E£,(2) = 3(£(2) + f(2))
(1.6)

+1(f.(2) —f_(z))f:{K(t) — K(-t)}dt,

v&;hich, under the additional assumption (K3), reduces to f(z) when f_(z) =
f.(2) = f(2). In the latter case, we infer from (1.5)-(1.6) that conditions (H1)
and (H2) are sufficient for strong consistency of f,(z) to f(2).
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The proof of Theorem 1.1 is postponed until Section 3. A version of this
theorem was proved by Lo, Mack and Wang (1989), who established (1.5)
under the additional assumptions that (a) G is continuous, (b) K is symmet-
ric and continuous and (c) nk,(log, n)/(log n)* — w, the latter condition (c)
being more restrictive than (H2). In the uncensored case, their results
essentially coincide with those of Hall (1981), which are therefore also
improved by Theorem 1.1. A detailed study of the uncensored case is to be
found in Deheuvels and Mason (1994). It follows from their discussion and
from earlier results of Deheuvels (1974) that condition (H2) is sharp in the
sense that the conclusion of Theorem 1.1 becomes false in general when (H2)
is replaced by nh,/log, n — ¢ € [0, ©). The growth and regularity conditions
in (H1) may be relaxed in part by making use of an auxiliary sequence (see
Remark 3.1 in the sequel).

Lo, Mack and Wang (1989) follow Lo and Singh (1986) and base their
arguments on the strong invariance principles of Burke, Csorgé and Horvath
(1981, 1988). On the other hand, our approach is novel in the sense that it
does not make use of invariance principles. Theorem 1.1 and other results of
the kind will be instead shown to be consequences of a local functional law of
the iterated logarithm stated in Theorem 1.2. Introduce the Kaplan—Meier
empirical process by setting, for n > 1 and — <x <,

(17) an(x) = nl/z(Fn(x) - F(x))

Fix z € (0, ®), and consider the sequence of random functions defined for
n > 1by ' :

(1.8) &(u) =b'(a,(z +h,u) —a,(z)) for —-M<u<M,

where M > 0 is a specified constant and b, = (2, log, n)/2 If .7 is an
arbitrary set, we denote by B(#) the space of all bounded real-valued
functions defined on .#, endowed with the topology of uniform convergence on
<#. Our main result is as follows.

THEOREM 1.2. Let z € (0, ®) be fixed. Assume that F is continuous in a
neighborhood of z and that the left derivative f_(x) and right derivative f L(x)
of F at x = z exist. Then, under (H1) and (H2), the sequence {§,: n > 1} is
almost surely relatively compact in B(—M, M) with limit set equal to the set
of all functions h € B((—M, M) of the form

(1.9) h(u) = /u\I’(s) ds for —M <u<M,
0
with

1-G_(2)\ 0 _, 1-G(2)\ u 2 o) ds <
(-——f_(z) )[_M\p (s)ds+(———f+(z) )[0 V2(s)ds < 1.
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REMARK 1.3. (i) In (1.9), we use the conventions that
1-G_(2)

_ﬁz_)__)ff)M\p?(s) ds=0 when f_(2z) =0,

[° W¥(s)ds=0 and (
-M
and

M 1-G(2))\ u
¥%(s)ds=0 and |——— V¥2(s)ds =0 when z) =0.
[Tvs) ( f(2) )fo (s) fi(2)

(ii) If we assume that the derivative f(x) = F'(x) = f_(x) = f.(x) of F at
x =2 € (0, ®) exists and that G is continuous at z, then (1.9) may be
rewritten as the simpler expression

h(u) = fu\I’(s)ds for —-M <u <M,
(1.10) 0
f(z)

with IAL\Pz(S) ds < —I——G(z—j

We will present the proof of Theorem 1.2 in Section 2, together with other
local functional laws of the kind based upon {(Z;, §;), 1 < i < n}. In particu-
lar, we will consider in this section the case where F is possibly discontinu-
ous. A rough outline of our arguments is as follows. Our theorems will be
obtained by combining two main ingredients. The first, due to Einmahl and
Koning (1992), expresses the main empirical functionals of the censored data
in terms of an auxiliary uniform empirical process. The second, due to
Deheuvels and Mason (1994), is a local functional law of the iterated loga-
rithm which, when applied to the previous uniform empirical process, will
yield the results we seek.

In Section 3, we will show how Theorem 1.2 and the results of Section 2
may be applied to describe the pointwise limiting behavior of a large class of
nonparametric local estimators.

2. Functional laws for censored processes. The following notation
and assumptions will be in force, in addition to those previously given in
Section 1. We first assume the distribution functions F(x) = P(X < x) of
X=X, and G(x) =P(Y <x) of Y=Y, to be possibly discontinuous. Let
6=208, and Z = Z, = min(X, Y). The right-continuous distribution function
of Z, denoted by

H(x)=P(Z<x)=1-(1-F(x))(1-G(x))
=HY(x) + HO(x),

i.s"decomposed into the sum of

(2.1)

(22) H®(x)=P(Z<xand5=1) = [ (1-G_(t))dF(2),
0
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and
(23)  HO(x) = P(Z <x and 5 = 0) =f0x(1 — F(t)) dG(2).

