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THE BERRY-ESSEEN BOUND FOR
STUDENT’S STATISTIC!

By V. BENTKUS AND F'. GOTZE
" University of Bielefeld

We prove the Berry-Esseen bound for the Student ¢-statistic. Under
the assumption of a third moment this bound coincides (up to an absolute
constant) with the classical Berry—Esseen bound for the mean. In general
the distribution of the Student statistic converges to the standard normal
distribution function at least as fast as the distribution of the mean, and
sometimes faster. For example, rates of convergence can be proved if the
underlying distribution is in the domain of attraction of the normal law.

1. Introduction and results. Let X,,..., X, denote ii.d. mean-zero
random variables. Write

c?=EX2, B, = E|X,°
and
— N 2
X=NYX,++Xy), &’=N'Y (X -X).
i=1
Assume that o > 0, and define Student’s statistic by
t=X/G forN > 2,
where X denotes the sample mean and & the sample variance Gf & = 0,
then, for instance, set ¢ = 0). The following Berry—Esseen bound is a conse-

quence of our general estimates of the convergence rate of the distribution of
VNt to the standard normal distribution function. Write

8y = sup| P{YNt < x} — ®(x)l.

THEOREM 1.1. There exists an absolute constant ¢ > 0 such that
cfBs
a3/N’

Theorem 1.1 is an easy corollary of the following theorem.

THEOREM 1.2. There exists an absolute constant ¢ such that
8y < co ?EXZI{X} > 0?N} + <N~ V% *E|X,’I{X? < 0 ®N}.

In particular, 8y = o(N~°/%) provided B,,, < ©and 0 <s < 1.
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In order to formulate our main result, we introduce a special normalization
and truncated moments. For a given random variable X; and a natural
number N, define the number a? = a%(X,) by the truncated second moment
equation
(1.1) a? = sup{b: EX’I{X? <bN} > b}, a=0.

We shall need the following well-known properties of a. N

LEMMA 1.3. The number a in (1.1) exists for any random variable X, and
any N, and a is the largest solution of the equation

(1.2) o’ = EXZI{X? < a®N}.
If 0 <o, then a < o. If 0=, then ay > ©as N -« If P{X; =0} <1,

then a is positive for sufficiently large N. If EX2 =1 and a® < %, then
EX2H{X? > N/2} > %. Furthermore, a®>(tX;) = t?a*(X,), for all t € R.

Write
Y, =a 'N"'2XI{X? <a’?N} forl<i<N.
Note that Y, does not change if we replace X, by 7X;, 7> 0. Furthermore,
|Y,| < 1 and EY,2 = 1/N.

Our main result is the following estimate, which holds without assuming
the existence of moments.

THEOREM 1.4. There exists an absolute constant ¢ > 0 such that

8y < 2NP{X? > a®’N} + cN|EY;| + cNE|Y;?,

whenever the largest solution a of (1.1) is positive.

COROLLARY 1.5. Fix a sequence X;, X,,... of i.i.d. random variables. If

13 5 72P{X12 > 72} _ 0
(1.3) L EXAXI <)

then &y — 0 as N — .

Theorem 1.2 easily follows from Theorem 1.4. Indeed, without loss of
generality we may assume that o2 = 1. In the case a® < 3 there is nothing to
prove because EXZI{XZ > N/2} > 3, by Lemma 13, and &y <1 <
2EX2I{X? > N/2}. In the case a® > 3, Lemma 1.3 implies 3<a® <1 = 0?2,
and the result follows from Theorem 1.4 by an application of the Chebyshev

inequality.

'REMARK. All results remain true if we replace VNt by the so-called

self-normalized sums
(X, + - +Xp) /VXE+ - +X5.
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In this case proofs are the same; the only exception is the truncation Lemma
2.2, which becomes simpler. Self-normalized sums are extensively studied
[see, e.g., Efron (1969), Logan, Mallows, Rice and Shepp (1973), LePage,
Woodroofe and Zinn (1981), Griffin and Kuelbs (1989, 1991) Hahn, Kuelbs
and Weiner (1990) and Griffin and Mason (1991)].