Set

(24) p=P(5=1) = [:(1 — G_(t))dF(t) = HY() = 1 — HO().

Our assumptions exclude p = 0, whereas p = 1 is possible and corresponds
to uncensored data. It will become obvious later on that, in the latter case,
the results of this section are direct consequences of similar theorems for the
uniform empirical process, due to Deheuvels and Mason (1994). Therefore, we
will assume from now on without loss of generality that 0 < p < 1. Let

(2.5) QW(s) = inf{x: HV(x) > s} for0<s <p,
and
(2.6) QV(s) = inf{x: HO(x) > s} for0<s<1-p.

Note for further use that definitions (2.2)-(2.3) and (2.5)-(2.6) entail that
QY (s) <x o s<HM(x) for0<s<p,

QV(s) <xes<HP(x) for0<s<1-p.

The empirical counterparts of H and H"), j = 0, 1, are obtained by setting

(2.7)

(2.8 H(x)=n'Y L, _,=1-n"'N, (x) = H(x) + H"(x),
i=1

where N, _(x) =lim, , N,(x — ¢) and N, is as in (1.1),

n n
29 HP2)=n1Y §l,., and HN2)=n"' Y QA -8, _,,.

i=1 i=1

The following lemma, inspired by an observation of Einmahl and Koning
(1992), will play an instrumental role in our proofs. Let Z = Z; and & = §;.

LEMMA 2.1. On a suitably enlarged probability space, it is possible to
define a uniform(0, 1) random variable U such that, with probability 1,
(i) o= ]1(0<U<p) =1- IL{p<UA<1);
(2.10) (i) Z =QY(U) when 0 < U < p;
Z=Q%U-p) whenp<U<1.
Proor. When both distribution functions H® and H© are continuous,

we may set, as in Einmahl and Koning (1992), U = sH™M(Z) + (1 — 6X(p +
H(Z)), which is readily checked to follow a uniform distribution on (0, 1) and
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to satisfy (2.10) with probability 1. When H® and H©® are arbitrary, the
following argument is needed. First, we observe that, whenever V is a
random variable with distribution function D(v) = P(V <v) and quantile
function D™™¥(s) = inflv: D(v) = s} for 0 <s <1, we may define V on a
probability space which carries a random variable W uniformly distributed
on (0, 1) such that V = D*Y(W) with probability 1.

Next, we infer from (2.2) and (2.4) that the conditional distribution func-
tion of Z given that 6 = 1 is equal to p *H®™(x), and from (2.5) that the
corresponding quantile function is equal to @P(ps) for 0 < s < 1. Therefore,
an application of the above observation shows that, conditionally on & =1,
there exists a uniform(0, 1) random variable W, such that Z = QV(pW,)
with probability 1. Likewise, conditionally on 8 = 0, we may define a uni-
form(0, 1) random variable W, such that Z = Q®((1 — p)W,) with probability
1. We conclude by the observation that the random variable U = 6pW, +
(1 - 8)Xp + (1 — p)W,) is uniformly distributed on (0, 1) and satisfies (2.10)
with probability 1. O

By Lemma 2.1 and (2.10), we can and do assume that the original sequence
is defined on a probability space which carries a sequence {U,, n > 1} of
independent uniform(0, 1) random variables such that, almost surely for each
1=1,2,...,

(i) & = ]1(0<U,.<p) =1- ]]'(p<Ui<1);
(2.11) (i) Z; = Q™(Uy) when 0 < U, <p;
Z,=Q®U, —p) whenp<U,<1.

Consider now the empirical distribution function
n
(212) IUn(S) = n_l Z ]]'(U,»ss}
i=1

and the empirical process based upon Uy, ..., U,, denoted by
(2.18) a,(s) = n'2(U,(s) — s).

In view of (2.7), (2.9) and (2.11) and of definitions (2.12) and (2.13), we see
that, almost surely,

(2.14) HM(x) = U,(H®(x)) for0<H®V(x) <p,
and
(2.15) H(x) = U,(Hx) + p) — U,(p) forb <HY(x)<1-p.

' Nlobv let s, €(0, p), sp€(p, 1) and M; > 0 be fixed, and consider the
sequences of random functions defined for j = 0, 1 and n > 1 by

(2.16) fP(u) = b, (a,(s; + h,u) - a,(s;)) for =M, <u <M,
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where b, = (2h, log, n)'/2. Further, set
w) = (2log, n)-l/zan(sﬂ’

w® = (2log, n)_l/z(an(so) - a,(p)).
The next lemma is due to Deheuvels and Mason (1994).