Condition (1.3) is the weakest known sufficient condition for the central
limit theorem for Student’s ¢-statistic [Maller (1981) and Csorgd and Mason
(1987)]. It is necessary in the symmetric case [see Griffin and Mason (1991)],
and it characterizes the domain of attraction of the normal law. Whether this
condition is also necessary in general remains open [see Logan, Mallows, Rice
and Shepp (1973) and Griffin and Mason (1991)].

Convergence rates and Edgeworth expansions for Student’s and related
statistics were considered by Chibisov (1980, 1984) and Slavova (1985),
Helmers and van Zwet (1982), van Zwet (1984), Helmers (1985), Bhat-
tacharya and Ghosh (1978), Hall (1987, 1988), Friedrich (1989), Bhattacharya
and Denker (1990) and Bentkus, Gotze and van Zwet (1994), among others.

Chibisov (1980, 1984) and Slavova (1985) proved that there exists a finite
function f such that 8y < f(B;/0%)/ VN . Theorem 1.1 improves this result.
For a fixed sequence X, X,,..., Hall (1988) obtained an asymptotic result
(without the explicit estimate) which is comparable in this case with Theorem
1.2 but assuming that, for some y € R,

(*) Ep(y)(1-p(y)) >0, wherep(y)=P{X—y>0[|X—yl}.

The paper of Hall (1988) contains a number of interesting corollaries which
one can derive from results like Theorems 1.2 and 1.4. In the symmetric case,
Hall (1988) proves, without condition (*), an asymptotic result comparable
with Theorem 1.4. It is interesting to notice that in this case there is a very
fast and short reduction to sums of independent random variables by sym-
metrization and conditioning arguments (see the proof of Theorem 1.4 in the
symmetric case in Section 2).

Other estimates are obtained as special cases of results for general sym-
metric asymptotically normal statistics. The result of Helmers and van Zwet
(1982) implies that 8§y = O(N~!/2) provided By 2 < ». The general result of
van Zwet (1984) yields that &y < cB,/(c*/N). Friedrich (1989) improved
this result to Ay < cpByg,3/(c'/3/N). Bentkus, Gétze and Zitikis (1994)
obtained a lower estimate showing that the result of Friedrich (1989) is final,
and therefore the latter bound for 8y is the best possible result that can be
derived from general results. Our proofs are related to the approach devel-
oped by Gétze and van Zwet (1992) and Bentkus, Gotze and van Zwet (1994).

. 2. Proofs. The proofs are-rather straightforward, with the exception of
the proof of Theorem 1.4.

Proor oF LEMMA 1.3. The set of b satisfying the inequality in (1.1) is
nonempty since b = 0 satisfies it.
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Let us show that a is finite. For any given random variable X; there exists
a monotone function A(¢) > 1, ¢t > 0, such that EA(|X,]) < o, lim, _,, h(¢) =
and such that the function ¢2/A(t) is increasing. Therefore, for b satisfying

the inequality in (1.1),
b < EX?I{X? < bN} < bNEA(X,l)/R(VbN),

S~

which contradicts a = .

It follows from the theorem of dominated convergence that a is a solution
of (1.2).

The other statements of the lemma are obvious. O

ProOOF OF THEOREM 1.1. The result is an immediate consequence of Theo-
rem 1.2. O

ProorFs OoF THEOREM 1.2 AND COROLLARY 1.5. The results follow from
Theorem 1.4. O

Thus it remains to prove Theorem 1.4. Here we shall assume that, for a
sufficiently small absolute constant ¢, > 0,

(2.1) NI|EY,| <¢c,, NE|Y,® <c,,
since otherwise the result follows from the obvious estimate
supIP{\/JVt <x} - ®(x) <1
Write )
Y=Y, +-+4Yy and n=mn + - +mny, wheren, =Y2-N"1.
LEMMA 2.1. Let 1 <m < N and assume that (2.1) holds. There exists an
absolute constant ¢ and a constant ¢(p) depending only on p such that

ElY, + - +Y,1” <c¢(p) forp=0,
2 M 3
E(n, + - +m,) < NHE|Y1| ,

m2
EU? < c(ﬁ) NE|Y1|3, where U = Y Y;n;.