(2.17)

LEMMA 2.2. Under (H1) and (H2), the sequence {(w(®, w®, £, i)} is
almost surely relatively compact in R? X B2((—M,, M,] with limit set equal
to the set of all (w®, w®, fO, FO) with

W) = fs"qf(s) ds,
0

(2.18) .
fO(w) = [ W(s)ds forj=1,0and —M; <u <M,
0

where

(2.19) jo "W(s)ds =0 and fo "wX(s)ds + [ MM (W2(s) + W2(s)ds < 1.

PrROOF. The fact that the sequence {£{’(v): 0 < v < M,} is almost surely
relatively compact in B([0, M,]) with limit set as in (2.18)-(2.19) was proved
for s, = 0 by Mason (1988). The corresponding result for (w{", w.”) follows
from the Finkelstein (1971) functional law of the iterated logarithm. The
extension of these partial results as stated in the lemma is a particular case
of Theorem 1.2 of Deheuvels and Mason (1994). It is noteworthy that the
proof of the latter theorem does not make use of invariance principles. O

In the sequel, we will make use of a modified version of Lemma 2.2 stated
in Lemma 2.3. Fix any M > 0 and let {y(u): —M <u <M}, j=0, 1, be
sequences of functions such that

(2.20) lim { sup | y(w) - yju|} =0,
n=® \yel-M,M]
where y; > 0, j = 0, 1, are constants. Further, for j = 0, 1, let

(@] = FW (WD) - p-1 ) —
(221) gnj u) _fnj (Ynj(u)) _bn (an(sj+hnynj(u)) an(sj))
for —-M <u <M.
LEMMA 2.3. Under (H1) and (H2), the sequence w(V, w®, g®, g®) is
almost surely relatively compact in R* X B2([—M, M with limit set equal to
the set of all (w®, w®, g®, ¢©) with

222 w®= /31 ¢d(s)ds, w® = fso o(s)ds, g(u) = fu ¢;(s) ds,
0 0

p
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forj=0,1and —M <u < M, where

/1¢>(s) ds =0 and
(2.23) 0

fd’(s)ds“Lf 11 e1(s) + 70! dg(s))ds < 1.

ProOF. Choose M; > 0 in Lemma 2.2 so large that |[y"(u)| < M, uni-
formly over —M < u < M and j = 0, 1, for all large n. By this lemma, for any
increasing sequence {n,} of positive integers, there exists almost surely an
increasing subsequence {n},} of {n,} and a (w®, W@, fD, @) as in (2.18) and
(2.19) such that, as £ —» © and along {n/,},

(2.24) o {Iw,(lj) -—wP+  sup |fP(v) - f(j)(v)l} -0,
j=0,1 vel=M;,M,]

whence, as £ — «© and along {n/,},

(2.25)

L {wf —wl+ sup 15 (w)) = FO(50(w)]} -

Jj=0,1 ue[-M,M]

Next, we observe that the functions £, j =0, 1, in (2.18) and (2.19) are
uniformly equicontinuous, as follows from the Schwarz inequality and (2.19),
which entail that, for any —M; <v’, v”" < M,

FO(0) = FON) = [ (s) ds

2.26 " 1/2
( ) SIU’_U”Il/zxyfv '\Il‘"iz(s) dS
.

<lv’ —v" "2

By combining (2.20)—(2.21) and (2.25)—(2.26), we obtain readily that, along
{n’,k},

(2.27) Y {Iw,(lj) —wP+  sup g¥(u) - f(j)(yiu)l} - 0.
j=0,1 uel[-M,M]

Recalling (2.18), we set g(u) = fV(y,u) and ¢(u) = v;¥)(y;u) for —-M < u
< M and j = 0, 1. It is readily verified From 2. 18) 2. 19) that (w®, w®, g®,
g©) satisfies (2.22)-(2.23). This proves that the sequence {(w(", w®, g,
g?)} is almost surely relatively compact with limit set included in the set
characterized by (2.22)-(2.23). A similar argument, which we omit for the
sake of conciseness, proves that, almost surely, the latter two sets are equal.

! O

In view of (2.5) and (2.6), we fix z; € (0, ®) and z, € (0, ®) and set
(2.28) s, =H®Y(z;) € (0, p), so=p + HP(z) € (p,1).
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Fix M > 0. For j =0, 1, introduce the sequences of random functions of

uel-M, M]

(2.29) P (w) = b, 'n?(HY(2; + hyu) — HO(z; + h,u)

2.29 ) .
—HY( z;) + HY)( Zj))

and the sequences of random variables

(2.30) v{ = (2log, n) " *nl/2(HY(2;) — HY(z))).

By (H1), there exists an n, > 1 such that, for all n > n,, j=0, 1, and
-M<u=<M,

(2.31) z; + h,u € (0,0).

It follows from (2.31) that, for all n > n,, (vP, v?, &P, k) € R? X B2( - M,

M) is properly defined by (2.30)—(2.31). The following theorem describes the
almost-sure limiting behavior of this sequence.