i#j,1<i,j<m
ProOF. It is well known that [see Petrov (1987)]

El6; + - +6,|" <c(p)mE|6,|° + c(p)(mE(‘)f’)p/2 for p > 2,

for ény ii.d. mean-zero random variables 6,,..., 6,,. This inequality implies
the first estimate of the lemma via elementary calculations using |Y;| < 1 and
NEY}? = 1. The proofs of the second and the third estimates of the lemma
are elementary as well (note that Em; = 0). O
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Let g: R » R denote a function which is infinitely differentiable with
bounded derivatives such that

[NIIEN |

1 1 1
— <g(x)<2 foralxeR and g(x) == for— <|x|<
3 T el

Define the statistic
S=Yg(1+ 7).

LEMMA 2.2 (Truncation). Assume that (2.1) holds. There exists an abso-
lute constant c such that

8y < sup|P{S <x} — ®(x)| + 2NP{X? > a®N} + cN|EY,| + cNE|Y;/*
whenever a = ay(X;) > 0.

ProoF. If a > 0, we may write
VNX/a
VNt = / ——
Vp?/a® - (%/a)
The complement of the event
{X2 <a®N,..., X2 < azN}

, where p? = (X? + - +X})/N.

has probability less than
NP{X? > a®’N}.
Therefore we may replace P(YN t < x} by P{S, < x}, where the statistic S, is
defined by
Sy =Y/Vs? —N7'Y2, wheres?=Y?+ - +Y,2.

Lemma 2.1 implies that
EY?<c, P{s?-1/>}} <4En? <4NE|Y,]’.
Thus the events
{s?<3}, {s*=3} and {N'Y%> 3}

occur with probabilities less than cN E|Y1|3 (note that N"/2 < N E|Y1|3).
Therefore we can replace P{S, < x} by P{S, <x}, where S, = Yg(s? —
N~1Y2). The function g has bounded derivatives. Expanding in powers of
N~'Y2 we obtain 8; = S + R, where |R| < ¢cN~'|Y|>. Chebyshev’s inequality
and Lemma 2.1 imply P{|R| > N~!/%} < ¢N~!/2; but again N™1/% < NE|Y,?,
and the result of the lemma follows. O

By ¢ we shall denote a standard normal variable. We can write &=
& + - + &y, where &,,..., &y are ii.d. centered normal random variables
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such that E£2 = 1/N. We shall assume that ¢ and ¢,,..., &y are indepen-
dent of all other random variables.

LEMMA 2.3. Assume that (2.1) holds. Let H: R - C denote an infinitely
many times differentiable function with bounded derivatives. Then, for 1 <
k <N,

IEH((Y; + - +Y,)g(1+m + - +m,)) —EH(& + - +&)l

(2.2) 3
< ccHN(IEYll + E|Y,] ),

where cy = [|H'|l. + |[H"|l. + |1H" |l and ||H|l. = sup, |H(x)I.

/

J
Proor. We shall prove the lemma for £ = N only. We have to show that
|[EH(S) — EH(¢)| is bounded from above as in (2.2). It is sufficient to prove
that

(2.3) |[EH(S) — EH(Y)| < ccy N(IEY;| + E|Y,[?),
(2.4) |[EH(Y) — EH(£)| < ccy N(IEY,| + E|Y,[%).

The proof of (2.4) is easy [see Bentkus, Gotze, Paulauskas and Radkauskas
(1991)]. Let us prove (2.3). Expanding in powers of 7, we get

EH(S) = EH(Yg(l +m)) =EH(Y + E;Yng'(1 + 617m)),

where 6, 6,,..., denote an ii.d. sequence of random variables uniformly
distributed on [0, 1], independent of all other random variables. Here E,
stands for the conditional expectation given all r.v. but 6,, 6,,... . Let us split
the sum Y7 into the sum of its diagonal and remaining part,

N
Yn=D + U, whereD= ) YmnandU = Y Y.

i=1 i#j,1<i,j<N
Expanding in powers of E,Dg’'(1 + 6,m), we may replace EH(Yg(1 + n)) by
EH(Y + E,Ug'(1 + 0;7m)). The error of such a replacement is bounded from
above by ccy E|D|, which does not exceed the right-hand side of (2.3). Simi-
larly, expanding in powers of E, 6,7 and E,U8;ng"(1 + 6,6,m), we may
replace EH(Y + E,Ug'(1 + 6,1)) by EH(Y — U/2) since g'(1) = — 1. The
error does not exceed '

ccxElU| | < ccH(EUzEnz)l/2 < ccHNE|Y1|3

(see Lemma 2.1 for the estimates of EU? and E7?). Expanding in powers of
~U/2, we may replace EH(Y =.U/2) by EH(Y) — EUH'(Y)/2, and it re-
mains to estimate EUH'(Y)/2 only. Due to the symmetry and the i.i.d.
assumption, we have

EUH'(Y) = (N2 — N)EY,n, H'(Y).
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In order to estimate N2|EY;7n, H'(Y)|, we first expand in powers of Y; and
subsequently in powers of 7,. Thus we get
N2EY n,H'(Y)| < ccHNz(IEYllEng + EYfEn%) < ccHNE|Y1|3,
which concludes the proof of (2.3) and of the lemma. O
PrOOF OF THEOREM 1.4. Without loss of generality we shall assume that

(2.1) is fulfilled.
An application of the truncation Lemma 2.2 reduces our proof to the

-~ verification of the following inequality

(2.5) sup|P{S < x} — P{£ < x}| < cN|EY,| + ¢cNE|Y,|?
x

whenever a = ay(X;) > 0.
In order to prove (2.5), let us apply the Berry-Esseen inequality for
characteristic functions and Lemma 2.3. Write

f(7) = Eexp{irS} = Eexp{itYg(1 + 7)},
#(7) = Eexp{ité} = exp{—12/2}.

Thus (2.5) is a consequence of

(2.6) fc

where T = ¢, /(NE|Y,|?) and where we may choose the absolute constant C,
sufficiently large and the absolute constant.c¢; > 0 sufficiently small. We may
assume that the interval (C,,7T) is nonempty since otherwise the Theorem
holds like (2.1).

Define the natural number

Tlf(r) — ¢(7) dr/Ir| < cN|EY,| + cNE|Y,*,

1<I7l=

C,Nln|7|
m=m(r) ~ ——— forC, <I7[<T,
T
where C, is a sufficiently large absolute constant. Such a number with
2 < m < N/2 exists due to our choice of constants.
Throughout the proof we shall write A = B if

/ |A — Bl dr/I7| < cN(IEY,| + E[Y,*).

Ci<lIrlsT

Thus (2.6) means that we have to prove that f= ¢. We shall prove this
relation in several steps. In the first step we shall replace f by an expectation
containing as a factor a product of m conditionally independent random
characteristic functions [see (2.10)-(2.13)]. This product will ensure the con-
vergence of the integral [see (2.16)]. In the next step we replace this product
by a nonrandom product [see (2.18)]. An application of Lemma 2.3 will then
conclude the proof. Let us split

Y=X+Z, n=vy+p, where X=Y,+ - +Y,andy=mn; + - +n,.
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Then
(2.7 f(7) =Eexp{irXg(1+ v+ p) +itZg(1 + v + p)}.
Let us show that
2y (0 =F(0) - Bexp(itXg(1+p) +itUg'(1+p)
+itZg(1 + p) + itZyg'(1 + p)},

where

U= )y Y.

j*rk,1<j,k<m
Expanding in powers of y, we have
Xg(1+y+p)=Xg(1+p)+Xyg'(1+0y+p),
Zg(1+y+p)=2g(1+p)+2Zyg'(1+p) +Zy’g"(1 + 0y +p)/2,

where |0| < 1. The random variables Z and y are independent. Applying
Lemma 2.1 to bound moments and using the boundedness of the derivatives

of g, we have

I7|m
(2.9) ElrZy?g"(1 + 6y + p)| < cl7|EIZ|Ey® < c ~

NE|Y, %,

The factor |7|m /N in (2.9) allows us to remove the term itZy%g"(1 + 6y +
p)/2 in the exponent in (2.7) since |r|lm/N = O(r|"* In|r]) and thus the
integral with respect to the measure d7/|7| is convergent as |7| — .