THEOREM 2.1. Assume that F(x) is continuous and that the derivative
g(x) = G'(x) of G exists, with g(x) > 0 at x =z, € (0, ®). Assume further
that F(x) and G(x) are continuous and that the derivative f(x) = F'(x) of F
exists, with f(x) > 0 at x =z, € (0, ®). Then, under (H1) and (H2), the
sequence {(vV, v, kD, k®): n > 1} is almost surely relatively compact in
R% x B2([—M, M) with limit set equal to the set of all (v, v®, kD,
k@) e R? x B2([—M, M) with

o@D = me(Zl)d)(S) ds, L© — /p+H<o>(20)¢(s) ds,
(2.32) 0 .,
Wy = [~ o
k9 (u) fo ,(s) ds,
forj=0,1and —M < u <M, where
[T6(s)ds =0 and [ 42(s)ds+ [ ( $3(s)
0 0 -m\ f(z21)(1 — G(z,))
R0
g(29)(1 — F(2y))

(2.33)

)dssl.

PrROOF. For j =0, 1, let s; be as in (2.28) and let f” be as in (2.16). It
follows from (2.14), (2.15), (2.16), (2.28) and (2.29) that

kszl)(u) = bn_l(an(H(l)(zl + hnu)) - an(H(l)(zl)))

(2.34)
= frfl)(h;‘l(H(l)(zl + hnu) _ H(l)(zl))),
and '
(2.35) EO(u) = b, (a,(p + HO(2o + hyu)) = a,(p + HO(2,)))

= O(h, Y (HO(zg + hyu) — HO(z2))).
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Likewise, recalling (2.17), we see that

v® = (2logy n) " ?a,(s;) = w® and

vf? = (2log, n) " *(ay(s) — an(p)) = w.
Forj=0,1and M <u <M, let

(2.37) yO(u) = h;l(H(j)(zi + h,u) —H(j)(zi)).

Consider first H® as defined in (2.2). Assuming only that the right derivative

f.(z;) of F at z; exists, the right-continuity of G(z,) = G (z,) at z; entails
that

(2.36)

}Lifré h‘l{ sup |H®(z, + hu) — HO(z,)
(2.38) O<u<M

~f.(2)(1 = G(21))hul} = 0.

Likewise, assuming only that the left derivative f_(z,) of F_ at z, exists, we
have
lim 2~Y sup |H®(z, — hu) — HO(z,)

(239) hl0 {OsusM

+f (2)(1 - G,(zl))hul} ~o0.

We now observe that the assumptions of the theorem imply that (a) f(z;) =
fi(z) =f_(z)) exists, (b) F(z,) =F (z,) =F _(z9), () G(z)) =G, (z)) =
G_(z,) and, by (H1), (d) A, — 0. In view of the definitions (2.2) of H{" and
(2.37) of Y, (a)-(c) imply that HM(z,) = H®(z,) and, in view of
(2.38)—(2.39), that the function " in (2.37) satisfies (2.20) for j = 1 and
(2.40) 71 = f(21)(1 - G(zy)).

By an argument similar to (2.38)-(2.39), with the formal replacements of
HO F,G,f, g, 2, and (22) by HV, G, F, g, f, z, and (2.3), respectively, we
obtain likewise that, under the assumptions of the theorem, the function 5©
in (2.37) satisfies (2.20) for j = 0 and

(241) Yo = 8(20)(1 — F(2)).

In view of (2.34)-(2.35), (2.36)-(2.37) and (2.40)-(2.41), the proof of the
theorem is now immediate by a direct application of Lemma 2.3 O

REMARK 2.1. (i) It follows from the arguments in the above proof of
Theorem 2.1 that the assumptions of (1) existence and positiveness of g(x) at
x =2z, € (0, ®) and (2) continuity of F(x) at x = z, € (0, ®) are only needed
to ensure the almost-sure relative compactness of the sequence {kflo’}. To
obtain only the almost-sure relative compactness of the sequence {£{"} in
B( —M, M) with limit set consisting of all functions 2 € B(—M, M) of
the form ’

(2.42) EO(w) = fo (s)ds with [ I‘; $2(s)ds < f(z,X1 — G(z,),
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it is enough to assume (3) existence of f(x) > 0 at x =z, € (0, ®) and (4)
continuity of G(x) at x = z; € (0, ©).

(ii) If we only assume (5) continuity of F(x) at x =z, €(0, ), (6
existence of f, (x) and f (x) at x = z; € (0, ®) and we allow G to be possibly
discontinuous at z; € (0, @), then the sequence {£{V} is almost surely rela-
tively compact in B([—M, M]) with limit set consisting of all functions
kD e B(—M, M) of the form

EO(w) = [*d,(s) ds
(2.43)

o 62(s) w o $(s)
Vi [ -6 Gy E T h feva-eey &St

with the convention that ¢(s) =0 for —M <s < 0 (resp., 0 < s < M) when
f_(zy) = 0[resp., f,(z;) =0].

(iii) If we only assume (6) existence of f,(x) and f_(x) at x = z, € (0, ®)
and we allow both F and G to be possibly discontinuous at z, € (0, ®), we
may infer from (2.34) that £ (0) — 2P(0) = fO(h, {(HM(2,) — HY(z,))) +»
0 a.s. when H(z,) - HN(z,) = P(Y = 2z,)P(X = z,) # 0, so that the con-
clusion of Theorem 2.1 is not valid in this case. However, if we set «{"(u) =
EM(u) for uw > 0, and «M(u) = kY (1) for u < 0, it holds that the sequence
{«"} is almost surely relatively compact in B((—M, M]) with limit set
consisting of all functions &V € B([—M, M) satisfying (2.43).

In view of (2.2), (2.34), (2.38) and (2.39), the proofs of the variants of
Theorem 2.1 stated in Remark 2.1 are readily achieved along the same lines
as the just-given proof of this theorem. The fact that the positivity of f(z,) is
not needed for (2.42) follows from a simple modification of our arguments
showing that, when f(z,) = 0,

(2.44) sup  [EP(w)l >0 as.
vel[-M,M]

A similar argument shows that (2.43) holds when either f_(z,) = 0 or f_(z,)
= 0. Recalling the definitions (2.1), (2.8) and (2.29)-(2.30), and letting z, = z,
=z € (0, ®), we now introduce the sequence of random functions of v € [ — M,
M defined for n > 1 by

k,(w) = EP(w) + BO(uw)

(2.45) = b, 'nY*(H,z + h,u) — H(z + h,u) — H(z) + H(2)),

2y

and the sequence of random variables

(2.46) v, = v + v© = (2log, n) /*n/2(H,(2) — H(2)).
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The following corollary will be shown to be an easy consequence of Theo-
rem 2.1.

COROLLARY 2.1. Under the assumptions of Theorem 2.1 withz =z, =z, €
(0, ©), the sequence {(v,, k,): n = 1} is almost surely relatively compact in
R x B({—M, M) with limit set equal to the set of all (v, k) € R X B(—M,
M), with

(247) v = /H(Z)¢(s) ds, k(u) = fu(I)(s) ds for —-M <u<M,
0 0
where

flqﬁ(s) ds =0 and
0

(2.48) 1 . 22(s)
fy '@ ds [\ s a e re(@a - Fey | “ =

ProOF. By Theorem 2.1, it is enough to check that, for z; =z, = z, the
image set _#(«) by the mapping % (v®, v©®, BV, k@) - (v = v® + v,
E=ED + EO®) of the set & characterized by (2.32)—(2.33) is equal to the set
& characterized by (2.47)—(2.48). Toward the aim of proving that #(¥) =%,
we observe that the infimum of x2/a? + y2/b? given that x + y = p is equal
to p?/(a? + b2) and is reached for x = a%/(a® + b?) and y = b%/(a® + b?).
By letting a? = f(z)(1 — G(2)), b% =g(2)1 — F(2)) and p= ®(s), we see
that the choice of ¢,(s) =x and ¢,(s) =y for each s €[—M, M] ensures
first that ®(s) = ¢,(s) + ¢,(s) and second that

M ¢i(s) $5(s)
'[ (f(z)(l - G(z)) ! g(z)(1 - F(z)) ) &

-M
(2.49)

M P?(s) A
- f_M(f(z)(l - G(2)) +g(2)(1 - F(2)) ) o

This in turn is sufficient to show that each (v, &) belonging to % is the image
by 7 of some (v®, v @, kD, k@) €. The proof that each (v®, v®, D,
£®) €.« is mapped into Z by 7 is similar and therefore omitted. O

‘The following sequence of lemmas is directed toward the proof of Theorem
1.2. For the sake of conciseness and notational simplicity, we will assume
from now on and unless otherwise specified that F is continuous in a
neighborhood of z,, that G is continuous at z; and that the derivative
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f(x) = F'(x) of F exists at x = z; € (0, ). It will become obvious later on
that our arguments can be applied with minor modifications to cover the case
where only the left and right derivatives f_(z;) and f,(z,) of F exist (see
Remark 2.1 for the statement of the corresponding variants). In view of (2.2),
it is noteworthy that the assumptions above imply that F_(x) = F(x) and
HM(x) = HY(x) for all x in a neighborhood of z;.

We first consider the so-called basic martingale [see, e.g., Gu and Lai
(1990), (2.1), page 167],

250 M(®) = a(BO) - [0~ H, () dAG),

where A(s) = —log(1 — F(s)) and, in view of (1.1) and (2.8), H, (s) =1 —
n~ !N, (s) is the left-continuous version of H, [this terminology follows from
the fact [see, e.g., Aalen (1976)] that M, (x) is a martingale with respect to
the filtration F, = o{Z,1; _ ), §17 <, i =1,...,n}]. In view of (2.1) and
(2.2), we may write

@5)  HOx) = [ (1 = F()X1 — G_(8) dA(s) = i (1 = H_(s) dA(s).
0 0

It follows from (2.50) and (2.51) that

nTVAM, (%) = nVA(HO(x) - HO(x))

2.52 ¥
(252) +n [*(H, (s) = H () dA(s).