Let us split the sum X7y into its diagonal and nondiagonal parts,

m
Xy=D+ U, D = EY;-'/;J-.
j=1
We have
ElrDg'(1 + 6y + p)| < 2|7ImE[Y,°,
which allows us to remove itDg'(1 + 0y + p) in the exponent in (2.7). We
have
Ug'(1+0y+p)=Ug'(1+p)+R,
where
R| < cE[Uy| < ¢(EU*Ey?)"’” < em(IEY,| + E[Y,[*),
and we arrive at (2.8).
We will show that (2.8) implies
(2.10) f=fi=f, +f; forsome f; =0,
where ‘
, fo(7) = Eexp{itXg(1 + p) + i1Zg(1 + p) + itZyg'(1 + p)}
Exi)anding in powers of itUg'(1 + p) and estimating EU? by Lemma 2.1, we
obtain (2.10) with

fa(7) =irEUg' (1 + p)exp{itXg(1 + p) + itZg(1 + p) + irZyg'(1 + p)}.
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Expanding in powers of itZyg'(1 + p) and estimating the remainder
ct?E|Z|E|yU| by Lemma 2.1, we have

f3(7) =fu(7) = iTEUg'(1 + p)exp{itXg(p) + itZg(1 + p)}.

Due to the symmetry and the i.i.d. assumption, we have

fu(1) =it(m? — m)EY m,g'(1 + p)exp{itXg(1 + p) + itZg(1 + p)}.
Conditioning, we have

| £,(7)] < clrIm2EIG(7)]1G5(7)I,

where

Gy(7) = E,Y, exp{irY,g(1 + p)}, Gy(7) = Eymy explitY,g(1 + p)},
and where E, (resp., E,) denotes the conditional expectation given all random
variables independent of Y; (resp., Y,). Expanding in powers of i7Y;g(1 + p),

we get
IG(7)| < |[EY |+ clrIN"! < clr|[N71,
if we note that |7| > C; > 1 and use (2.1). Similarly,
Gy(7)| < cl7|ElY;n| < clrINTINE, Y, °.
Therefore
|fi(7)| < clr’m®N~2NE,|Y,/?,

and f; = f, = 0, which concludes the proof of (2.10).
Let us derive from (2.10) that

(2.11) f=1+Te

where
f5(7) = Eexp{itXg(1 + p) + itZg(1 + p)},
fo(7) = itTmEZn,g'(1 + p)exp{itXg(1 + p) + itZg(1 + p)}.

Using the inequality lexp{iA} — 1 — iA| < |A|*/2, with A = 7Zyg'(1 + p), and
the bound E|Z|*'? < ¢, as well as

Ely*? < cmEln,|*? < emE|Y,?,
we obtain (2.11) with
fo(7) = irEZyg'(1 + p)exp{7Xg(1 + p) + itZg(1 + p)}.
Now the symmetry and the i.i.d. assumption together imply (2.11).
Write
F(7) =E,exp{itY;}, G(7)=E exp{itY;g(1 + p)}
and '
Gy(7) = Em, exp{irY,g(1 + p)}.
Conditioning, we can rewrite f5 and fg in (2.11) as
(212)  fy(r) = Eexp{irZg(1 + p)}G™(7),
(2.18)  fo(7) =itmEZg'(1 + p)exp{itZg(1 + p)}G™ '(7)Gy(7).
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Expanding, we have
(2.14) 1Gy(7)| < clr|EIY,[°.