Fix z, € (0, ®) and consider the increment functions of v € [-M, M],
(2.53) pa(u) = b, n V(M (2, + hyu) — M,(21)).

Let 2 be as in (2.29). The following two lemmas relate u, to k(" and
describe the strong limiting behavior of the sequence {u,: n > 1} as n — .

LEMMA 2.4. Assume that F is continuous in a neighborhood of z; € (0, ©),
that G is continuous at z,; and that the derivative f(x) = F'(x) of F at x = z,
exists. Then, under (H1) and (H2),

(2.54) sup |p,(u) —EP(u)l=0(h/?) >0 as.
uel-M,M]

ProOOF. In view of (2.29) and (2.52)—(2.53), we éee that
" ua(w) = RD(u) + by 'nV2 [T (H,(2) - H_(2)) dA(2).

Hence, by an application of the Chung (1949) law of the iterated logarithm to
the left-continuous empirical process n'/2(H,_(t) — H_(¢)), we obtain that,
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almost surely ultimately as n — oo,
sup | p,(u) — kP(w)l < b, (logy n)/*{A(2, + B, M) — A(z, — h, M)}
ue[-M,M]
= O(h}/z) -0,
which is (2.54). O
LEMMA 2.5. Under the assumptions of Lemma 2.4, the sequence {u,} is

almost surely relatively compact in B([ —M, M) with limit set equal to the set
ofall w € B{—M, M) with

w(u) = j;)u@(s) ds

(2.55)
for —-M < u < M, with /_A;(I)Q(s) ds < f(2z,)(1 — G(zy)).

ProOOF. The proof is straightforward by combining Remark 2.1 and Lemma
24. O

We will now make use of the following integral representation of the
Kaplan—-Meier empirical process [see, e.g., Gill (1980), page 37, Gu and Lai
(1990), (1.23)—(1.24), page 164, (2.1), page 167, and (2.21), page 171]. We

have, for all x < Z, , == max{Z,,...,Z},
nl/z(Fn(x) —F(x))
1-F(x)
e AMA()
(2.56) o 1-H_(¢)
«((1-F, (t 1 1
wnf {( 1—;‘(5‘)))1—Hn(t) T Tom (o | MO

= Hn,l(x) + Hn,Z(x) = Hn(x)
Consider the following increment functions. Fix z; € (0, ®), M > 0, and set

(2.57) m(u) = b, (I,(z, + h,u) — I,(2,)).
LEMMA 2.6. Under the assumptions of Lemma 2.4, we have

B (1)

7rn(,u) - m -0 a.s.

(2.58) sup
! uel[-M,M]

PrOOF. In our proof, we set z = z; for convenience. Since Z, , — © a.s. as
n — o, for any 6 < O there exists almost surely an n, such that (2.56) holds
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for all x < 0 and n > n,. We will therefore implicitly and without loss of
generality assume that n > n, with 6 > z + A, M. This allows us to set

’n-n,l(u) = bn—l(l_[n,l(‘2 + h’nu) - Hn,l(z))

(2.59) _ b_ln*1/2fz+hnu dM, (1)
" 2 1-H_(t)’

and, by (2.50),
’n-n,2(u) = brzl(Hn,Z(z +h’nu) - Hn,Z(z))

1. _1/9 (Eth,u 1_Fn_(t) 1 1
=b,'n //z {( T )1_Hn_(t) - 1_H(t)}dMn(t)

o erh [ [ 1=Fa(2) 1 1 .
=btnt | {( 1-F(¢) )l—Hn(t) - 1—H_(t)}dH’(‘ ()

_1.1/2 [2thau l_Fn—(t) 1_Hn7(t)
bt { 1-F(t) 1-H_(¢)

(2.60)

}dA(t).

z

It follows from (H1) and the assumption of local continuity of F that
F_(t)=F() for all t €[z —-h,M, z+ h,M] and all n sufficiently large.
This, in combination with the law of the iterated logarithm of Foldes and
Rejtd (1981) [see also Csorgdé and Horvath (1983) and Gu and Lai (1990),
(1.15)], implies that

(2.61) sup

telz—h,M,z+h,M]

1 _Fn—(t)
\ 1-F(0)

- 1‘ = 0(n"'2(og, n)V?) as.

Likewise, the Chung (1949) law of the iterated logarithm, when applied to the
left-continuous empirical process n'/2(H, _(t) — H_(t)), entails that

1 _Hn—(t) .

T—H () 1’ = 0(n"2(log, n)'/%) a.s.

(2.62) sup ‘
telz—h,M,z+h,M]

By combining (2.60), (2.61) and (2.62) with the nonnegativity of the measures
dH®" and dA, we obtain readily that, for some A, = O((log, n)/?) a.s., we
have

‘ sup |m, o(u)l <A {0, (HP(z + h,M) — H(z — h,M))
(2.63) uel-M,M]
+b, Y (A(z + h,M) — A(z — h,M))}.
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Next, we observe from (2.29) taken with z; = z and Theorem 2.1 that, almost
surely as n — oo, ’

bW (HO(z + kM) — HV(z — h,M))
= n VAED(M) - RP(-M)}
+ b, YHY(z + h,M) — HY(z — h,M)}
= O(n~V2) + O(hY/*(logy n) /%) = O(hL/*(logy n) /%),

where we have made use of (H2). Recalling that A(s) = —log(1 — F(s)) and
b, = (2h,log,h)/%, the assumption of existence of f(x)=F'(x) at x =2
entails that

bn_l(A(z +h,M) - A(z - hnM)) = O(h}l/z(logz n)—l/z)'
This, when combined with (2.63)-(2.64) and (H1), implies that

(2.65) sup |m,4(u)l=0(RY?) >0 as.
ue[-M,M]

(2.64)

To evaluate m, ,(u), we integrate by parts in (2.59), letting dM, L(8) = d(M,(¢)
— M ,(2)), to obtain, via (2.53), that
M,(z + h,u) — M,(2) }

=b71 -1/2
aa(w) = by n 1-H (z + h,u)

(266) = b, n 2 [U(M (2 + o) = M(2) d( 1-H (z+hy) )

P (%) u
T 1-H (2 +h,u) _j;) M"(U)d(l —H(z+hnv))'

In view of (2.66), Lemma 2.5, and the continuity of F', G and H at z, it is now
immediate that

(2.67) sup
ue[-M,M]

The proof of (2.58) is completed by combining (2.65) and (2.67). O

We now make use of the notation in (1.7) and (1.8) by setting &,(v) =
b a,(z + h,u) —a,(2)) with z =z, and a,(x) = n'/?(F,(x) — F(x)), and
let £(u) be defined as in (2.29). The next lemma gives the final step in the
proof of Theorem 1.2.

LEMMA 2.7. Under the assuﬁzptions of Lemma 2.4, we have
(1)

2.68 sup | &(u) - — 2|50 as.
(2.68) wel-M,M] () 1-G(z)
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PrOOF. Let z = z,. In view of (1.7)—(1.8) and (2.56)—(2.57), we have

&(u) =0, {(1 = F(z + h,u)),(z + h,u)
(2.69) (1 -F(2)11,(2)}
=(1-F(2),(u) + b, (F(z) —F(z + h,u))I,(z + h,u).

By (2.56) and (2.61), we have, uniformly over u € [-M, M1, 1 (z + h, u) =
O((log, n)'/?), a.s., whereas (H1) and the existence of f(x) = F'(x) at x =z
entail that F(z) — F(z + h,u) = O(h,). Therefore, it follows from (2.69) that

(2.70) sup |&,(u) = (1 = F(2))m(u)l=0(hy/?) >0 as.
uel-M,M]

The conclusion (2.68) now follows directly from (2.70) when combined with
(2.54), (2.58) and the fact, implied by (2.1), that (1 — F(2))/(1 — H(z)) =
1/(1 — G(2)). O

PROOF OF THEOREM 1.2. Assume first that the derivative f(x) = F'(x) of
F at x = z € (0, O®) exists and that G is continuous at z. If such is the case
and under (H1) and (H2), we infer from Theorem 2.1 and Remark 2.1 that the
sequence {£’(u)/(1 — G(2)): n = 1} of functions of u € [-M, M] is almost
surely relatively compact in B({—M, M]) with limit set consisting of all
functions A € B({—M, M]) of the form

u ¢(S)

h(u) = 0 T=G(2) ds

(2.71)
for —M < u < M, with j_”;qﬁ(s) ds < f(2)(1 - G(2)).

By setting ¥(s) = ¢(s)/(1 — G(z)), we see that (2.71) is equivalent to
(1.9).The remainder of the proof of the theorem under the assumption of
existence of f(x) at x = z € (0, ®) is completed by an application of Lemma
2.7 taken with z = z;. In view of Remark 2.1, the proof of the theorem when
only f_(x) and f,(x) exist at x = z € (0, ®) is very similar, so we omit the
details. O

3. Applications. To illustrate how the results of the preceding section
may be applied, we consider in the first place a continuous functional T,
defined on a closed subset .# of B(—M, M) for some M > 0 and satisfying

" the condition that ¢, €.% for each n > 1. Introduce the statistic

(3.1) T, =T(&),
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with ¢, defined as in (1.8). Letting 6 denote a continuous function on [—-C,
C], where C > 0 is a constant such that 0 < C < M, simple examples of such
functionals are given by

I(h) =), Ty (k)= +mC), Tyh)= sup [h()O(),
-C<t<C

LW = sup +h(DO®, Tyh) = [° w6 dt.
-C<t<C -C

3.2

The following theorem gives a description of the almost-sure limiting behav-
ior of the sequence {T,: n > 1} under the above assumptions. Denote by L,
the set of all functions A € B({ —M, M) satisfying (1.9).