The function |G(7)|? is the characteristic function of a symmetric random
variable with variance b, such that

N'g?(1+p) <b, <2N7'g*(1+p),
and third absolute moment bounded from above by 4g%(1 + p)E|Y;|%. The
function g satisfies 1 < g < 2. Therefore, as is well known (and easy to show),
(2.15) |G(7)| < exp{—c,r2/N} for |7] < c5/(NEI|Y,?)

with some absolute constants ¢, > 0 and c5 > 0. Without loss of generality
we may assume that m /4 is an integer. Obviously |F(7)| is bounded from
above by the right-hand side of (2.15) on the same interval, and with some
absolute constant ¢, > 0 we have

(2.16) max{IF(r)lm/4;|G(r)|m/4} < exp{—¢,mr?/N} = || < 7|71,

for C; <|7| < T, provided we choose the constant C, sufficiently large.
Relations (2.13), (2.14) and (2.16) together imply that f; = 0, and thus we
can rewrite (2.11) as

(2.17) f=fs

with f; defined by (2.12). Due to (2.16), we may ignore powers of 7 as factors
in the following estimates. Indeed, the integral will converge as 7 — «
provided we have factors G™/* or F™/* balancing these powers.

Let us derive from (2.17) that

(2.18) f=rf+"fs

where

f.(7) = F™(7)Eexp{itZg(1 + p)},

|fs(7) < clr’mN=F™~*(7)Epexp{irZg(1 + p)}I.

We may assume that £ = m /2 is an integer, and we may write
G™(1) = G*¥(7)G*(1) with G*(7) = Ey exp{i7Xg(1 + p)},

where now we write X = Y, + :-- +Y, and where Ey denotes the conditional
expectation given all random variables but X. Expanding first in powers of p
and subsequently expanding the exponential, we have

(2.19)

i,
G*(1) = Ex exp{itX} — 7PEXXexp{‘iTX} +R,

with |R| < cEx|7X|p® + cE, 12X %? < ct%?2. However, Ep® < ¢cNE|Y,)?, and

we may replace G*(7) in (2.12) by

1Tp
- —E

Ey exp{itX} 2

imTp
X exp{itX} = F*(7) — TFk*l(T)Gz(T),
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where G,(7) = E Y, exp{irY,} satisfies
(2.20) |Go(7)| < I7||IEYy| + 72N~ ! < er2N~ L
Now the balancing factor F*~! is present, and arguing similarly we get (2.18)
with
iTm m—1 )
fu(r) = =Gy (r) 7 (r)Ep explirZg (1 + p)).

Applying (2.20) we obtain (2.19), which concludes the proof of (2.18).
The symmetry and the i.i.d. assumption together imply
|Epexp{irZg(1+ p)}|

(2.21) )
< (N — m)|Eny exp{itZg(1 + p)}| < cNE|Y,|",

by Taylor expansions in powers of Yy and 7. Due to (2.21), f; = 0, and it
follows from (2.18) that f = f,. Let us apply Lemma 2.3 to E exp{itZg(1 + p)}.
We obtain

f(r) =f(7) = F"(7)exp{—(1 — mN~')r2/2}.

According to our choice m < N/2 and therefore exp{—(1 — mN 1)r%/2} <
exp{—72/4}. Thus using Lemma 2.3 we may replace F™(r) by exp{—m72/
(2N)}. We obtain f = ¢, which concludes the proof of the theorem. O

PrROOF OF THEOREM 1.4 IN THE SYMMETRIC CASE [cf. Griffin and Mason
(1991)]. Define the statistic

T=Y/s, wheres?=Y2+ - +Y..

A small modification of the truncation Lemma 2.2 shows that it is sufficient to
demonstrate that

(2.22) 8}, = sup|P{T < x} — ®(x)| < cNE|Y,°.
Let &4,..., &y be iid. symmetric Bernoulli random variables independent

of all other random variables and such that P{|e;| = 1} = 1. Then, due to
symmetry,

8 < 2P{s? < 1} + EI{s® > 1}sup|P,{VNY,/s <z} — ®(x)|.

Here Y, = £,Y; + -+ &4Yy, and P, denotes the conditional probability given
. Y,,...,Yy. Applying conditionally the well-known result [see Petrov (1975)]

(2.23) sup|P{Z, + -+ +Zy < x} — ®(x)| < cEIZ,* + -+ +cE|Zy/°,
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valid for independent mean-zero random variables Z,,...,Z, such that
EZ?Z + --- +EZ}% = 1, we obtain (2.22).

Let us note that we need (2.23) only for Bernoulli random variables, that
is, for random variables which assume at most two values. O
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