THEOREM 3.1. Let z € (0, ®) and M > 0 be fixed. Assume that F is
continuous in a neighborhood of z, that the derivative f(x) = F'(x) of F at
x = z exists and that G is continuous at z. Then, under (H1) and (H2), the
sequence {T,;: n > 1} is almost surely relatively compact in R with limit set
equal to the interval

(3.3) inf T'(h), sup I'(h)|.
hely hely

ProoF. The fact that {7): n > 1} is almost surely relatively compact with
limit set equal to I'(L,,) is straightforward by Theorem 1.2. Since, by (1.9),
the set L, is compact and connected in B((—M, M]), it follows that the
image set I'(L,,) of L,, by the continuous mapping I' is a closed interval, so
that (3.3) is immediate. O

We will now show that Theorem 1.1 is a consequence of Theorem 3.1.

Proor oF THEOREM 1.1. Making use of (K1) and (K2), we first choose

M > 0 in such a way that K(u) =0 for all |u| > M/2, and then rewrite
(1.2)-(1.3) as

ful2) ~Ef(2) =kt [ K(u) d(F(z + hyu) = F(2)
—F(z + h,u) + F(z2)}
(3.4) = ;' [M (F (2 + hou) - Fy(2)
-M N
—F(z + h,u) + F(z)}dK(u)
_ —h,;ln—l/zbn/_l‘;gn(u) dK(u),

where we have integrated by parts, which is rendered possible by (K1), and
made use of the notations (1.7)-(1.8). Next, we define the functional I" in (3.1)
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by setting, for each function & € B({—M, M) of bounded variation on [ — M,
M],

(3.5) T(h) = —[_A;h(u) dK (u),

Next, we apply Theorem 3.1 to obtain, via (3.4), that the limit set of the
sequence

nh, 1/2
(3.6) T, = {2log2n} (fu(2) —Ef,(2)), n=12,...,

is as in (3.3). To conclude, we first integrate by parts to obtain, via (1.9), that

sup +T(h) = sup + [* K(u)dh(u)
hely hely, -M

sup {if_ALK(u)‘I’(u) du: h(u) = /O"qr(s) ds}.

hely

(3.7)

To evaluate this last expression, it is convenient to set

€-= fo(z) ~ 7 fi(z)
) c_/2K(t), fort <0,
(3.8) K*(t) = c;2K(t), fort >0,

c/2w(t), fort <O,
c/2w(t), fort=>0.

WH(t) = {

By (3.8), K(w)¥(u) = K*(u)¥*(u), and the inequality on the right-hand side
of (1.9) is equivalent to [¥,, ¥*(u)? du < 1. It follows that (3.7) may be
rewritten as

s +T(h) = sup{if_]l;K*(u)‘I’*(u) du: f_l‘;(‘lf*(u)f du < 1}

M * 2 1/2
(39) s {f_M(K () du}
f—(z) 0 9 f+(z) M, 1/2
) {IT—(Z)f—MK () dt+ 7= [ K (t)dt}

=1L,
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where we have used (3.8) in combination with the Schwarz inequality. The
particular choice of

+K*(u)
{1y (K*(t))* dt

T*(u) = }1/2

shows likewise that we have equality in (3.9). This, in combination with the
just proven fact that the sequence T),, as defined in (3.6), is almost surely
relatively compact with limit set equal to the interval [ L, L], with L as in
(3.9), suffices for (1.4). O

REMARK 3.1. A simple modification of the arguments we have used in our
proofs shows that, throughout, we may replace assumption (H1) by the
following variant.

(H3) There exists a sequence {h*, n > 1} satisfying (H1), such that

now | BE

h, h,
0 < liminf (—) < lim sup (h—*) <
n—x n
This follows from the observation that, whenever the conclusion (1.9) of
Theorem 1.2 holds for some sequence {4 ,, n > 1}, then it also holds when, in
the definition (1.8) of {£,}, {h,, n > 1} is replaced by an arbitrary sequence
{r*, n > 1} such that &,/h* is bounded away from zero and infinity.
REMARK 3.2. It is obvious from the arguments of the proof of Theorem 1.1
that the functional laws given in Theorems 1.2 and 3.1 may be used to
describe the pointwise almost-sure limiting behavior of a large class of
nonparametric estimators of local functionals of F. For example, if we choose
=T, and 6(¢) = 1 in (3.1) and (3.2), we obtain a description of the strong
limiting behavior of the local modulus of continuity of the Kaplan—-Meier
process a, = n'/%(F (x) — F(x)). Such applications, being readily obtained
either as direct applications of our results or by arguments similar to those
used to prove Theorem 1.1 given the conclusion of Theorem 3.1, are left to the
reader.

Acknowledgment. We thank the referee for insightful comments lead-
ing to some improvements of the version originally submitted.
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